
Multi-Frame Factorization Techniques

Suppose f~xj;ng
J;N
j=1;n=1 is a set of corresponding image coordinates,

where the index n = 1; : : : ; N refers to the nth scene point and j =
1; : : : ; J refers to the jth image.
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Such corresponding points may be obtained from local feature points,
for example.

Problem. Estimate the 3D point positions, f ~Xng
N
n=1, along

with the placement and calibration parameters for the J cameras.
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Perspective Projection

The image points and the scene points are related by perspective pro-

jection,

~pj;n =
1

zj;n
Mj

~Pn: (1)

Here ~pj;n = (xj;n; yj;n; 1)
T is in homogeneous pixel coordinates, the

scene point ~Pj = (Pj;1; Pj;2; Pj;3; 1)
T is in homogeneous 3D coordinates.

Also Mj = Min;jMex;j is the 3 � 4 camera matrix formed from the

product of the intrinsic and extrinsic calibration matrices. Finally, zj;n

is the projective depth, zj;n = ~e T
3 Mj

~Pn, where ~e
T
3 = (0; 0; 1).

For convenience we assume the intrinsic matrices have the form

Min;j =

0
BBBBBBB@

fj 0 0

0 fj 0

0 0 1

1
CCCCCCCA
: (2)

The extrinsic calibration matrices are in general given by

Mex;j =
�
Rj;�Rj

~dj
�
; (3)

where Rj is the rotation from the world to the jth-camera's coordinates,

and ~dj is the position, in world coordinates, of the nodal point for the

jth camera.
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Bundle Adjustment

We wish to solve for the point positions ~Pn for n = 1; : : : ; N and the

camera matrices Mj for j = 1; : : : ; J by minimizing

O(fMjg
J
j=1; f

~Png
N
n=1) �

X
j;n

���������

���������

0
BBB@
xj;n

yj;n

1
CCCA�

1

~e T
3 Mj

~Pn

�
I2; ~0

�
Mj

~Pn

���������

���������

2

:

(4)

Here the camera matrices Mj must be of the form Min;jMex;j where

Min;j and Mex;j are as given in equations (2) and (3).

This nonlinear optimization problem is called bundle adjustment.

In these notes we discuss two approximations to bundle adjustment:

1. Approximate perspective projection by scaled orthographic projec-

tion.

2. Rescale each term in the bundle adjustment objective function (4)

and solve a bilinear problem.
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Scaled-Orthographic Projection

Scaled-orthographic projection provides an approximation of perspec-

tive projection (1) for the case of narrow �elds of view,

maxfjxj;nj; jyj;njg << fj;

and relatively shallow depth variations,

zj;n � 1=s:

For scaled-orthographic projection, the image points and the scene

points are related by

�
I2; ~0

�
~pj;n = s

�
I2; ~0

�
Mj

~Pn: (5)

Here ~pj;n, ~Pn and Mj are as above, and s is a constant scale factor.

This is bilinear in the scaled camera matrix sMj and the 3D point

~Pn.
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Di�erences from Mean Image Points

Let ~�pj =
1
N

PN
n=1 ~pj;n be the average image point, and ~�P j =

1
N

PN
n=1

~Pj;n

be the average scene point. Then, by equation (5), we can show

~uj;n = ~Mj
~Un; (6)

where

~uj;n =
�
I2; ~0

�
(~pj;n �~�pj);

~Uj;n = (I3; ~0)( ~Pj;n �
~�P j);

~Mj = s
�
I2; ~0

�
Mj

�
I3; ~0

�T
:

Moreover, from equations (2) and (3) it follows that the scaled-

orthographic projection matrix ~Mj has the form

~Mj = s

0
BBB@
fj 0 0

0 fj 0

1
CCCARj = sfj

�
I2; ~0

�
Rj; (7)

where Rj is the rotation matrix for the jth camera, as above.
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Derivation: Di�erence from Mean

Let ~�pj = 1

N

PN
n=1 ~pj;n be the average image point, and ~�P j = 1

N

PN
n=1

~Pj;n be the average scene

point.

Then, by equation (5), we have

�
I2; ~0

�
~�pj = s

�
I2; ~0

�
Mj

~�P

Subtracting this from (5) we �nd

�
I2; ~0

�
(~pj;n � ~�pj) = s

�
I2; ~0

�
Mj(~Pj;n �

~�P ):

Note the 4th component of ~Pj;n �
~�P is equal to 1 � 1 = 0. Therefore we can drop this 4th

component, and obtain

~uj;n = ~Mj
~Un;

where

~uj;n =
�
I2; ~0

�
(~pj;n � ~�pj);

~Uj;n = (I3; ~0)(~Pj;n �
~�P j);

~Mj = s
�
I2; ~0

�
Mj

�
I3; ~0

�T
:

Which is what we set out to show.

