
Selection of an Optimal Set of Landmarks

for Vision-Based Navigation

by

Pablo L. Sala

A thesis submitted in conformity with the requirements
for the degree of Master in Computer Science
Graduate Department of Computer Science

University of Toronto

Copyright c© 2004 by Pablo L. Sala

Abstract

Selection of an Optimal Set of Landmarks

for Vision-Based Navigation

Pablo L. Sala

Master in Computer Science

Graduate Department of Computer Science

University of Toronto

2004

Recent work in the object recognition community has yielded a class of interest point-

based features that are stable under significant changes in scale, viewpoint, and illumi-

nation, making them ideally suited to landmark-based navigation. Although many such

features may be visible in a given view of the robot’s environment, only a few such fea-

tures are necessary to estimate the robot’s position and orientation. In this thesis, we

address the problem of automatically selecting, from the entire set of features visible in

the robot’s environment, the minimum (optimal) set by which the robot can navigate

its environment. Specifically, we decompose the world into a small number of maximally

sized regions such that at each position in a given region, the same small set of features

is visible. We introduce a novel graph theoretic formulation of the problem and prove

that it is NP-complete. Next, we introduce a number of approximation algorithms and

evaluate them on both synthetic and real data.

ii

A mamá.

iii

Acknowledgements

I would like to start by thanking my supervisor Sven Dickinson for all his continuous

support, encouragement, and guidance throughout this work, as well as his invaluable

comments on grammar and style on the manuscript of this thesis. I also want to thank

my second reader, Allan Jepson, for his thoughtful observations and suggestions from his

careful reading of the thesis.

I likewise wish to thank Robert Sim for providing me with the image datasets that

I used in the experiments and for the stimulating discussions that we shared which, like

those that I had with Ali Shokoufandeh, helped to shape and enrich the work in this

thesis.

I would also like to take this opportunity to express my gratitude to Debbie Gutman,

Sebastian Ferro and Mario Bianchetti. Several years ago while we were still students at

the University of Buenos Aires, they encouraged me to pursue graduate studies overseas,

a prospect I perceived to be unattainable.

I am grateful to a large number of other people who as well have contributed in

numerous ways to fulfill my vocation. The list is long and it would be impossible to

name everyone here, but I would like to especially mention my former supervisor in

Argentina, Hugo Scolnik, and my dear friends, Gene and Leilani Pierson, who helped

me in particular ways through the first steps on this path. I cannot forget my Linear

Algebra course professors at the University of Buenos Aires: Juan Sabia, Susana Tesauri

and Juan José Della Barca who, through an enjoyable and exceptionally taught course,

opened my eyes to all the beauty of this exciting field of mathematics, and thus started

building the basics of my knowledge on this subject, so useful in my research today. If I

am on this track today, it is certainly due to all these people.

I also wish to thank my dear friends in the Young Adults Fellowship at The Peoples

Church who have made me feel at home in Toronto. I must certainly not fail to mention

my friends at the University of Toronto who have made my lunchtimes enjoyable: Diego

iv

Macrini, Patricio Simari, Blas Melissari, Ariel Fuxman, Sebastian Sardiña, Andres Lagar

Cavilla, and Flavio Rizzolo.

I have been so blessed by my family. I am truly thankful to my mother, my brothers

Jorge and Mario, including their families for all their understanding, support, and love.

Finally, and most importantly, I am grateful to God, with Whom I enjoy a personal,

living relationship. Without merit He has blessed me in many ways and has granted me

the talent to achieve this accomplishment.

Praise be to the name of God for ever and ever; wisdom and power are his.

He changes times and seasons; he sets up kings and deposes them. He gives

wisdom to the wise and knowledge to the discerning. He reveals deep and

hidden things; he knows what lies in darkness, and light dwells with him.

