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Principal Component Analysis

Principal Component Analysis is a technique that is commonly

used to discover meaningful structure within a data set, it provides

a representation that makes explicit similarities between data

elements, and may lead to a low-dimensional representation of

high-dimensional data.

This tutorial will present a small introduction of Principal

Component Analysis in the context of a Gaussian blob of 3D

points, and will then move on to show how PCA can be used to

identify a suitable representation for a set of training images that

captures interesting structure in the input data; and to perform

recognition tasks (image classification).
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Principal Component Analysis

Consider the following Gaussian blob in 3D space.
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Notice that the distribution is roughly elliptical in 2 of its

dimensions, and quite flat along the third dimension, much like

an elongated pancake.
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Principal Component Analysis

Now look at the same distribution, but rotated and translated

away from the origin
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We will analyze the above cloud of points using PCA and see

what it has to say about the structure of the data.
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Principal Component Analysis

Given an input set of data points, all of which are row vectors

of the form ~x = [a1a2 · · · aN ], where each ai is an element

of ~x and the data has dimensionality N , Principal Component

Analysis consists of the following general procedure:

• Clean up input data as much as possible (remove outliers)

• Subtract the mean from the data

• Compute the covariance matrix cov = 1
K−1

∑K

i=1 ~xT · ~x

• Compute the eigenvectors and eigenvalues of the covariance

matrix (svd)

• Determine an appropriate number of basis vectors

• Project the original data onto the selected eigen-basis
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Principal Component Analysis

Applying the above procedure to the Gaussian data of the previous

figure, we obtain the principal components shown below.
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Notice that the Principal Components are oriented in the direction

of the main axes of the rotated Gaussian data.
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Principal Component Analysis

The eigenvalues of the covariance matrix indicate how much of

the variance in the data set is captured by the corresponding

eigenvector.
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Once the eigenvectors are scaled by the corresponding eigenvalues,

the structure of the input data set becomes evident.
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Principal Component Analysis

The following plots show the variance captured by each of the

eigenvectors.
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As expected, 2 eigenvectors capture almost all the variance in the

data-set, the third one, corresponding to the flattened direction

of the data set, accounts for less than 1% of the variance in the

data. For more complicated data-sets, this won’t be so easy.
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Principal Component Analysis

One last comment before moving on to images, the removal of the

mean from the data-set is a necessary step before the calculation

of the covariance matrix, otherwise the resulting eigenvectors

capture something other than what we want!
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The above figure shows the scaled eigenvectors that result from

performing the analysis without having subtracted the mean from

the original distribution. The first eigenvector now passes through

the origin, and points toward the mean of the distribution. The

other two vectors are forced to be orthogonal to the first one, so

they are unlikely to correspond to principal directions in the data.
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Principal Component Analysis

So how can we apply PCA to an image? Consider the following:

An Eye Image
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An image of m × n pixels can be interpreted as a m ∗ n

dimensional vector of intensity values. Hence, an image is nothing

more than a data point in a m ∗ n dimensional space. If we

gather a data-set with many images of a given object (say, eyes

for example), we could expect the images to have some similarity,

and hence their corresponding vectors to have some underlying

(non-random) distribution in space. We can apply PCA to these

images to try to determine what the structure of this distribution

is!
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Principal Component Analysis

In an analogous way, each of the m ∗ n dimensional principal

vectors determined by PCA can be viewed as a m × n image:

A Basis Vector
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Hence, we can think of each basis vector in terms of an equivalent

basis image.
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Eigen Eyes

We’ll now see what PCA can tell us about a set of images of

eyes, the data-set contains a large number of eye pairs from many

different people, under different lighting conditions, with varying

contrast, and with artifacts such as eye-glasses, or images where

the eyes are closed. Some sample eyes are shown below

Right Eye 1928

 Range: [0, 255] 
 Dims: [25, 20] 

Left Eye 1928

 Range: [0, 255] 
 Dims: [25, 20] 

Right Eye 2259

 Range: [0, 255] 
 Dims: [25, 20] 

Left Eye 2259

 Range: [0, 255] 
 Dims: [25, 20] 

Right Eye 240

 Range: [0, 255] 
 Dims: [25, 20] 

Left Eye 240

 Range: [0, 255] 
 Dims: [25, 20] 

The images have been normalized so that the eye is centered, and

so that the scale of the eyes is similar from image to image.
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Eigen Eyes

As we mentioned before, the first step toward PCA is to clean

up the input data-set, we will use only half of the available eye

images for training, and keep the other half for testing purposes.

