Tracking

Goal: Fundamentals of model-based tracking with emphasis on
probabilistic formulations. Examples include the Kalman filter for
linear-Gaussian problems, and maximum likelihood and particle fil-
ters for nonlinear/nonGaussian problems.

Outline

e Introduction

e Bayesian Filtering / Smoothing

e Likelihood Functions and Dynamical Models
e Kalman Filter

e Nonlinear/NonGaussian Processes

e Hill Climbing (Eigen-Tracking)

e Particle Filters

Readings: Chapter 17 of Forsyth and Ponce.
Matlab Tutorials: motionTutorial.m, trackingTutorial.m
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Challenges in Tracking

Tracking is the inference object shape, appearance, and motion as a
function of time.

Main players:
e what to model or estimate: shape (2D/3D), appearance, dynamics

e what to measure: color histograms, edges, feature points, flow, ...

Some of the main challenges:
e objects with many degrees of freedom,
affecting shape, appearance, and motion;
e impoverished information due to occlusion or scale;

e multiple objects and background clutter



o

"

sports / kinesiology human motion capture
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Probability and Random Variables

A few basic properties of probability distributions will be used often:

e Conditioning (factorization):
p(a,b) = p(alb) p(b) = p(bla) p(a)

e Bayes’ rule:

_ p(bla) pla)

p(alb) ()

e Independence: a and b are independent if and only if
p(a,b) = p(a) p(b)

e Marginalization:
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Probabilistic Formulation

We assume a state space representation in which time is discretized,
and a state vector comprises all variables one wishes to estimate.

State: denoted x; at time ¢, with the state history x;.; = (X1, ..., X;)
— continuous variables (position, velocity, shape, size, ...)
— discrete variables (number of objects, gender, activity, ...)

Observations: the data measurements (images) with which we con-
strain state estimates, based on observation equation z; = f(X).
The observations history is denoted z;.; = (zy, ..., Z;)

Posterior Distribution: the conditional probability distribution over
states specifies all we can possibly know (according to the model)
about the state history from the observations.

p(xl:t | Zl:t) (l)

Filtering Distribution: often we only really want the marginal pos-
terior distribution over the state at the current time given the ob-
servation history. This is called the filtering distribution:

p(X¢|z14) = / / p(X1:4 | Z1.1) (2)

Likelihood and Prior: using Bayes’ rule we write the posterior in
terms of a likelihood, p(zy.; | X1.¢), and a prior, p(Xi.;):
p(zlzt | Xl:t) p(xl:t)

p(Z14)
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Model Simplifications

The distribution p(x;.;), called a prior distribution, represents our
prior beliefs about which state sequences (e.g., motions) are likely.

First-order Markov model for temporal dependence (dynamics):

P(Xe | X1:—1) = p(Xe | Xe—1) (3)
The order of a Markov model is the duration of temporal dependence

(a first-order model requires past states up to a lag of one time step).

With a first-order Markov model one can write the distribution over
the state history as a product of transitions from time to the next:

p(X1t) = p(X | X¢—1) P(X1:4-1)

= p(X1) Hp(xj | Xj-1) (4)

The distribution p(z;.; | X1.¢), often called a likelihood function, repre-
sents the likelihood that the state generated the observed data.

Conditional independence of observations:
P(Z1 [ X)) = p(Ze | Xe) P(Z1:0=1 | X1:0-1)
t
= Hp(ZT | Xr) (5)
=1

That is, we assume that the observations at different times are inde-

pendent when we know the true underlying states (or causes).
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Filtering and Prediction Distributions

With the above model assumptions, one can express the posterior dis-
tribution recursively:

p(xlzt | Z1:t) X p(let | X1:t) p(X1:t)

X p(Z; | Xt) p(Xt | Xt—1) p(X1:t—1 | Zl:t—l) (6)

The filtering distribution can also be written recursively:

p(% | Z1:4) = / / p(Xi:t | Z121)
X1 Xi—1

= ¢ p(z¢ | Xe) p(Xe | Z1:4-1) (7)

with a prediction distribution defined as

(Xt | Z1:4-1) —/X P(X¢ | Xe—1) p(Xe—1 | Z1:4—1) (8)

Recursion is important:

e it allows us to express the filtering distribution at time ¢ in terms
of the filtering distribution at time ¢ —1 and the evident at time .

e all useful information from the past is summarized in the previous
posterior (and hence the prediction distribution).