Daniel 2:20-22

v

Contents

1 Introduction 1

1.1 A Framework for View-Based Navigation 3

1.2 Interest-Point Based Features as Landmarks 5

1.3 Selection of an Optimal Set of Landmarks 6

1.4 Outline . 7

2 Related Work 8

2.1 Localization from Landmark Recognition 8

2.2 Dealing With Uncertainty . 8

2.3 Natural vs Artificial Landmarks . 10

2.4 View-Based Approaches to Localization 11

3 Landmark Selection Problem Definition 13

3.1 Optimal Landmark Selection . 13

3.1.1 Off-line Image Collection . 14

3.1.2 View Based Localization . 15

3.1.3 An Optimal Set of Landmarks for View-Based Navigation 15

3.1.4 Advantages of This Approach . 17

3.1.5 Minimizing Regions 6= Minimizing Features 18

3.2 A Graph Theoretic Formulation . 18

3.2.1 Definition of Terms . 18

vi

3.2.2 The Minimum Overlapping Region Decomposition Problem 20

4 Complexity Analysis 21

4.1 ρ-MORDP = 0-MORDP . 21

4.2 Complexity of 0-MORDP . 24

5 Searching for an Approximate Solution 29

5.1 Limitations in the Real World . 29

5.2 Growing Regions From Seeds . 30

5.3 Shrinking Regions Until k Features are Visible 31

5.4 Elimination of Redundant Regions . 35

5.5 Relaxing the Requirement for a Complete Decomposition 35

6 Off-line Exploration 36

6.1 Pose Estimation of Collected Images . 36

6.1.1 Noise Filtering . 38

6.1.2 Motion Parameters Between Views 40

6.1.3 Best Fit of Rotations Between Views 41

6.1.4 Best Fit of Translations Between Views 44

6.2 Generation of the Feature Visibility Vectors 47

6.2.1 Computing Feature Correspondences 47

6.2.2 Retaining Only Good Features . 52

7 On-line Localization 54

7.1 Recognition of Landmarks . 54

7.2 Computation of the Robot’s Pose . 55

7.3 Localization Using Linear Combination of Views 56

7.4 Localization from the Essential Matrix 59

7.5 Estimating Camera Motion on a Plane 63

vii

7.5.1 Pinhole Camera Model . 63

7.5.2 Panoramic Cameras . 66

8 Results 76

8.1 Simulator Description . 76

8.2 Decomposition of Synthetic Worlds . 79

8.3 Region Decomposition Using Real Data 82

8.3.1 Decomposition of a 2m by 2m World 82

8.3.2 Decomposition of a 6m by 3m World 82

9 Conclusions 96

9.1 Contributions . 96

9.2 Future Work . 97

Bibliography 98

viii

List of Figures

1.1 View-based localization framework. 4

3.1 (a) A simple world with a square perimeter (in green), a square (blue)