In our particular case, we take the following steps to clean-up the

data:

• Removal of the mean, and DC components of the data

• Contrast normalization

• Removal of outliers

The reason for removing the mean was illustrated above, contrast

normalization serves the purpose of keeping images with very high

contrast from dominating the resulting PCA basis.

Outliers are removed because PCA is in effect a Least Squares

estimation procedure, and we’ve seen before that Least Squares

estimation is very sensitive to distant outliers.

Finally, the reason for keeping half of our data for testing

will become apparent when we are dealing with the problem

of choosing a suitable eigen-basis for our eye images.
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Eigen Eyes

The figure below shows the mean image computed from the

training data set.

Mean Eye Image
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This is what an average eye looks like! (according to our training

data, but keep in mind that we have not removed the outliers).

Each eye image in our training set can be though of as a departure

from the mean eye, that is, the mean eye image accounts for a

significant portion of the variance in each of the eye images in the

training data. We want to use PCA to characterize and account

for the remaining variance, but first we must remove outliers.
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Eigen Eyes

To remove outliers, we eliminate any images in the training set

that after contrast normalization and rescaling still have a large

amount of variance per-pixel.

Extreme Eye 43

 Range: [38.6, 79.9] 
 Dims: [25, 20] 

Extreme Eye 140

 Range: [−7.76, 234] 
 Dims: [25, 20] 

Extreme Eye 247

 Range: [−3.08, 268] 
 Dims: [25, 20] 

Extreme Eye 705

 Range: [22.8, 246] 
 Dims: [25, 20] 

The above images show some of the outliers removed from

the training data-set, they usually show closed eyes, eyes with

highlights due to eye-glasses, and other cases that have a
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significant deviation from the average eye. After removing

outliers, and re-calculating the mean of the remaining training

images, create a matrix whose columns are the training images,

and perform svd on it.
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Eigen Eyes

From svd, we obtain a set of basis images that capture the

structure of our training data:

Basis Image #1

 Range: [−0.117, 0.08] 
 Dims: [25, 20] 

Basis Image #2

 Range: [−0.116, 0.0838] 
 Dims: [25, 20] 

Basis Image #4

 Range: [−0.115, 0.17] 
 Dims: [25, 20] 

Basis Image #15

 Range: [−0.119, 0.109] 
 Dims: [25, 20] 

The first few eigenvectors capture large-scale structure in the

training images, subsequent eigenvectors capture structure at

progressively finer scale.
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Eigen Eyes

We can look at a plot of the variance captured by each of the

first few basis images.
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Notice that a relatively small number of basis images captures a

large portion of the variance in the training set (keep in mind that

we have in total 500 eigenvectors for the eye images).
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Eigen Eyes

Given the eigen-basis obtained from svd, we can represent any

image Ak(~x) in our training set as a linear combination of

basis-images:

Âk(~x) =

M∑

j=1

ck,jBj(~x) (1)

Where M is the dimension of the chosen sub-space that will

be used to represent the training data, ck,j is the coefficient for

image k and basis image j given by ck,j = 〈Ak(~x), Bj(~x)〉,

and 1
K

∑K

k=1 c2
k,j = σ2

j .

The σj are related to the singular values of the matrix we

performed svd on by the following equation: σj = 1
K

κj, where

κj are the singular values we get from svd.

