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Introduction

What is tracking?

Major playersMajor players:
Dynamics (model of temporal variation of target parameters)
Measurements (relation between image & target parameters)
Search (finding good values for target parameters)
Initialization (establish initial state of tracker)

Why tracking Why tracking (why not recognition?)
Accumulated information (impoverished local measurements)
Track then detect
Establish what went where (correspondence)
Effective / Improved search
Simultaneous activity recognition / tracking



Introduction: Potential Applications

Automotive
traffic analysis / control
driver attentiveness
obstacles (pedestrians and vehicles)

Looking @ People
surveillance/security (homes, stores, …)
annotating human activity (football plays)

Entertainment
motion capture, interactive video w/ CG 
Interactive toys 

Military
target detection, tracking, and prediction

Science
cell motility assays



Introduction

WhatWhat’’s so hard?s so hard?
complex nonlinear dynamics, with high dimensional object models
complex appearance, and temporal appearance variation 
(deformable objects, shadows & lighting variations, clothing, …)
impoverished information due to occlusion or scale 
visual background clutter and distractors



Introduction

Which image properties should we track?
intensity / colors
region statistics
contours (edges)
shapes
motion

What are we tracking?
position, velocity, acceleration
shape, size, deformation
3d structure
…



Introduction

What simplifies the problem/solution in practice?
known/stationary background (e.g., track blobs)
distinct a priori colors (e.g., skin)
multiple cameras (often 2 or 3)
manual initialization
strong dynamics models
prior knowledge of the number of objects and object types
sufficient object size
limited occlusion



2D (Local) Region Tracking

[Shi and Tomasi, “Good features to track.” Proc IEEE CVPR, 1994]



2D Region Tracking with Appearance Models

[Jepson, Fleet, & El-Maraghi, “Robust, on-line appearance models 
for visual tracking.” IEEE Trans. On PAMI, 2003]



2D Region Tracking

[Birchfield, “Elliptical head tracking using intensity gradients 
and color histograms.” Proc IEEE CVPR, 1998]



Joint Color/Space Tracking with Mean Shift

[Comaniciu and Meer, “Mean Shift …”, CVPR 2000]



Contour Tracking

[Isard & Blake, “Condensation - conditional density propagation 
for visual tracking.” IJCV, 1998]



Car Tracking / Background Subtraction

[Koller, Weber & Malik, “Robust multiple car tracking with occlusion 
reasoning.” Proc ECCV,1994]



2.5D People Tracking

[Haritaoglu, Harwood & Davis, “W4: Who, when, where, what: A real-time 
system for detecting and tracking people.” Proc Face & Gesture Conf, 1998]



2.1 People Tracking

[Isard and MacCormick, “Bramble: … .” Proc ICCV, 2001]



3D People Tracking 

[Sidenbladh, Black & Fleet, “3D people tracking using particle filtering.”
Proc ECCV, 2000]



3D People Tracking

[Plankers & Fua, “Articulated soft objects for video-based body 
modeling.” Proc IEEE ICCV, 2001]



Introduction

What’s the goal (state of the art)?
how many frames … 10, 100, 1000, 10000 …
batch or on-line
prior specification / learning of object model
real-time
what class of motion (e.g., low-dim 2d deformation, rigid 
objects, smooth textured surfaces, deformable objects, …)



State Space

Object model is a set of variables (properties of the image or scene) 
that we wish to estimate as a function of time?

State:State: n-vector containing variables to be estimated: 

continuouscontinuous (real-valued) state space                                      
[e.g., position, velocity, acceleration, size, shape, … ]

discretediscrete state space                                                    
[e.g., number of objects, gender, activity type, … ]

hybridhybrid state space  (with discrete & continuous variables 
being functions of one another)

Observations / Measurements:Observations / Measurements: data vector from which we 
estimate the state variables: 



Probabilistic Formulation

Conditioning (factorization):

Bayes’ rule: 

Marginalization:

Remember:



Probabilistic Formulation

State history:

Observation history:

Probability distribution over states conditioned on observations

Marginal distribution over current state given observation history

called posterior distribution (or filtering distribution) 



Probabilistic Models / Assumptions

First-order Markov model for the state dynamics:

Conditional independence of observations 

joint 
likelihood

likelihood  
at time τ

therefore



Filtering Equations

Bayes’ rule



Filtering Equations

Prediction distribution (temporal prior):



Filtering Equations

Recursive (filtering) computationRecursive (filtering) computation:

begin with posterior from previous time

propagate forward in time using dynamical model 

to form the prediction distribution

incorporate current observations (evidence)                  to form 

the new filtering (posterior) distribution

Animation?



Filtering and Smoothing

Optimal computation given entire sequence: filter & smooth

current current 
evidenceevidence

prediction from prediction from 
past datapast data

prediction from prediction from 
future datafuture data

Recursive computation (smoothing) backwards in time:

[Belief Propagation:Belief Propagation: combining predictions (or messages) from 
neighbors with local evidence to compute local estimates of state]



Temporal Dynamics

Linear dynamical models:

Random walk with zero velocity
process noise

Random walk with zero acceleration

where

Harmonic oscillation (1D case)

extended 
state space

linear 
dynamics

so



Temporal Dynamics

Linear dynamical models:

Second-order Markov

e.g. 
constant 
velocity

Express as first-order in an augmented state space:

Appropriate for a wide range of system dynamics, including 
harmonic oscillation and random walk with drift. 