obstacle in its center and eight features (red circles on its perimeter). (b)-

(g) Visibility areas of some features, (h) A covering of the world using 4

features. (i) A covering of the world using 2 features. 14

3.2 Example of a world with four poses (A, B, C, D), in which the minimum

decomposition in regions with two features each, does not correspond to

minimizing the total number of active features. 17

4.1 An instance of the Minimum Set Cover Problem 25

5.1 Algorithm A.x . 31

5.2 Algorithm B.x . 32

5.3 Algorithm C . 34

6.1 Algorithm to compute the motion parameters between all pairs of collected

images. 40

6.2 Example of a camera layout that has a unique solution, up to a scale factor,

for camera locations (nodes) and magnitude of the translations (edges),

but cannot be computed using the suggested incremental method. 47

6.3 Algorithm to compute image features equivalence. 51

ix

7.1 Basic geometry of the camera motion problem. 60

7.2 Two panoramic cameras centered at points c1 and c2. The second camera

has been translated T , and has rotated an angle θ with respect to the

orientation of the first camera. The point p is seen with a deviation angle

of α1 from the orientation of camera 1, and with a deviation angle α2 from

the orientation of camera 2. 66

8.1 A randomly generated world. The green polygon defines the perimeter

of the world. The blue polygons in the interior define the boundaries of

obstacles. The small red circles on the polygons are the features. As an

illustration, the visibility areas of selected features are shown as coloured

regions. 77

8.2 Simulator graphic user interface. (a) World edition. (b) Visualization of a

region decomposition. 78

8.3 Results for Experiments on Synthetic Data. The x-axes of the charts

represent the four world settings used in the experiments. (Rectangular

worlds were used in settings 1 and 2, while irregularly shaped worlds in

settings 3 and 4. Type 1 features were used in settings 1 and 3, and Type 2

features in settings 2 and 4.) The y-axes correspond to the average value of

300 experiments for the total number of regions, average number of poses

per region, and total number of used features in each decomposition. From

left to right, the bars at each setting correspond to Algorithms A.1, A.2,

A.3, B.1, B.2, and C. 80

8.4 (a)-(d) The 4 regions of the decomposition of real visibility data collected

in a 2m by 2m space, sampled at 20 cm intervals. 83

x

8.5 Examples of the images used in the experiments on visibility data collected

at a 6m × 3m space. The images shown were acquired in orientations: (a)

0 degrees; (b) 180 degrees; (c), (e), (g) 90 degrees; and (d), (f), (h) 270

degrees. 84

8.6 Typical examples of feature visibility regions obtained after executing Al-

gorithm 6.3. 85

8.7 Distribution of Feature Visibility Regions by Size (i.e., number of poses). 86

8.8 Region decomposition of the 6m by 3m Real world for k = 4 and ρ = 0

using Algorithm B.x. 87

8.9 Region decomposition of the 6m by 3m Real world for k = 4 and ρ = 1

using Algorithm B.x. 88

8.10 Region decomposition of the 6m by 3m Real world for k = 6 and ρ = 0

using Algorithm B.x. 89

8.11 Region decomposition of the 6m by 3m Real world for k = 6 and ρ = 1

using Algorithm B.x. 90

8.12 Region decomposition of the 6m by 3m Real world for k = 8 and ρ = 0

using Algorithm B.x. 91

8.13 Region decomposition of the 6m by 3m Real world for k = 8 and ρ = 1

using Algorithm B.x. 92

8.14 Region decomposition of the 6m by 3m Real world for k = 10 and ρ = 0

using Algorithm B.x. 94

8.15 Region decomposition of the 6m by 3m Real world for k = 10 and ρ = 1

using Algorithm B.x. 95

xi

Chapter 1

Introduction

A very important issue in mobile robotics research is that of robot navigation. For an

autonomous mobile robot to be able to accomplish the tasks it has been given, without

the intervention of humans, it needs to have a way to determine its current pose (i.e., its

position and orientation) in the environment as well as being able to determine the steps

to take in order to move to another desired position. Hence the navigation problem has

been summarized by Leonard and Durrant-Whyte [21] with three questions: “Where am

I?”, “Where am I going” and “How do I get there?”. The term localization refers to the

set of methods for answering the first question, i.e., the robot’s pose estimation. The

second and third questions refer to the goal identification and path-planning problems,

respectively.

Borenstein et al. [5] classify robot localization solutions into two main categories.

The first is relative position measurement, which includes odometry, consisting of mea-

suring the wheel rotation and steering orientation of the robot. The problem with this

approach is that due to wheel slippage, collisions, etc., the error in the measurement

increases without bound, and therefore there is a need to periodically use some indepen-

dent reference to correct the error [10]. Inertial navigation is the other approach also

included under this category. It consists of the use of gyroscopes and accelerometers to

1

Chapter 1. Introduction 2

estimate the robot displacements and changes in orientation. These devices have the

drawback that they are not suitable for accurate positioning over an extended period of

time since sensor data drifts with time, increasing the error in the estimation without

bound.

