Multi-Frame Factorization Techniques

Suppose $\left\{\vec{x}_{j, n}\right\}_{j=1, n=1}^{J, N}$ is a set of corresponding image coordinates, where the index $n=1, \ldots, N$ refers to the $n^{\text {th }}$ scene point and $j=$ $1, \ldots, J$ refers to the $j^{\text {th }}$ image.

Such corresponding points may be obtained from local feature points, for example.

Problem. Estimate the 3D point positions, $\left\{\vec{X}_{n}\right\}_{n=1}^{N}$, along with the placement and calibration parameters for the J cameras.

Perspective Projection

The image points and the scene points are related by perspective projection,

$$
\begin{equation*}
\vec{p}_{j, n}=\frac{1}{z_{j, n}} M_{j} \vec{P}_{n} . \tag{1}
\end{equation*}
$$

Here $\vec{p}_{j, n}=\left(x_{j, n}, y_{j, n}, 1\right)^{T}$ is in homogeneous pixel coordinates, the scene point $\vec{P}_{j}=\left(P_{j, 1}, P_{j, 2}, P_{j, 3}, 1\right)^{T}$ is in homogeneous 3D coordinates. Also $M_{j}=M_{i n, j} M_{e x, j}$ is the 3×4 camera matrix formed from the product of the intrinsic and extrinsic calibration matrices. Finally, $z_{j, n}$ is the projective depth, $z_{j, n}=\vec{e}_{3}^{T} M_{j} \vec{P}_{n}$, where $\vec{e}_{3}^{T}=(0,0,1)$.

For convenience we assume the intrinsic matrices have the form

$$
M_{i n, j}=\left(\begin{array}{ccc}
f_{j} & 0 & 0 \tag{2}\\
0 & f_{j} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The extrinsic calibration matrices are in general given by

$$
\begin{equation*}
M_{e x, j}=\left(R_{j},-R_{j} \vec{d}_{j}\right), \tag{3}
\end{equation*}
$$

where R_{j} is the rotation from the world to the $j^{\text {th }}$-camera's coordinates, and \vec{d}_{j} is the position, in world coordinates, of the nodal point for the $j^{\text {th }}$ camera.

Bundle Adjustment

We wish to solve for the point positions \vec{P}_{n} for $n=1, \ldots, N$ and the camera matrices M_{j} for $j=1, \ldots, J$ by minimizing

$$
\begin{equation*}
\mathcal{O}\left(\left\{M_{j}\right\}_{j=1}^{J},\left\{\vec{P}_{n}\right\}_{n=1}^{N}\right) \equiv \sum_{j, n}\left\|\binom{x_{j, n}}{y_{j, n}}-\frac{1}{\vec{e}_{3}^{T} M_{j} \vec{P}_{n}}\left(I_{2}, \overrightarrow{0}\right) M_{j} \vec{P}_{n}\right\|^{2} . \tag{4}
\end{equation*}
$$

Here the camera matrices M_{j} must be of the form $M_{i n, j} M_{e x, j}$ where $M_{i n, j}$ and $M_{e x, j}$ are as given in equations (2) and (3).

This nonlinear optimization problem is called bundle adjustment.
In these notes we discuss two approximations to bundle adjustment:

1. Approximate perspective projection by scaled orthographic projection.
2. Rescale each term in the bundle adjustment objective function (4) and solve a bilinear problem.

Scaled-Orthographic Projection

Scaled-orthographic projection provides an approximation of perspective projection (1) for the case of narrow fields of view,

$$
\max \left\{\left|x_{j, n}\right|,\left|y_{j, n}\right|\right\} \ll f_{j},
$$

and relatively shallow depth variations,

$$
z_{j, n} \approx 1 / s
$$

For scaled-orthographic projection, the image points and the scene points are related by

$$
\begin{equation*}
\left(I_{2}, \overrightarrow{0}\right) \vec{p}_{j, n}=s\left(I_{2}, \overrightarrow{0}\right) M_{j} \vec{P}_{n} . \tag{5}
\end{equation*}
$$

Here $\vec{p}_{j, n}, \vec{P}_{n}$ and M_{j} are as above, and s is a constant scale factor. This is bilinear in the scaled camera matrix $s M_{j}$ and the 3D point \vec{P}_{n}.