Without recursion one may have to store all previous images to com-

pute the the filtering distribution at time ¢.
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Derivation of Filtering and Prediction Distributions

Filtering Distribution: Given the model assumptions in Equations (4) and (5), along with Bayes’
rule, we can derive Equation (7) as follows:

p(Xe|z14) = / / P(Xy:t | Z1:)
X1 Xi—1

_ @/X/x P(Z1:t | X1:t) P(X1:2)
— ¢ / - / P(2e | %) P(Ziet | Xae1) P(Xe [ Xet) P(X11)
X1 Xi-1

— ep(z %) / / (% | %) P(Xtt, Zia 1)
X1 Xi—1

— cp(z]x) / p(Xe | o) / / P(Xts_1, Z1or)
Xe_1 Xy Xi—2

= cp(z| %) / P(Xe | Xe—1) p(Xe—1, Z1:4-1)
t—1

= ¢p(Z1:—1) P(Z¢ | X¢) / P(Xe | Xe—1) P(Xe—1 | Z124—1)

Xi—1

= Clp(zt | Xe) p(Xt | Z1:-1) -

Batch Filter-Smoother (Forward-Backward Belief Propagation): We can derive the filter-
smoother equation (9), for 1 < 7 < ¢, as follows:

p(Xr|214) =
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P(X1:) P(Z1: | X1:t)
p(zl.t) Xl:'r—l X'r+1:t

c / / p(Xl:T) p(XT+1:t | XT) p(zlzﬂrfl ‘ Xl:'rfl) p(ZT ‘ XT) p(zﬂ'—|—1:t | XT—|—1:t)
Xl:r—l X'r+1:t

CP(Z¢ |XT) / p(X1:T) p(21:7—1 |X1:T—1) / p(XT+1:t | X'r) p(Z¢+1:t | XT+1:t)
Xl:T—l X7'+1:t

p(ZT+1:t)

P(Xr41:t)

Xr41:
cp(Z'r | XT) p(XT | 21:771) / p(XT ‘ XT+1:t) p(p():—l)t) p(XT+1:t | Zfr—|—1:t)

X'r+1:t

Z, 41
ep(z | %) pxs | 210y PEztt) / P [ X s12) P(Xos 1| Zr 1)
p(XT) X'r+1:t

CI

) p(Z: | %) p(%s | Zir—1) DXy | Zrg1t) -

D
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Filtering and Smoothing

Provided one can invert the dynamics equation, one can also perform
inference (recursively) backwards in time:

p(XT | ZTit) — C p(ZT | XT) L p(XT | XT+1) p(x7'+1 | ZT+1:2€>
T+1
= C p(ZT | XT) p(XT | ZT—i—l:t)

That is, the distribution depends on the likelihood the current data,
the inverse dynamics, and the filtering distribution at time ¢ + 1.

Smoothing distribution (forward-backward belief propagation):

PO 210) = S DX PO |20 ) DX Ze2a) (©)

The smoothing distribution therefore accumulates information from
past, present, and future data.

Batch Algorithms: Estimation of state sequences using the entire
observation sequence (i.e., using all past, present & future data):
e the filter-smoother algorithm is efficient, when applicable.

e storage/delays make this unsuitable for many tracking domains.

Online Algorithms: Recursive inference (7) is causal. Estimation
of x; occurs as soon as observations at time ¢ are available, thereby
using present and past data only.
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Likelihood Functions

There are myriad ways in which image measurements have been used
for tracking. Some of the most common include:

e Feature points: E.g., Gaussian noise in the measured feature
point locations. The points might be specified a priori, or learned
when the object is first imaged at time 0.

e Image templates: E.g., subspace models learned prior to track-
ing, or brightness constancy as used in flow estimation.

e Color histograms: E.g., mean-shift to track modes of local color
distribution, for robustness to deformations.

e Image edgels or curves. E.g., with Gaussian noise in measured
location normal to the contour.
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Temporal Dynamics

Linear dynamical models:

e Random walk with zero velocity and Gaussian process noise:

Xg = X—1+74 , 74 ~ N, C)
e Random walk with zero acceleration and Gaussian process noise

o) = () 6+ )

where 77; ~ N(0, C;) and €; ~ N (0, C,).