We can calculate the reconstruction error for an image

Ek(~x) = Ak(~x) − Âk(~x), the per-pixel variance Vn(~x) =
1
K

∑K

k=1 E2
k(~x), and two useful statistics:

S
wis
k =

M∑

j=1

c2
k,j

σ2
j

(2)
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is the within subspace statistic and measures the magnitude of

the coefficients for image k with regard to the expected variance

of the basis images, and

S
oos
k =

1

N

∑

~x

E2
k(~x)

Vn(~x)
(3)

which measures the unexplained variance of the image as a fraction

of the expected per-pixel variance. Soos
k is known as the out of

subspace error.
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Eigen Eyes

The figure below shows sample training images, and their

reconstruction using subspaces of different dimension.

Image 184

 Range: [0, 255] 
 Dims: [25, 20] 

Recon, nBasis=5

 Range: [0, 255] 
 Dims: [25, 20] 

Recon, nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Recon, nBasis=50

 Range: [0, 255] 
 Dims: [25, 20] 

Image 532

 Range: [0, 255] 
 Dims: [25, 20] 

Recon, nBasis=5

 Range: [0, 255] 
 Dims: [25, 20] 

Recon, nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Recon, nBasis=50

 Range: [0, 255] 
 Dims: [25, 20] 
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Eigen Eyes

We can go a bit further than this, it turns out that the distribution

of coefficients for each basis image can be approximated with a

Gaussian PDF.
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Hence, we can ’hallucinate’ eyes by generating coefficients for

each basis from the appropriate Gaussian PDF and performing

the reconstruction process.
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Eigen Eyes

The following images show some of the ’eyes’ that can be

generated from the basis images in this manner.

Rand nBasis=5

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=10

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=50

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=100

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=200

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=5

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=10

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=50

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=100

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=200

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=5

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=10

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=50

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=100

 Range: [0, 255] 
 Dims: [25, 20] 

Rand nBasis=200

 Range: [0, 255] 
 Dims: [25, 20] 
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Eigen Eyes

Given the above basis images, we can represent our original

training data in a much more compact way, instead of storing

each complete m × n image, we need only store the M basis

images we have chosen for our subspace, the average eye image,

and M coefficients to represent each training image with the

chosen eigen basis.

However, this is not all that we can do. It is possible to use

the eigen-basis to detect new instances of eyes that we haven’t

seen before in our training set. And given a set of images that

contains eyes and non-eyes (image patches that contain some

other structure), we can classify with relatively good accuracy the

images that contain eyes and the images that contain non-eyes.

The detection process is based on the error metrics described

above, in particular, the Soos
k metric, which corresponds to the

’out of subspace’ error, and quantifies the variance in an image

that is not accounted for by our chosen eigen-basis.
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Eigen Eyes

Recall that we saved half of our eye data-set for testing, we can

use that half of the data-set, plus a data-set of non-eye images to

characterize the performance of our eigen-basis for classification.
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The above figures show the out of subspace error for eyes (green)

and non-eyes (red) given sub-spaces of different dimension. The
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classification criteria is simple, any point below and to the left of

the line is classified as an eye. Notice that given the mixture of

the eyes and non-eyes close to the boundary between the classes,

it is not possible to obtain perfect classification.
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Eigen Eyes

We can also characterize the performance of our eigen-basis for

classification by looking at the ROC curve (Receiver Operating

Characteristic), which plots the true-detection rate against the

false-positive rate.
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Notice that after the subspace has grown to about 50 basis

images, adding more basis images does not produce a significant

improvement.
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Eigen Eyes

Another interesting plot shows the trade-off in true-detection

versus true-rejection if we change the angle of the classification

line in the out of subspace error plot.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
True Detection (solid) and True Rejection (dashed)

Theta (rad)

R
a
te

nBasis =  0
nBasis =  1
nBasis =  2
nBasis =  4
nBasis =  8
nBasis = 20
nBasis = 50
nBasis =100
nBasis =200

Basically, we can increase the rate of true-detection, but after a

certain point, any increase comes at the expense of a decrease in

the true-rejection rate.
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Eigen Eyes

It is illustrative to look at some of the eye images that were

wrongly classified as non-eyes

Eye 40

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Eye 62

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Eye 44

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 
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Eigen Eyes

Eye 132

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Eye 161

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Eye 2242

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Many of these images have strange lighting artifacts, show closed

eyes, or look very different to the average eye, however, some

very reasonable eyes are also mis-classified.