Differences from Mean Image Points

Let $\overrightarrow{\bar{p}}_{j}=\frac{1}{N} \sum_{n=1}^{N} \vec{p}_{j, n}$ be the average image point, and $\overrightarrow{\vec{P}}_{j}=\frac{1}{N} \sum_{n=1}^{N} \vec{P}_{j, n}$ be the average scene point. Then, by equation (5), we can show

$$
\begin{equation*}
\vec{u}_{j, n}=\tilde{M}_{j} \vec{U}_{n} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
\vec{u}_{j, n} & =\left(I_{2}, \overrightarrow{0}\right)\left(\vec{p}_{j, n}-\overrightarrow{\bar{p}}_{j}\right) \\
\vec{U}_{j, n} & =\left(I_{3}, \overrightarrow{0}\right)\left(\vec{P}_{j, n}-\overrightarrow{\vec{P}}_{j}\right) \\
\tilde{M}_{j} & =s\left(I_{2}, \overrightarrow{0}\right) M_{j}\left(I_{3}, \overrightarrow{0}\right)^{T}
\end{aligned}
$$

Moreover, from equations (2) and (3) it follows that the scaledorthographic projection matrix \tilde{M}_{j} has the form

$$
\tilde{M}_{j}=s\left(\begin{array}{ccc}
f_{j} & 0 & 0 \tag{7}\\
0 & f_{j} & 0
\end{array}\right) R_{j}=s f_{j}\left(I_{2}, \overrightarrow{0}\right) R_{j}
$$

where R_{j} is the rotation matrix for the $j^{t h}$ camera, as above.

Derivation: Difference from Mean

Let $\vec{p}_{j}=\frac{1}{N} \sum_{n=1}^{N} \vec{p}_{j, n}$ be the average image point, and $\vec{P}_{j}=\frac{1}{N} \sum_{n=1}^{N} \vec{P}_{j, n}$ be the average scene point.

Then, by equation (5), we have

$$
\left(I_{2}, \overrightarrow{0}\right) \vec{p}_{j}=s\left(I_{2}, \overrightarrow{0}\right) M_{j} \vec{P}
$$

Subtracting this from (5) we find

$$
\left(I_{2}, \overrightarrow{0}\right)\left(\vec{p}_{j, n}-\vec{p}_{j}\right)=s\left(I_{2}, \overrightarrow{0}\right) M_{j}\left(\vec{P}_{j, n}-\vec{P}\right) .
$$

Note the $4^{\text {th }}$ component of $\vec{P}_{j, n}-\overrightarrow{\vec{P}}$ is equal to $1-1=0$. Therefore we can drop this $4^{\text {th }}$ component, and obtain

$$
\vec{u}_{j, n}=\tilde{M}_{j} \vec{U}_{n},
$$

where

$$
\begin{aligned}
\vec{u}_{j, n} & =\left(I_{2}, \overrightarrow{0}\right)\left(\vec{p}_{j, n}-\vec{p}_{j}\right), \\
\vec{U}_{j, n} & =\left(I_{3}, \overrightarrow{0}\right)\left(\vec{P}_{j, n}-\vec{P}_{j}\right), \\
\tilde{M}_{j} & =s\left(I_{2}, \overrightarrow{0}\right) M_{j}\left(I_{3}, \overrightarrow{0}\right)^{T} .
\end{aligned}
$$

Which is what we set out to show.

Notice we can use the definitions of $M_{i n, j}$ and $M_{e x, j}$ to simplify \tilde{M}_{j} above. We find

$$
\begin{aligned}
\tilde{M}_{j} & =s\left(I_{2}, \overrightarrow{0}\right) M_{j}\left(I_{3}, \overrightarrow{0}\right)^{T}, \\
& =s\left(I_{2}, \overrightarrow{0}\right) M_{i n, j} M_{e x, j}\left(I_{3}, \overrightarrow{0}\right)^{T}, \\
& =s\left(\begin{array}{ccc}
f_{j} & 0 & 0 \\
0 & f_{j} & 0
\end{array}\right) R_{j}
\end{aligned}
$$

This gives equation (7) above.