e For second- and higher-order models it is common to define an
augmented state vector, for which a first-order model can be for-
mulated. E.g., for a second-order model defined by

X = AX¢—1 + BXi—2 + 14

S Xt
y: =
Xi—1

for which the equivalent first-order augmented-state model is

yY: = 70 Yi-1

Typical observation model: z,= f( [ 0] - y;) plus Gaussian noise.

one can define
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Dynamical Models

There are many other useful dynamical models. For example, harmonic oscillation can be expressed
as
d’x

az = e

or as a first order system with

— = i, Wwhere =
dt -1 0 v

A first-order approximation yields:

dd n
G, = i, + At—
u; ut1+ dt + (€>

( : At) ! <n>
= u 1 +
At 1 €

In many cases it is useful to learn a suitable model of state dynamics. There are well-know algo-
rithms for learning linear auto-regressive models of variable order.
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Kalman Filter

Assume a linear dynamical model with Gaussian process noise, and
a linear observation model with Gaussian observation noise:

X = Axt—l + ﬁd ) ﬁd ~ N(O7 Cd) . (10)
2p = MX+Tm, T ~ N(O, Cp) (11)

The transition density is therefore Gaussian, centred at mean A x;_1,
with covariance Cy; :

p(Xe [ Xe-1) = G(%; AX-1, Cy) - (12)
The observation density is also Gaussian:

p(Zt | Xt> = G(Zt; MXt, Cm) . (13)

Because the product of Gaussians is Gaussian, and the marginals of a
Gaussian are Gaussian, it is straightforward (but tedious) to show that
the prediction and filtering distributions are both Gaussian:

p(X¢ | Z144) = /p<xt | Xe1) p(Xe1 | Z1a) = G(Xi; X5, CfF) (14)

Xt
p(Xt|Z14) = ep(ze | X)) p(Xe | Z104) = G(X; Xfa Ct+) (15)

with closed-form expressions for the means x;, x;” and covariances
C,Cr.
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Kalman Filter

Depiction of Kalman updates:

J\ -

posterlor att-1

-\

posterlor at t predlctlon at t
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Kalman Filter (details)

To begin, suppose we know that x ~ ./\/'(6, (), and lety = Ax. Since x is zero-mean, it is clear that
y will also be zero-mean. Further, the covariance of y is given by

E[777] = E[AxXTAT] = AE[xxT]AT = ACAT (16)

Now, let’s use this to derive the form of the prediction distribution. Let’s say that we know the
filtering distribution from the previous time instant, t—1, and let’s say it is Gaussian with mean x;" ,
with covariance C;' ;.

p(Xe—1 | Zi—1) = G(Xe1; Xy, Cfy) - 17)
And, as above, we assume a linear-Gaussian dynamical model,
Xy = Axt—l + ﬁd 3 ﬁd ~ N(Oa Cd) . (18)

From above we know that A x;_; is Gaussian. And we’ll assume that the Gaussian process noise 7j,
is independent of the previous posterior distribution. So, 18 is the sum of two independent Gaussian
random variable, and hence the corresponding density is just the convolution of their individual
densities. Remember that the convolution of two Gaussians with covariances C'; and Cs is Gaussian
with covariance C; + Cy. With this, it follows from (17) and (18) that the prediction mean and
covariance of p(X; | z1..1) in (14) are given by

X; = AxS, , CF = ACH AT +Cy.
This gives us the form of the prediction density.

Now, let’s turn to the filtering distribution. That is, we wish to combine the prediction distribution
with the observation density for the current observation, z;, in order to form the filtering distribution
at time ¢. In particular, using (15), with (13) and the results above, it is straightforward to see that

p(Xe|Z1:) o< p(z | Xe) p(Xe | Z1:) (19)
= G(z; MXy, Cp) G(Xe; X, Cy ) . (20)

Of course the product of two Gaussians is Gaussian; and it remains to work out expressions for its
mean and covariance. This requires somewhat tedious algebraic manipulation.



While there are many ways to express the posterior mean and covariance, the conventional solution
defines an intermediate quantity called the Kalman Gain, K, given by

K, = C; \MT (MC; \MT +C,,)"" .
Using the Kalman gain, one can express the posterior mean and variance, x;” and C,", as follows:

X:_ — X;—FKt (Zt—MX;) s
¢ = (I-KM)Cy
= I-K)C;1-K)" +KC,K]

The Kalman filter began to appear in computer vision papers in the late 1980s. The first two main
applications were for (1) automated road following where lane markers on the highway were track-
ing to keep a car on the road; and (2) the estimation of the 3D struction and motion of a rigid object
(or scene) with respect to a camera, given a sequences of point tracks through time.