Notice we can use the de�nitions of Min;j and Mex;j to simplify ~Mj above. We �nd

~Mj = s
�
I2; ~0

�
Mj

�
I3; ~0

�T
;

= s
�
I2; ~0

�
Min;jMex;j

�
I3; ~0

�T
;

= s

0
@ fj 0 0

0 fj 0

1
ARj

This gives equation (7) above.
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Scaled-Orthographic Factorization

Let D = (~uj;n) be the 2J � N data matrix formed by stacking ~uj;n,

for j = 1; : : : ; J in columns, and combining these columns for n =

1; : : : ; N (here j is the camera index and n the feature point index).

From above, ~uj;n = ~xj;n � ~�xj, where ~xj;n is the observed pixel position

of the jth point in the nth frame, and ~�xj is the average of these over

all n. In particular, the data matrix can be built from the observed

corresponding points.

From equation (6) we then have

D = MU; (8)

whereM is the 2J�3 matrix formed by stacking the ~Mj matrices, and

U is the 3�N matrix having columns given by ~Un. This equation states

that the data matrix has at most rank 3 (without considering

noise).
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Factorization via SVD

Performing an SVD on the data matrixD, for a case with J = 3 images,

provides D = W�V T with the singular values shown below:
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See the 3dRecon Matlab tutorial orthoMassageDino.m (�n = 1 pixel).
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AÆne Shape

What does the factorization D = W�V T tell us about the shape of the

objects being imaged? For notational convenience, we assume that all

but the �rst 3 singular values of � have been set to zero or, equivalently,

� is 3� 3, W is 2J � 3 and V T is 3�N .

We now have two rank 3 factorizations of D, namelyMU andW�V T .

But this factorization is only unique up to a nonsingular matrix A, as

follows (assuming rank(D) = 3):

D = MU = (WA)(A�1�V T ) = W�V T : (9)

That is, for some 3�3 matrix A, the 3D point positions and the camera

matrices must be given by

U = A�1�V T

M = WA:
(10)

Equivalently, we could place AA�1 between the � and the V T in equa-

tion (9).

Therefore we know the shape U up to the 9 parameters in A. This is

known as an aÆne reconstruction of U .
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AÆne Shape (Cont.)

What can A (or, equivalenty, A�1) do to a shape: : :?

For example, consider a con�guration of 3D points as speci�ed by the

matrix U in the factorization above. Suppose we hava a nonsingular

matrix A. What does the con�guration A�1U look like?

Use SVD to decompose A into Ua�aV
T
a . So A�V T is obtained by

rotating/reecting �V T using V T
a , then stretching/shrinking the result

along the axes according to �a, and �nally rotating/reecting this result

using Ua. (Imagine applying such transforms to your lecturer's head.)

The equivalence class of all con�gurations that can be obtained with

transformations of this form is called aÆne shape.

It can be shown that aÆne shape preserves parallel lines and intersecting

lines, but not angles and lengths.

See Tomasi and Kanade, IJCV, Vol. 9, 1992, pp.137-154, for the original

factorization method.
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Euclidean Reconstructions

We can determine many of the parameters in A from knowledge about

the cameras.

In particular, if we only know the pixels are square, then the projec-

tion matrix ~Mj (for scaled-orthographic projection) is as described in

equation (7), that is,

~Mj = sfj
�
I2; ~0

�
Rj:

From (10) we have ~Mj = WjA where Wj is the jth 2 � 3 block in

W corresponding to the same two rows as ~Mj occupies in M . Since

RjR
T
j = I3 it then follows that

~Mj
~MT
j = s2f 2j I2 = WjAA

TW T
j : (11)

Here the scale factor for the jth image sfj and the 3 � 3 symmetric

matrix Q = AAT are the only unknowns.

For each j, equation (11) provides 2 linear homogeneous equations for

the coeÆcients of Q. Then for J � 3 we have 2J � 6 homogeneous

linear equations which we can solve for Q, up to a scalar multiple r2q .

Finally, given Q we can factor it (assuming the eigenvalues are all non-

negative) by performing an SVD, Q = UqSqV
T
q , and then recognizing

the factor A must be A = 1
rq
UqS

1=2
q RT

q . Here rq is the unknown scale

factor in Q, and Rq is an arbitrary orthogonal 3� 3 matrix.
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Euclidean Reconstruction (Cont.)

Given this expression for A we can therefore recover A�1 = rqRqKq

where Kq = S�1=2q UT
q is known. As a consequence we have recovered

the shape matrix Ur and the camera matrix Mr where

U = rqRqUr; for Ur = Kq�V
T ;

M = MrR
T
q

1

rq
; forMr = WK�1

q :
(12)

This is called a Euclidean reconstruction, since we have recoverd

the shape up to a 3D scale rq and rotation Rq (ignoring the reection

ambiguity). Equivalently, this is referred to asmetric shape recovery.