The other main group of robot localization methods identified by Borenstein et al. is

that of absolute position measurement, which includes the use of: active beacons, land-

mark recognition, and model matching. In the first approach, the robot uses the direction

of incidence of (or the measured distance to) three or more beacons, which are transmit-

ted from known locations, to estimate its absolute position. The landmark recognition

approaches can be subdivided into those that use artificial landmarks, and those that use

natural landmarks. The first methods place artificial landmarks, designed to be highly

distinctive and easily detectable, in known locations of the environment. Pose estimation

is achieved when three or more landmarks are recognized, just as in the active beacons

method. This approach has the advantage that errors are bounded. When using natural

landmarks, natural distinctive features in the environment are selected as landmarks. In

the case of a visual approach, landmarks are interesting locally unique image features

with particular characteristics which the robot is capable of quickly recognizing in images

of the environment under different environmental conditions (e.g., changes in perspective,

illumination, etc.).

Localization using natural landmark recognition is a less reliable method than the

previous one, but it has the advantage that it does not require an artificial modification

of the environment, which is not always possible or desirable. In model matching, or map

positioning, as it is also known, the data acquired by the robot sensors is compared to a

model of the environment. The location can be estimated if features from the sensed data

and the map match. There are two classes of maps: geometric and topological. A global

coordinate system is used to represent the world in geometric maps, while in topological

maps, the environment is represented as a graph.

Chapter 1. Introduction 3

There are several good reasons to use vision for navigation. Cameras are low cost

sensors that capture a large amount of distinctive information. Also being passive sen-

sors, they do not suffer from interference problems, such as those experienced by light-

or sound-based proximity sensors. Additionally, if robots are to navigate populated en-

vironments, it seems reasonable to base their perceptual skills for localization on vision,

just as humans do.

In a natural landmark recognition approach for robot localization using vision, two

possible approaches are possible. One is object-based, in which the model of the environ-

ment consists of a database with the computed 3D location of each landmark. The second

is a view-based approach, in which the database contains a collection of (landmarks ob-

served in) 2D images of the environment and the position and orientation from which

each image was acquired. Although in this thesis we focus on the problem of automatic

optimal landmark selection for robot localization using a view-based approach, our idea

can also be applied to object-based localization as a means to organize the landmark’s

database to allow for efficient landmark storage and retrieval.

1.1 A Framework for View-Based Navigation

A view-based navigation framework involves three stages, as shown in Figure 1.1: an

off-line exploration of the world, the construction of a landmark database, and on-line

localization. In the off-line exploration phase, images of the environment are collected at

discrete point locations, and the position and orientation at which they are acquired is

computed. Image features are extracted from each image, and correspondence between

features from different images is computed at this point. Image features from different

images corresponding to the same scene feature are assigned the same feature id. Finally,

using the feature correspondences, a feature visibility vector is generated for each sampled

pose, specifying what scene features are visible from that pose.

Chapter 1. Introduction 4

Exploration Localization

Off−line On−line

Construction

Landmark

Database

Figure 1.1: View-based localization framework.

The landmark database construction phase uses as its input the collection of images

and the set of feature visibility vectors obtained in the previous stage. The purpose of this

phase is to create a database of landmarks useful for reliable navigation. (A landmark is

defined as a set of features.) The generated database has to specify which landmark is

to be used for localization at each pose, and the locations of all the features that form

that landmark in two model views. A model view for a particular landmark is one of the

images collected in the previous stage in which all the features that form the landmark

are simultaneously visible. The database must also record the position and orientation

at which each model view was acquired.

Finally, the on-line localization process is that in which the robot estimates its actual

3D location using as its input the database of landmarks produced in the previous stage.

Features visible in the current robot’s image have to be matched to those in the database.

The locations of the matched features in the two corresponding model views are then

used as input to a method to estimate the 3D position and orientation of the robot,

relative to that of the model views.

This thesis will primarily focus on the second stage of the framework, namely, the

problem of constructing the database of landmarks. Our main contribution is a practical

and optimal solution to the problem of landmark selection, and it assumes that we have

obtained the set of feature visibility vectors from a previous off-line exploration process.