Dickmanns & Graefe, “Dynamic monocular machine vision.” Machine Vision and Appl., 1988.

Broida, Chandrashekhar & Chellappa, “Rigid structure from feature tracks under perspective pro-
jection.” |[EEE Trans. Aerosp. & Elec. Sys., 1990.

i
\" &
R.E. Kalman “
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Non-linear / Non-Gaussian Systems

Tracking problems are rarely linear/Gaussian. Posterior and predic-
tion distributions are usually nonGaussian, and often they are multi-
modal. The reasons for this include, among other things,

e image observation models are often nonlinear with heavy-tailed
noise so that we can cope with outliers, complex appearance changes,
and the nonlinearity of perspective projection.

e temporal dynamics are often nonlinear (e.g., human motion)

e scene clutter and occlusion, where many parts of the scene may
appear similar to parts of the object being tracking

For example:

Background clutter and distractors. Nonlinear dynamics.
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Extended and Unscented Kalman Filters

Extended Kalman Filter (EKF): For nonlinear dynamical models one can linearize the dynamics
at current state; that is,

X = f(Re)+ia =~ AR 1 +1a,

where A = Vf(X) |z=%,_, and 7z ~ N(0,Cy). One can also iterate the approximation to obtain
the Iterated Extended Kalman Filter (IEKF). In practice the EKF and IEKF have problems unless
the dynamics are close to linear.

Unscented Kalman Filter (UKF): Estimate posterior mean and variance to second-order with ar-
bitrary dynamics [Julier & Uhlmann, 2004]. Rather than linearize the dynamics to ensure Gaussian
predictions, use exact 1°¢ and 2"¢ moments of the prediction density under the nonlinear dynamics:

e Choose sigma points x; whose sample mean and covariance equal the mean and variance of
the Gaussian posterior at ¢

e Apply nonlinear dynamics to each sigma point, y, = f(x;), and then compute the sample
mean and covariances of the y.

Monte Carlo Linear Approx Unscented
sampling (EKF) Transform
sigma points ~.___
covariance \\ \ ™
N
% ®
©

mean °
| |

‘ y = f(%) Y =£(%)

s
y = f(x) Py, =A"P;A weighted sample mean
l l and covariance
» f(i) ___— transformed
true mean /'/ L pl sigma points
\ { //
true covariance o - y /
P \) UT mean = @ /
Tp A © /
AP, A /

/
UT covariance 0’
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Hill-Climbing

Rather than approximating the posterior (fully), just find local poste-
rior maxima at each time step. One might also compute the curvature
of log posterior at maxima to get local Gaussian approximations.

E.g., Eigen-Tracking [Black & Jepson, *96]:

e Assume we have learned (offline) a subspace appearance model
for an object under varying pose, articulation, and lighting:

= ) aBiX)
k

e During tracking, we seek the image warp parameters a;, at each
time ¢, and the subspace coefficients c; such that the warped im-
age is explained by the subspace; i.e.,

I(w(x,a;), t) =~ B(X, ¢)

e A robust objective function helps cope with modeling errors, oc-
clusions and other outliers:

E(ay, ¢) Zp W(X, ), t) = B(X, ¢t))

e Initialize the estimation at time ¢ with ML estimate from time ¢—1.

2503: Tracking Page: 19



Eigen-Tracking

Image sequence Training

eigen- training
images images

Figures show superimposed tracking region (top), the best reconstructed

pose (bottom left), and the closest training image (bottom right).
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Sequential Monte Carlo

For many problems ambiguity is sufficiently problematic that we must
maintain a better representation of the filtering distribution.

Monte Carlo: Approximate the filtering distribution 7P with sam-
ples drawn from it, S = {x?}¥,. Then, use sample statistics to
approximate expectations under P; i.e., for functions f(x),

N
1 : 0
Bs[f() = 5 2o 0600) =5 [ 5P dx = Ep[£(]
=1
But, we don’t know how to draw samples from our posterior p(X; | z1.;) .