Scaled-Orthographic Factorization

Let $D=\left(\vec{u}_{j, n}\right)$ be the $2 J \times N$ data matrix formed by stacking $\vec{u}_{j, n}$, for $j=1, \ldots, J$ in columns, and combining these columns for $n=$ $1, \ldots, N$ (here j is the camera index and n the feature point index). From above, $\vec{u}_{j, n}=\vec{x}_{j, n}-\vec{x}_{j}$, where $\vec{x}_{j, n}$ is the observed pixel position of the $j^{\text {th }}$ point in the $n^{t h}$ frame, and \vec{x}_{j} is the average of these over all n. In particular, the data matrix can be built from the observed corresponding points.

From equation (6) we then have

$$
\begin{equation*}
D=M U, \tag{8}
\end{equation*}
$$

where M is the $2 J \times 3$ matrix formed by stacking the \tilde{M}_{j} matrices, and U is the $3 \times N$ matrix having columns given by \vec{U}_{n}. This equation states that the data matrix has at most rank 3 (without considering noise).

Factorization via SVD

Performing an SVD on the data matrix D, for a case with $J=3$ images, provides $D=W \Sigma V^{T}$ with the singular values shown below:

See the 3dRecon Matlab tutorial orthoMassageDino.m ($\sigma_{n}=1$ pixel).

Affine Shape

What does the factorization $D=W \Sigma V^{T}$ tell us about the shape of the objects being imaged? For notational convenience, we assume that all but the first 3 singular values of Σ have been set to zero or, equivalently, Σ is $3 \times 3, W$ is $2 J \times 3$ and V^{T} is $3 \times N$.

We now have two rank 3 factorizations of D, namely $M U$ and $W \Sigma V^{T}$. But this factorization is only unique up to a nonsingular matrix A, as follows (assuming $\operatorname{rank}(D)=3$):

$$
\begin{equation*}
D=M U=(W A)\left(A^{-1} \Sigma V^{T}\right)=W \Sigma V^{T} \tag{9}
\end{equation*}
$$

That is, for some 3×3 matrix A, the 3 D point positions and the camera matrices must be given by

$$
\begin{align*}
U & =A^{-1} \Sigma V^{T} \tag{10}\\
M & =W A .
\end{align*}
$$

Equivalently, we could place $A A^{-1}$ between the Σ and the V^{T} in equation (9).

Therefore we know the shape U up to the 9 parameters in A. This is known as an affine reconstruction of U.

Affine Shape (Cont.)

What can A (or, equivalenty, A^{-1}) do to a shape. . .?

For example, consider a configuration of 3D points as specified by the matrix U in the factorization above. Suppose we hava a nonsingular matrix A. What does the configuration $A^{-1} U$ look like?

Use SVD to decompose A into $U_{a} \Sigma_{a} V_{a}^{T}$. So $A \Sigma V^{T}$ is obtained by rotating/reflecting ΣV^{T} using V_{a}^{T}, then stretching/shrinking the result along the axes according to Σ_{a}, and finally rotating/reflecting this result using U_{a}. (Imagine applying such transforms to your lecturer's head.)

The equivalence class of all configurations that can be obtained with transformations of this form is called affine shape.

It can be shown that affine shape preserves parallel lines and intersecting lines, but not angles and lengths.

See Tomasi and Kanade, IJCV, Vol. 9, 1992, pp.137-154, for the original factorization method.

Euclidean Reconstructions

We can determine many of the parameters in A from knowledge about the cameras.