Temporal Dynamics

Hybrid dynamics (continuous variables are functions of discrete 
variables):

Discrete dynamics given by transition probability matrix
For each position in the matrix we have a continuous 
dynamical model that involves the relevant continuous 
state variables

Learned dynamics:

Use training ensemble of motions to learn low-dimensional 
linear subspaces or nonlinear manifolds



Kalman Filter

Assume linearity + Gaussian uncertainty for both observation 
equations and state dynamics:

The conditional Markov and likelihood distributions become:

where (for D-dimensional vector     ) 



Kalman Filter

Remember
product of two Gaussian densities is Gaussian
marginalization of multi-dimensional Gaussian is also Gaussian

Key Result:Key Result: Filtering and prediction distributions are Gaussian, so 
they may be represented by their respective means and covariances:

posterior covariance
posterior mean

prediction covariance
prediction mean



Kalman Equations

Remember:

Convolution of two Gaussians with covariances and       is 
Gaussian with covariance

So, with 

it follows that the prediction mean and variance are given by

If                            and                  then



Kalman Equations

Combine prediction                 with measurement       to estimate 
the posterior mean and variance                :

Kalman gain: 

Posterior mean: 

Posterior covariance: 

numerically more stable
Identity matrix

innovation



Kalman Filter Cartoon

posterior

priorposterior

deterministic drift 

stochastic 
diffusionincorporate data 



Kalman Filter

First well-known uses in computer vision:

Road following by tracking lane markers                         
[Dickmanns & Graefe, “Dynamic monocular machine vision.”
Machine Vision and Applications, 1988]

Rigid structure from feature tracks under perspective projection
[Broida et al., “Recursive estimation of 3D motion from monocular 
image sequence.  IEEE Trans. Aerosp. & Elec. Sys., 1990]



Car Tracking / Background Subtraction

[Koller, Weber & Malik, “Robust multiple car tracking with occlusion 
reasoning.” Proc ECCV,1994]



Extended Kalman Filter

Iterated, Extended Iterated, Extended KalmanKalman Filter (IEKF):Filter (IEKF): Iterate estimation with 
EKF, computing the Jacobian for each iteration at the most recent 
state estimate.

Extended Extended KalmanKalman Filter (EKF):Filter (EKF): If system dynamics are nonlinear, 
then we can linearize the dynamics at estimated state at time t-1.

where

Problem:Problem: Non-linear dynamical systems.

Remarks:Remarks: computation of Jacobian, accumulated bias and under-
estimation of  variance.



Unscented Kalman Filter

Problem:Problem: Errors in estimated mean and variance with EKF.
Solution: Solution: Use unscented transform to obtain mean and variance 
estimates to second-order with arbitrary non-linear dynamics 
[Julier & Uhlmann 97].

Sketch of Idea:  Sketch of Idea:  Rather than approximate the state dynamics to 
ensure a Gaussian prediction distribution, using                , 
use exact first and second moments of the prediction density 
under the nonlinear dynamics to obtain the Gaussian prediction. 

choose a set of sigma points     whose sample mean & covariance 
given the mean and variance of the Gaussian posterior at

apply the dynamics to each sigma points: 

calculate the sample mean and covariances of points



Unscented Transform
Monte Carlo 

sampling
Linearized

(EKF) 
Unscented 
Transform

Wan and van der Merwe, 2000



Data Association

Problem:Problem: Non-Gaussian and multi-modal likelihood functions, 
caused by the complex clutter that exists in most natural scenes.

Data association:Data association: Select a subset of “measurements” from the 
entire collection of observations, i.e., those

that are related to the object being tracked, 
for which simpler measurement models can be applied.

Probabilistic data association:Probabilistic data association: let measurement be a weighted sum 
of measurements (weights given by likelihood of each measurement
given the current model guess).

Remarks:Remarks: do this when you don’t know how (or can’t be bothered) 
to model the rest of the scene (or background)



Problems: Nonlinear Dynamics

Dynamical model State evolution over 100 time 
steps for different initial states

fixed 
point



Problems: Nonlinear Dynamics

time = 0 time = 20 time = 70

Histograms of state values, as a function of time, given random 
Gaussian draws for the initial states

Multiple modes are poorly 
represented by a Gaussian



Problems: Multi-Modal Likelihoods

Except in specific domains, data 
association will not find only those 
measurements associated with 
the tracked object.

Measurement clutter in natural 
images causes likelihood 
functions to have multiple, 
local maxima.



Hill-Climbing (ML / MAP) Trackers

With non-Gaussian likelihoods, or nonlinear dynamics, one might 
forego computation of the full filtering distribution.