We include chapters in which we propose methods to accomplish the tasks involved in

the off-line exploration and on-line localization phases, as to offer the whole picture of a

practical framework. However, we do not provide experimental results for the methods

Chapter 1. Introduction 5

that we propose to realize these tasks. The experiments performed in the Results chapter

in this thesis will only include tests of our proposed solution to the problem of optimal

landmark selection.

1.2 Interest-Point Based Features as Landmarks

Several natural image features have been used as natural visual landmarks, ranging from

very simple features such as points and lines [30, 40], to more complex patterns [29] or

3D models of world objects. In the domain of exemplar-based (as opposed to generic)

object recognition, the computer vision community has recently adopted a class of interest

point-based features, e.g., [25, 14, 8]. Such features typically encode a description of image

appearance in the neighbourhood of an interest point, such as a detected corner or scale-

space maximum. The appeal of these features over their appearance-based predecessors

is their invariance to changes in illumination, scale, image translation and rotation, and

minor changes in viewpoint (rotation in depth). These properties therefore make them

ideally suited to the problem of landmark-based navigation. If we can define a set of

invariant features that uniquely define a particular location in the environment, these

features can, in turn, define a visual landmark.

To use these features, we could, for example, adopt a localization approach proposed

by Basri and Rivlin [2] and Wilkes et al. [46], based on the LC (linear combination

of views) technique. (See section 7.3.) During a training phase, the robot is manually

“shown” two views of each landmark in the environment by which the robot is to later

navigate. These views, along with the positions at which they were acquired, form a

database of landmark views. At runtime, the robot takes an image of the environment

and attempts to match the visible features to the various landmark views it has stored in

its database. Given a match to some landmark view, the robot can compute its position

and orientation in the world.

Chapter 1. Introduction 6

1.3 Selection of an Optimal Set of Landmarks

There are two major challenges with this approach. First, from any given viewpoint, there

may be hundreds or even thousands of such features. The union of all pairs of landmark

views may therefore yield an intractable number of distinguishable features that must be

indexed in order to determine which landmark the robot may be viewing.1 Fortunately,

only a small number of features are required (in each model view) to compute the robot’s

pose. Therefore, of the hundreds of features visible in a model view, which small subset

should we keep?

The second challenge is to automate this process and let the robot automatically

decide on an optimal set of visual landmarks for navigation. What constitutes a good

landmark? A landmark should be both distinguishable from other landmarks (a single

floor tile, for example, would constitute a bad landmark since it’s repeated elsewhere on

the floor) and widely visible (a landmark visible only from a single location will rarely

be encountered and, if so, will not be persistent). Therefore, our goal can be formulated

as partitioning the world into a minimum number of maximally sized contiguous regions,

such that the same set of features is visible at all points within a given region.

There is an important connection between these two challenges. Specifically, given

a region, inside of which all points see the same set of features (our second challenge),

what happens when we reduce the set of features that must be visible at each point (first

challenge)? Since this represents a weaker constraint on the region, the size of the region

can only increase, yielding a smaller number of larger regions covering the environment.

As mentioned earlier, there is a lower bound on the number of features that can define

a region, based on the pose estimation algorithm and the degree to which we want to

1Worst-case indexing complexity would occur during the kidnapped localization task, in which the
robot has no prior knowledge of where it is in the world. Under normal circumstances, given the currently
viewed landmark and the current heading, the space of landmark views that must be searched can be
constrained. Still, even for a small set of model views (landmarks), this may yield a large search space
of features.

Chapter 1. Introduction 7

overconstrain its solution.

Combining these two challenges, we arrive at the main problem addressed by this

thesis: from a set of views acquired at a set of sampled positions in a given environment,

partition the world into a minimum set of maximally sized regions, such that at all

positions within a given region, the same set of k features is visible, where k is defined

by the pose estimation procedure (or some overconstrained version of it).