Eigen Eyes 30



(c) 2004 F.J. Estrada & A.D. Jepson & D. Fleet

Eigen Eyes

Now look at some of the non-eye images that were classified as

eyes:

nonEye 6

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

nonEye 534

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

nonEye 24

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 
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Eigen Eyes

nonEye 1919

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

nonEye 2953

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

nonEye 2333

 Range: [0, 255] 
 Dims: [25, 20] 

Recon nBasis=20

 Range: [0, 255] 
 Dims: [25, 20] 

Some have structure that roughly resembles the pattern of light

and dark that we could expect in an eye, but others seem

completely unrelated!
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Eigen Eyes

There is a good reason for saving some of our data for testing,

see what happens if we evaluate the classification performance of

our eigen-basis on the data we used for training:
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Notice that if we increase the number of basis functions used

to represent images, we keep improving the true-detection vs

false-positive ratio! however, all that we’re seeing is over-fitting,

Eigen Eyes 33



(c) 2004 F.J. Estrada & A.D. Jepson & D. Fleet

that is, the larger number of basis images we use, the better our

eigen-basis becomes at explaining particularities of our training

data that do not apply to the general domain of eye images.

Saving some of our data for testing, and for validation of our

choice of eigen-basis, is a good idea. However it has a downside:

If we have little training data to start with, and we save part of

that for testing, we may find ourselves in a situation in which the

remaining data is not enough for PCA (or in general, any other

learning method) to capture interesting structure that is general

to the domain we’re analyzing.
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Observations about PCA

PCA models data as a multi-dimensional ellipse, the PCA vectors

give an orthogonal basis that describes the orientation of this

ellipse:
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Figure 1: Gaussian data and principal directions from PCA

Which works well in many cases.
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Observations about PCA

However, PCA does not distinguish a situation in which the

observed data is not distributed as a multidimensional Gaussian:
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Figure 2: Data distributed along some manifold, and principal

directions from PCA

PCA gives the vectors that best approximate the data as a

multidimensional ellipse, if these data points correspond to a

representative sample of some class we wish to model we have a

problem...
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Observations about PCA

If we try to do classification, we now have a situation in which

data that is not part of the original manifold is well approximated

by our PCA model:
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Figure 3: Red points correspond to data distributed according to

our PCA model, blue points correspond to the original data.

If we use simple statistics based on reconstruction error and

unexplained variance, we would end up incorrectly classifying

many of the red points as instances of our class.
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Recognition using parametric PCA

Murase and Nayar (’Visual Learning and Recognition of 3-

D Objects from Appearance’, IJCP, 14, 1995) propose that

recognition can be carried out using PCA, together with

parametric models of the manifolds described by the data from a

particular object.

Given a set of P objects, and a set of images for each object

that capture different poses and varying illumination, they build

several PCA models:

• A universal model derived from the images of all the objects,

under all pose and illumination conditions.

• P object specific models that include just the images of each

particular object.
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Recognition using parametric PCA

They show that the projection of the training images of a

particular object onto these eigenspaces describes a manifold

whose dimension corresponds to the number of parameters that

describe the changes in pose and illumination.

Figure 4: Manifold for images of a single object, with 1 parameter,

using only the first 3 vectors of the eigenbasis (from Murase &

Nayar, 1995).
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Recognition using parametric PCA

Given a new image, classification consists of projecting the image

onto the universal eigenspace, and finding the object manifold to

which the projected image has the smallest distance.

Figure 5: New image classification, projection onto the eigenspace

followed by detection of the closest manifold (from Murase &

Nayar 1995).

The pose is then estimated from the particular eigenspace of the

corresponding object.
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Recognition using parametric PCA

A few sample manifolds for different objects are shown below

(in this case 2 parameters describe the changes in pose and

illumination, so the manifolds represent a 2-d ribbon, shown here

in the space corresponding to the 3 leading eigenvectors or each

object-specific eigenspace).

Figure 6: Representations of manifolds for different objects (from

Murase & Nayar 1995).
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