Instead, just estimate a maximal likelihood or posterior state; i.e., 
do not propagate uncertainty
use noiseless dynamical model to propagate the “optimal”
state from the previous time to the current time
then use iterative optimization (e.g. gradient ascent) from     
the initial guess to find local maxima of the likelihood or an 
approximate posterior

Remarks:Remarks: works great when you are always close enough to the 
optimal (ML or MAP) state.  This may be suitable for many apps, 
but tracking diagnostics and restarts may be required.



Bayesian Filtering with General Distributions

posterior

priorposterior

deterministic drift 

stochastic 
diffusion

incorporate data 



Non-Parametric Approximate Inference

Approximate the filtering distribution using point samples:

By drawing a set of random samples from the filtering distribution, 
we could use samples statistics to approximate expectations 

Problem:Problem: we don’t know how to draw samples from 

Problem:Problem: most samples have low probability – wasted computation

We could sample at regular intervals

Let                     be a set of      fair samples from distribution          , 
then for functions 



Importance Sampling

Weighted samples                               
Draw samples         from a proposal distribution

weighted 
samples

i.e.                               

Find weights          so that the linearly weighted sample statistics 
approximate expectations under the desired distribution  



Particle Filter

Sequential Monte Carlo methods draw samples at each time step 
and then re-weight them to approximate the filtering distribution:          

Simple particle filter:

draw samples from the prediction distribution
weights are proportional to the ratio of posterior and prediction 
distributions, i.e. the normalized likelihood

[Gordon et al ’93;  Isard & Blake ’98; Liu & Chen ’98, …]

posterior posteriortemporal
dynamics

likelihood

sample sample normalize



Particle Filter

Given a weighted sample set

the prediction distribution becomes a linear mixture model

sample

- then sample from the associated dynamics pdf

- sample a component of the mixture by the treating weights   
as mixing probabilities

N

1

0
1

Cumulative distribution of weights



Particle Filter

weighted 
sample set

re-sample   
& drift

diffuse & 
re-sample

compute  
likelihoods 

weighted 
sample set



Particle Filter

Some advantages of particle filters
handle non-Gaussian and multi-modal distributions
easy to implement
manage computational cost by adjusting numbers of samples

Some hazards
proposal distribution should be non-zero wherever the  
posterior distribution is non-zero (usually heavy-tailed)
proposals should be as good as possible, exploiting current 
observations in addition to prediction distribution
sampling variability can be a problem
- must have enough samples in regions of high probability   

for normalization to be useful
- too many samples needed for high dimensional problems.
- samples tend to migrate to a single mode



Particle Filter

Sample Size
Prediction

Posterior

sample size depends on ‘volumes’
of prediction and posterior distributions

Sample Variability and Bias

estimator variance can be a problem due to sampling
re-sampling from poor approximations introduces bias over time 
(no need to re-sample every frame, eg. re-sample if       is small)       
better proposals minimize variance

effective number of ‘independent’ samples:  

so, number of particles should be            
exponential in state dimension, D:



Contour Tracking

[Isard & Blake, “Condensation - conditional density propagation 
for visual tracking.” IJCV, 1998]

State: control points of spline-
based contour representation

Measurements: edge strength 
perpendicular to contour 

Dynamics: 2nd–order Markov 
(often learned)



Contour Tracking



Contour Tracking



Tracking 3D People

[Sidenbladh, Black, & Fleet, 2000; Sidenbladh & Black, 2001; 
Poon & Fleet, 2002]

3D Articulated Shape
~10 parts                
(tapered cylinders)
~19 joint angles
6 pose/position 
variables

Parameters:
– shape vector

– motion vector
– appearance model

φ

A
V



Motion Likelihood
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Image formation: perspective projection of texture-mapped 3D shape 
(assumes brightness constancy and additive noise)

heavy-tailed noise



Motion Likelihood

Likelihood for visible limb j, is given by
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Dynamics: Learned Walking Model

constrain posterior to valid 3D human motions
lower-dimensional state space simplifies estimation

time

ra
di

an
s

Joint angles versus time, for walking person 
obtained from a 3D motion-capture system

Activity-specific dynamics:



Dynamics: Learned Walking Model

mean knee angle knee angle basis

Joint angle curves are segmented and scaled to yield data curves
where                   is the phase the walking cycle. 

PCA provides a linear basis for the joint angles at phase      :



Temporal Dynamics: Walking Model

mean walking plus 
large noise

mean walking

mean walking plus 
moderate noise



Temporal Dynamics: Walking Model

Smooth temporal dynamics (Gaussian process noise):
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coefficients global posephase speed



3D People Tracking

Mean posterior state shown from two viewpoints. 
(manual initialization; 15,000 particles)



3D People Tracking 

Mean posterior state shown from two viewpoints. 
(note: significant change in orientation and depth)



3D People Tracking



Readings

Forsyth & Ponce, Introduction to Computer Vision, Chapter, 17
Isard & Blake, “Condensation: Conditional density propagation.”
IJCV, 1998
Shi & Tomasi, “Good features to track.” Proc. IEEE CVPR,1994
Sidenbladh, Black & Fleet,  “3D People tracking.” Proc ECCV, 2000
Jepson, Fleet, and El-Maraghi, “Robust, on-line appearance models 
for visual tracking.” IEEE Trans on PAMI,  2003
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