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Canny Edge Detection steps

The process of edge extraction is formed by the
following (general) steps:

- Convolution of the image with edge enhancing masks
in the x and y directions.

- Computation of image gradient (magnitude and
direction)

- Thresholding of the gradient image

- Non-maximum edgel suppression

Canny Edge Detection steps 2
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Image Gradient

The convolution of the image with derivative �lters in
the x and y directions yields the x and y components of
the image gradient rI = [IxIy] = A(x; y)e�i(�(x;y)).

The amplitude and orientation of the gradient are
computed directly from the image derivatives along x
and y.

image Gradient 3
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Gradient magnitude

The magnitude of the gradient at pixel p(x; y) is given

by A(x; y) =
q
I2x + I2y , it gives an indication of the

strength of a possible edge at p(x; y).

The �gure on the lower-right shows a section of the
gradient magnitude image on the lower-left, with pixel
brightness rescaled to better show gradient magnitude
around the circle.

Gradient magnitude 4



(c) 2004 F. Estrada & A. Jepson & D. Fleet

Gradient thresholding

Once the gradient magnitude has been computed, a
threshold is applied to remove all weak responses due
to noise.

The resulting binary image is where the actual search
for edgels takes place.

Gradient thresholding 5
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Gradient orientation

Besides the thresholded gradient magnitude map, we
require an estimate of the gradient direction at each
pixel, �(x; y) = arctan(Iy=Ix). The gradient direction
is always perpendicular to the direction of an edge
passing through p(x; y).

The gradient orientation is only computed at
image locations that passed the gradient magnitude
threshold.

Gradient orientation 6
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Non-Maximal Suppression

Real edges correspond to places where the gradient
magnitude is maximal, other locations along the
gradient direction, with non-zero but not maximal
responses must be discarded.

Non maximal suppression looks along the gradient
direction, suppressing any edgel locations with non-
maximal response.

Non-Maximal Suppression 7
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The �nal edge image

Edgels that remain after non-maximal suppression
make up the �nal edge map.

The �nal edge image 8
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Choice of sigma and level of detail

Smaller sigma values cause the derivative �lters to
respond to smaller features, but also make the �lters
more sensitive to noise. Conversely, larger sigma values
decrease localization accuracy.

The edges on the lower-left correspond to � = 2, the
edges on the lower right correspond to � = 1. The
value of � determines the scale of the edges that are
detected.

Choice of sigma and level of detail 9



(c) 2004 F. Estrada & A. Jepson & D. Fleet

Choice of sigma and level of detail

σ=1 σ=2

σ=4 σ=6

σ=20

Choice of sigma and level of detail 10
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Other edge extraction operators

Instead of using a Gaussian and its derivatives, we
could use other standard �lter masks such as those
de�ned by Sobel or Roberts.

Roberts, [1 0; 0 −1] and its
           transpose

Sobel, [1 2 1; 0 0 0; −1 −2 −1] and 
            its transpose

Canny

Other edge extraction operators 11
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Common issues with Canny edges

- Threshold selection

- False positives

- False negatives

- Double edges

- How to determine edge saliency?

Common issues with Canny edges 12
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Threshold selection

A small change in threshold can make a large di�erence
in the resulting edgel map.

Threshold selection 13
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Determining edge saliency

A very diÆcult open problem. Edge saliency is related
to the likelihood that a given edgel belongs to an object
boundary.

- Can this be evaluated locally?

- How about edges from shadows, illumination changes,
and texture?

- Canny enhancement: Hysteresis threshold

- We can do a bit better with some clever �ltering!

Determining edge saliency 14
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The Orientation Tensor

The gradient orientation behaves in di�erent ways
depending on whether an edgel is located within a
textured region or not.

Gradient directions for Gradient directions for
a region containing texturea region containing lines

Notice that for edgels that lie along a line, the gradient
orientation is very similar. Conversely, for edgels that
arise from texture or noise, gradient directions look
random.

The Orientation Tensor 15
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The Orientation Tensor

The Orientation Tensor at each edgel is given by G(�)�

(t � t
0

), where t is a column vector with the tangent
direction at each edgel (the direction perpendicular to
the gradient at that edgel).

The Orientation Tensor at edgel (x; y), then, is a

combination of the terms t�t
0

for edgels around (x; y),
the contribution of each surrounding edgel is weighted

The Orientation Tensor 16
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by a Gaussian with standard deviation �, centered at
(x; y).

The Orientation Tensor 17
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The Orientation Tensor

The Orientation Tensor at each edgel is represented
with a 2x2 matrix, it encodes the combination of edgel
directions in the vicinity of edgel (x; y). The trace

(sum of the diagonal elements) of the Orientation
Tensor is indicative of the density of edgels around
a local neighborhood.

Bench edgels Trace of the Orientation Tensor

Notice the trace of the Orientation Tensor is large
where there is a high density of edgels.

The Orientation Tensor 18
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The Orientation Tensor

The 2 eigenvalues of the Orientation Tensor at each
edgel are indicative of the degree of correlation
between edgel directions in the local neighborhood.
If there is a dominant direction for edgels in the
neighborhood of (x; y), the Orientation Tensor at
(x; y) will have one large eigenvalue, and one small
eigenvalue. Conversely, when both eigenvalues have
roughly the same magnitude, there is no preferred
orientation.

The above provides an indication of whether an
edgel is likely to have originated from noise or image
texture.

The Orientation Tensor 19
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The Orientation Tensor

The normalized di�erence between the eigenvalues
indicates how uniformly directed a region is (the
region's directedness), the normalized average of the
eigenvalues indicates how uniformly scattered the
directions in a region are (the region's randomness).

Directedness Randomness

The Orientation Tensor 20
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The Orientation Tensor

We can combine both images into a colored plot that
shows regions with a dominant direction in red, and
regions with large randomness in green.

The Orientation Tensor 21



(c) 2004 F. Estrada & A. Jepson & D. Fleet

The Orientation Tensor

- We can use the orientation tensor as a rough
indicator of whether a pixel is within a textured
region or not

- Have we solved the saliency problem?

- How about texture that has a dominant
orientation?

- Still local!

- Still an open problem, in general, we do the best job
we can at edge extraction, and then turn the job over
to more complex feature extraction algorithms (e.g.
line and curve �tting), and perceptual grouping.

The Orientation Tensor 22