In particular, if we only know the pixels are square, then the projection matrix \tilde{M}_{j} (for scaled-orthographic projection) is as described in equation (7), that is,

$$
\tilde{M}_{j}=s f_{j}\left(I_{2}, \overrightarrow{0}\right) R_{j} .
$$

From (10) we have $\tilde{M}_{j}=W_{j} A$ where W_{j} is the $j^{\text {th }} 2 \times 3$ block in W corresponding to the same two rows as \tilde{M}_{j} occupies in M. Since $R_{j} R_{j}^{T}=I_{3}$ it then follows that

$$
\begin{equation*}
\tilde{M}_{j} \tilde{M}_{j}^{T}=s^{2} f_{j}^{2} I_{2}=W_{j} A A^{T} W_{j}^{T} . \tag{11}
\end{equation*}
$$

Here the scale factor for the $j^{\text {th }}$ image $s f_{j}$ and the 3×3 symmetric matrix $Q=A A^{T}$ are the only unknowns.

For each j, equation (11) provides 2 linear homogeneous equations for the coefficients of Q. Then for $J \geq 3$ we have $2 J \geq 6$ homogeneous linear equations which we can solve for Q, up to a scalar multiple r_{q}^{2}. Finally, given Q we can factor it (assuming the eigenvalues are all nonnegative) by performing an SVD, $Q=U_{q} S_{q} V_{q}^{T}$, and then recognizing the factor A must be $A=\frac{1}{r_{q}} U_{q} S_{q}^{1 / 2} R_{q}^{T}$. Here r_{q} is the unknown scale factor in Q, and R_{q} is an arbitrary orthogonal 3×3 matrix.

Euclidean Reconstruction (Cont.)

Given this expression for A we can therefore recover $A^{-1}=r_{q} R_{q} K_{q}$ where $K_{q}=S_{q}^{-1 / 2} U_{q}^{T}$ is known. As a consequence we have recovered the shape matrix U_{r} and the camera matrix M_{r} where

$$
\begin{array}{r}
U=r_{q} R_{q} U_{r}, \text { for } U_{r}=K_{q} \Sigma V^{T}, \\
M=M_{r} R_{q}^{T} \frac{1}{r_{q}}, \text { for } M_{r}=W K_{q}^{-1} . \tag{12}
\end{array}
$$

This is called a Euclidean reconstruction, since we have recoverd the shape up to a 3D scale r_{q} and rotation R_{q} (ignoring the reflection ambiguity). Equivalently, this is referred to as metric shape recovery.

The ambiguity of the overall rotation R_{q} reflects (no pun intended) the fact that we cannot recover the orientation of the original world coordinate frame. This unknown rotation R_{q} affects both the shape, via $U=R_{q} U_{r}$, and all of the camera matrices, via $M=M_{r} R_{q}^{T}$. That is, R_{q} rotates the both the scene and the cameras together.

Similarly, the ambiguity of the overall scale r_{q} reflects the fact that we do not know the scale of the world coordinate frame. We could be imaging a tiny scene with large scale factors $s f_{j}$, and we could not tell from the images alone. (Think about making the movie Titanic.) Here r_{q} rescales the shape via $U=r_{q} U_{r}$, and also rescales all the scale parameters f_{j} in the cameras, via $M=M_{r} \frac{1}{r_{q}}$.

Remaining Ambiguities

The remaining ambiguity in R_{q} is the Necker ambiguity, that is, R_{q} could be a reflection (say $R_{q}=\operatorname{diag}(1,1,-1)$). Effectively, with orthographic projection we cannot tell the difference between a concave-in shape viewed from the left, and the reflected concave-out shape viewed from the right. Unlike the previous two ambiguities, this ambiguity does not persist (mathematically) when we switch to perspective projection.

For $J=2$ orthographic views there is an additional ambiguity, known as the bas-relief ambiguity. For this ambiguity, there is an additional unknown parameter (in K_{q} above), which ties the overall depth variation of the shape to the amount of rotation between the two cameras. See orthoMassageDino.m.

Refs: See the classic paper by Koenderink and van Doorn, Affine structure from motion, Journal of the Optical Society of America, 8(2), 1991, pp. 377-385.