Importance Sampling: If one draws samples x\) from a proposal
distribution, Q(x), with weights w), then

— Zw(j)f(x(j)) 2 B lw(x) f(X)]

If w(x) = P(x)/Q(x), then the weighted sample statistics approxi-
mate the desired expectations under P(x); i.e.,

Eolw(x) f(x)] = / () £(X) Q(X) dx

:/f

= Ep|f(X)
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Particle Filter

Approximate the posterior distribution, p(x; | z;.;), using a weighted
sample set, S = {x\”), w¥}; that is, with a collection of point proba-
bility masses at locations xf;j) with weights ng)_

RV VA

@ amo g Qo o

Sequential Monte Carlo: The approximation is updated each time
instant, incorporating new data, and possibly re-sampling the set of
state samples xU).

Key: Exploit the form of the filtering distribution,

p(Xe|Z14) = e p(ze | Xe) p(Xe | Z1:4-1)

and the facts that it is often easy to evaluate the likelihood, and one
can usually draw samples from the prediction distribution.

Simple Particle Filter: If we sample from the prediction distribution

Q = p(X¢|Zi4-1)

then the weights must be w(X) = ¢ p(z; | X¢), with ¢ = 1/p(z; | Z1.4—1).
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Simple Particle Filter

Step 1: Sample the approximate posterior p(X;_1 | z;.;—1) given the
weighted sample set S§;_; = {xg@l, wt(f)l}. To do this, treat the V
weights as probabilities and sample from the cumulative weight dis-
tribution; i.e., draw sample u ~ U(0, 1) to sample an index .

Step 2: With sample xf_)l, the dynamics provides a distribution over
states at time ¢, i.e., p(X; | xf_)l). A fair sample from the dynamics,

X~ (x| X))

Is then a fair sample from the prediction distribution p(X;_1 | Z1.+-1).

Step 3: Given the samples x\”), the weights are w” = ¢ p(z | X)) :
o p(z| xﬁj)) Is the data likelihood that we know how to evaluate.

e Using Bayes’ rule one can show that ¢ satisfies
1
— = p(Zt|Z14-1) = /p<zt|xt) (Xt | Z1:p—1) Ay = ZP Zt|Xt

C
Using the approximation, the weights become normalized |Ike|lh00dS

(so they sumto 1).
2503: Tracking Page: 23



Particle Filter Remarks

One can think of a sampled approximation as a sum of Dirac delta functions. A weighted sample set
St = {7, w1, is just a weighted set of delta functions::

N
P(Xe—1 | Zy41) = Z w) O(Xp—1 — ng_)l)

j=1
Sometimes people smooth the delta functions to create smoothed approximations (called Parzen
window density estimates).
If one considers the prediction distribution, and uses the properties of delta functions under inte-
gration, then one obtains a mixture model for the prediction distribution. That is, given a weighted
sample set S;_; as above the prediction distribution in (8) is a linear mixture model

N

p(X¢|Z1:p—1) = Z w? p(x, | X%)
j=1

The sampling method on the previous page is just a fair sampling method for linear mixture models.

For more background on particle filters see papers by Gordon et al (1998), Isard and Blake (1JCV,
1998), and by Fearnhead (Phd) and Liu and Chen (JASA, 1998).
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Particle Filter Steps

Summary of main steps in basic particle filter:

sample sample normalize

p(Xt—1|Z1:t—1) — p(Xt|Xt—1) — p(Zt|Xt) — p(Xt|Z1:t)

posterior temporal likelihood posterior
dynamics

Depiction of the particle filter process (after [Isard and Blake, "98]):

weighted
sample set

re-sample
and drift

diffuse and
re-sample

‘ compute
L - N - ~_ _ likelihoods

weighted
sample set
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Particle Filter Example

State: 6 DOF affine motion

Measurement: edge locations
normal to contour

Dynamics: second-order Markov

Computation: 1000 particles
with re-sampling every frame

[Isard and Blake, 98]

Depiction of the posterior distribution evolving through time.

i,
—
—-—

Time

u 4
5 - 1 i i !
=t x s
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Particle Explosion in High Dimensions

The number of samples N required by our simple particle filter de-
pends on the effective volumes (entropies) of the prediction and pos-
terior distributions.

With random sampling from the prediction density, N must grow ex-
ponentially in state dimension D if we expect enough samples to fall
on states with high posterior probability.