The ambiguity of the overall rotation Rq reects (no pun intended)

the fact that we cannot recover the orientation of the original world

coordinate frame. This unknown rotation Rq a�ects both the shape,

via U = RqUr, and all of the camera matrices, via M = MrR
T
q . That

is, Rq rotates the both the scene and the cameras together.

Similarly, the ambiguity of the overall scale rq reects the fact that

we do not know the scale of the world coordinate frame. We could

be imaging a tiny scene with large scale factors sfj, and we could not

tell from the images alone. (Think about making the movie Titanic.)

Here rq rescales the shape via U = rqUr, and also rescales all the scale

parameters fj in the cameras, via M = Mr
1
rq
.
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Remaining Ambiguities

The remaining ambiguity in Rq is theNecker ambiguity, that is, Rq

could be a reection (say Rq = diag(1; 1;�1)). E�ectively, with ortho-

graphic projection we cannot tell the di�erence between a concave-in

shape viewed from the left, and the reected concave-out shape viewed

from the right. Unlike the previous two ambiguities, this ambiguity does

not persist (mathematically) when we switch to perspective projection.

For J = 2 orthographic views there is an additional ambiguity, known

as the bas-relief ambiguity. For this ambiguity, there is an additional

unknown parameter (in Kq above), which ties the overall depth varia-

tion of the shape to the amount of rotation between the two cameras.

See orthoMassageDino.m.

Refs: See the classic paper by Koenderink and van Doorn, AÆne
structure from motion, Journal of the Optical Society of America, 8(2),
1991, pp. 377-385.

2503: Multi-Frame Factorization Page: 13



Dino Example, Orthographic Case
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Introduction to Projective Reconstruction

Returning to perspective projection, it is tempting to modify the bundle

adjustment objective function (4) by multiplying each term in the sum

by the projective depths zj;n = ~e T
3 Mj

~Pn, providing a reweighted version

of (4)

O =
X
j;n

�������������

�������������
zj;n

0
BBBBBBB@

xj;n

yj;n

1

1
CCCCCCCA
�Mj

~Pn

�������������

�������������

2

(13)

where zj;n, Mj and ~Pn are all unknowns for j = 1; : : : ; J and n =

1; : : : ; N .

The form of (13) suggests the following factorization approach.

2503: Multi-Frame Factorization Page: 15



Projective Factorization

Suppose we know the projective depths zj;n, and form the data matrix

D = (zj;n~pj;n). This is a 3J � N matrix formed by stacking the 3-

vectors zj;n~pj;n in columns for the same point n, and then arranging

these columns side by side for n = 1; : : : ; N . By equation (1) we have

zj;n~pj;n = MjPn:

Therefore D (for the correct zj;n's) must have the rank 4 factorization

D = MP; (14)

whereM is the 3J�4 matrix formed by stacking up the camera matrices

Mj, and P = (~P1; : : : ; ~PN) is the 4�N shape matrix.
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Iterative Projective Factorization

Suppose we normalize Dn = DL so that the columns have unit length

(using a diagonal matrix L). Then we factor Dn using SVD to form

Dn = W�V T ; (15)

where we set all but the �rst 4 singular values to zero. Equivalently, we

have W is 3J � 4, � is 4� 4, and V T is 4�N .

We can rewrite the nth column of Dn as Cn~zn, where Cn is a

3J �N matrix obtained from the image points ~pj;n and the nth weight

Ln;n. Here ~zn = (z1;n; : : : ; zJ;n)
T , which are the projective depths for

the nth point in each of the J frames. We then update ~zn to better

match the current factorization. That is, we wish to minimize

jjCn~zn �WP�;njj (16)

for ~zn subject to the constraint that the updated column of Dn still has

unit length, i.e., jjCn~znjj = 1. (In projectiveMassageDino.m this

update of ~zn is done with one step along the gradient direction for this

constrained optimization problem.) Once all the projective depths have

been updated, we reform the normalized data matrix Dn, and redo the

factorization (15). This process is iterated until convergence.
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Projective Reconstruction

Upon convergence we have a projective factorization Dn = W�V T .

As in the orthographic case, this factorization is only unique up to a

nonsingular matrix H . In this case, H is a 4 � 4, 3D homography

matrix. In particular, we have the factorization, D = DnL
�1 = MP

with
P = H�1�V TL�1

M = WH:
(17)

Since the shape matrix P is known up to a 3D homography H , this is

called a projective reconstruction.

This projective reconstruction can be \upgraded" to an aÆne recon-

struction or a metric reconstruction by using information about the

camera matrices Mj to constrain the 3D homography matrix H . We

omit these details (see the papers linked under further readings for this

lecture on the course homepage).
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Dino Example, Projective Case
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Dino Example, Projective Case
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