Dino Example, Orthographic Case

Introduction to Projective Reconstruction

Returning to perspective projection, it is tempting to modify the bundle adjustment objective function (4) by multiplying each term in the sum by the projective depths $z_{j, n}=\vec{e}_{3}^{T} M_{j} \vec{P}_{n}$, providing a reweighted version of (4)

$$
\mathcal{O}=\sum_{j, n}\left\|z_{j, n}\left(\begin{array}{l}
x_{j, n} \tag{13}\\
y_{j, n} \\
1
\end{array}\right)-M_{j} \vec{P}_{n}\right\|^{2}
$$

where $z_{j, n}, M_{j}$ and \vec{P}_{n} are all unknowns for $j=1, \ldots, J$ and $n=$ $1, \ldots, N$.

The form of (13) suggests the following factorization approach.

Projective Factorization

Suppose we know the projective depths $z_{j, n}$, and form the data matrix $D=\left(z_{j, n} \vec{p}_{j, n}\right)$. This is a $3 J \times N$ matrix formed by stacking the 3 vectors $z_{j, n} \vec{p}_{j, n}$ in columns for the same point n, and then arranging these columns side by side for $n=1, \ldots, N$. By equation (1) we have

$$
z_{j, n} \vec{p}_{j, n}=M_{j} P_{n}
$$

Therefore D (for the correct $z_{j, n}$'s) must have the rank 4 factorization

$$
\begin{equation*}
D=M P, \tag{14}
\end{equation*}
$$

where M is the $3 J \times 4$ matrix formed by stacking up the camera matrices M_{j}, and $P=\left(\vec{P}_{1}, \ldots, \vec{P}_{N}\right)$ is the $4 \times N$ shape matrix.

Iterative Projective Factorization

Suppose we normalize $D_{n}=D L$ so that the columns have unit length (using a diagonal matrix L). Then we factor D_{n} using SVD to form

$$
\begin{equation*}
D_{n}=W \Sigma V^{T}, \tag{15}
\end{equation*}
$$

where we set all but the first 4 singular values to zero. Equivalently, we have W is $3 J \times 4, \Sigma$ is 4×4, and V^{T} is $4 \times N$.

We can rewrite the $n^{\text {th }}$ column of D_{n} as $C_{n} \vec{z}_{n}$, where C_{n} is a $3 J \times N$ matrix obtained from the image points $\vec{p}_{j, n}$ and the $n^{t h}$ weight $L_{n, n}$. Here $\vec{z}_{n}=\left(z_{1, n}, \ldots, z_{J, n}\right)^{T}$, which are the projective depths for the $n^{\text {th }}$ point in each of the J frames. We then update \vec{z}_{n} to better match the current factorization. That is, we wish to minimize

$$
\begin{equation*}
\left\|C_{n} \vec{z}_{n}-W P_{*, n}\right\| \tag{16}
\end{equation*}
$$

for \vec{z}_{n} subject to the constraint that the updated column of D_{n} still has unit length, i.e., $\left\|C_{n} \vec{z}_{n}\right\|=1$. (In projectiveMassageDino.m this update of \vec{z}_{n} is done with one step along the gradient direction for this constrained optimization problem.) Once all the projective depths have been updated, we reform the normalized data matrix D_{n}, and redo the factorization (15). This process is iterated until convergence.

Projective Reconstruction

Upon convergence we have a projective factorization $D_{n}=W \Sigma V^{T}$. As in the orthographic case, this factorization is only unique up to a nonsingular matrix H. In this case, H is a 4×4, 3D homography matrix. In particular, we have the factorization, $D=D_{n} L^{-1}=M P$ with

$$
\begin{align*}
P & =H^{-1} \Sigma V^{T} L^{-1} \\
M & =W H . \tag{17}
\end{align*}
$$

Since the shape matrix P is known up to a 3D homography H, this is called a projective reconstruction.

This projective reconstruction can be "upgraded" to an affine reconstruction or a metric reconstruction by using information about the camera matrices M_{j} to constrain the 3D homography matrix H. We omit these details (see the papers linked under further readings for this lecture on the course homepage).

Dino Example, Projective Case

Dino Example, Projective Case