E.g., for D-dimensional spheres, with radii R and r, N > (%)D

Prediction

Posterior

Effective number of “independent” samples (a rough diagnostic):

A SHOT)E
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3D People Tracking

Goal: Estimate human pose and N e
right .

motion from monocular video. shoulder

left ear

left
shoulder

Model State: 3D kinematic tree
with 6 global degrees of freedom
and 22 joint angles

Likelihood & Dynamics: \hﬁl/

Given the state, s, and camera model, 3D marker positions X project

onto the 2D image plane to locations
di(s) = T(X;35).
Observation model:
dj = dj+n;, m ~ N0, ooL).
Likelihood of observed 2D locations, D = {d;}:
p(D19) o exp(—5 5 S (14— dy(s) ).
mej

Smooth dynamics:
St = Si_1 + €.

where ¢, is isotropic Gaussian for translational and angular variables.
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3D People Tracking

Estimator Variance: expected squared error (from posterior mean),

computed over multiple runs with independent noise.

Full Body Tracker

. (right hip)
10

Var[ mean right hip, B ]
\

—6— Hybrid Monte Carlo

-6— Particle Filter

10°

10

Computation Time (particle filter samples)

With N fair posterior samples, estimator variance decreases like 1/N,

but here there is no such decrease. Better samplers are necessary.

E.g., Hybrid Monte Carlo Filter [Choo & Fleet 01]: A particle filter

with Markov chain Monte Carlo updates is more efficient.

Particle Filter
(black: ground truth; red: mean states from 6 trials)

2503: Tracking
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Use the Current Observation to Improve Proposals

The proposal distribution @ should be as close as possible to the pos-
terior P that we wish to approximate. Otherwise,

e many particles will have weights near zero, contributing very lit-
tle to the posterior approximation;

e We may even fail to sample significant regions of the state space,
so the normalization constant ¢ can be wildly wrong.

For visual tracking, the prediction distribution @ = p(x; | z1.,_1) often
yields very poor proposals, because dynamics are often very uncer-
tain, and likelihoods are often very peaked by comparison.

One way to greatly improve proposals is to use the current observa-
tion; e.g., let

¢ p(z; | ;)
D(z: [ x:)

where D(x,) is some continuous distribution obtained from some low-

Q(X;) = D(X) p(X¢ |Z1:4-1) , with w(X;) =

level detector (e.g., Gaussian modes at locations of classifier hits).
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Explain All Observations

Don’t compare different states based on different sets of observations.

e If one hypothesizes two target locations, x; and X,, and extracts
target-sized image regions centered at both locations, I; and I, it
makes no sense to say x; is more likely if p(I; | X1) > p(I2 | X2).

e Rather, use p(I | x;) and p(I | X2) where [ is the entire image.

One might therefore explain the entire image, or use likelihood ratios.
E.g., assume that pixels I(y), given the state, are independent, so
pI|x) = H pr({ H po({
y€D(x) y€Dp(x)

where D¢(x) and Dy(x) are disjoint sets of foreground and back-
ground pixels, and p; and p, are the respective likelihood functions.

Divide p(1 | x) by the background likelihood of all pixels (i.e., as if no
target is present):

L0 20 1X) T ey 24T
P [x) o I ()
B HyEDf( pr(I(y) %) HyeDb po(1(Y))
~ Thyeny 0 IO 1) T ey Y]
_ pr(I(y)|X)
- yeg(x) (Iy)
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Conditional Observation Independence
What about independence of measurements?
Pixels have dependent piex| noise because

e models are wrong (most noise is model error)
e failures of tracking features are dependent

e overlapping windows used to extract measurements

Likelihood functions are often more sharply peaked than they ought
to be.
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Summary and Further Remarks on Filtering

e posteriors must be sufficiently constrained, with some combina-
tions of posterior factorization, dynamics, measurements, ..

e proposal distributions should be non-zero wherever the posterior
distribution is non-zero (usually heavy-tailed)

e proposals should exploit current observations in addition to pre-
diction distribution

e likelihoods should be compared against the same observations
e sampling variability can be a problem
— must have enough samples in regions of high probability for

normalization to be useful

— too many samples needed for high dimensional problems (esp.
when samples drawn independently from prediction dist)

— samples tend to migrate to a single mode (don’t design a par-
ticle filter to track multiple objects with a state that represents
only one such object)

— sample deterministically where possible

— exploit diagnostics to monitor effective numbers of samples
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