1.4 Outline

This thesis is organized as follows: In Chapter 2, we present a discussion of related work

for robot navigation using visual landmarks. The definition of the optimal landmark

selection problem, the main focus of this thesis, is presented in Chapter 3, where we

introduce a novel, graph theoretic formulation of this problem. Its intractability is proven

in Chapter 4. In the absence of optimal, polynomial-time algorithms, in Chapter 5, we

introduce six different approximation algorithms for solving the problem. Methods for

estimating robot pose during the off-line image collection phase and computing feature

correspondences between images are presented in Chapter 6. In Chapter 7, we discuss

methods for view-based localization. We have constructed a simulator that can generate

thousands of worlds with varying conditions, allowing us to perform exhaustive empirical

evaluation of the six algorithms. In Chapter 8, following a comparison of the algorithms

on synthetic environments, we adopt the most effective algorithm, and test it on real world

imagery of a real environment. Finally, in Chapter 9, we conclude with a discussion of

the main contributions made and possible directions for future work.

Chapter 2

Related Work

In this section, we briefly discuss some previous work done for robot localization using

landmark recognition.

2.1 Localization from Landmark Recognition

If a robot is provided with an a priori map of the 3D locations of known model landmarks,

its pose can be estimated through a triangulation process after the correspondences

between the model landmarks and those sensed by the robot are found. Betke and

Gurvits [3] presented an efficient solution to this problem, when the robot is navigating

on a plane, in which they estimate the position and orientation of the robot from an

overdetermined set of bearings of the sensed landmarks. By representing the landmark

locations using the complex-domain, they came up with an algorithm that runs in time

linear in the number of visible landmarks.

2.2 Dealing With Uncertainty

Since, in the estimated robot’s position, there is always present a certain amount of uncer-

tainty, some authors have considered the problem of landmark selection for the purpose of

8

Chapter 2. Related Work 9

minimizing uncertainty in the computed pose estimate. Sutherland and Thompson [42]

demonstrate that the precision of a pose estimate derived from point features in 2D is

dependent on the configuration of the observed features, and provide an algorithm for

selecting an appropriate set of observed features from which to compute a pose estimate.

Methods have also been developed to combine multiple unreliable observations into

a more reliable estimate. Measurements from various sensors, data acquired over time,

and previous estimates are integrated to compute a more accurate estimate of the cur-

rent robot’s pose. In every sensor update, previous data is weighted according to how

accurately it predicts the current observations. This technique, called sensor fusion,

has generally been implemented through the use of Kalman filters and Extended Kalman

Filters (EKF). It has been applied to the problem of localization by Leonard and Durrant-

Whyte [21] from sonar data obtained over time. A disadvantage of Kalman filters and

EKF is that since they realize a local linear approximation to the exact relationship be-

tween the position and observations, they depend on a good a priori estimate, therefore

suffering from robustness problems.

Markov localization is a statistical localization approach utilizing Kalman filtering

which models uncertainty using a probability distribution over pose space. As evidence

is collected from the sensors, it is used to update the current state of belief of the robot’s

pose. In [44], Thrun presents an approach based on Markov localization in which neu-

ral networks are trained to discover landmarks that will minimize the localization error.

The proposed algorithm has the advantage of being widely applicable, since the robot

customizes its localization algorithm to the sensors’ characteristics and the particular en-

vironment in which it is navigating. The localization error achieved by the automatically

selected landmarks is shown to outperform the error achieved with landmarks carefully

selected by human experts. On the other hand, this approach has the drawback that

the training of the neural networks can take several hours, though this process generally

needs to be performed only once in an off-line stage.

Chapter 2. Related Work 10

Another set of approaches that make use of Kalman Filtering is that of Simultaneous

Localization and Mapping (SLAM), in which after each new measurement, it is attempted

to not only improve the estimation of the current robot’s pose, but also reduce the un-

certainty of the 3D map of landmarks computed so far. Davison’s work in this direction

basically computes a solution to the structure-from-motion problem on-line [11]. A prob-

lem with this technique is that the time complexity of each sensor update step increases

with the square of the number of landmarks in the database. To deal with this scalability

problem, some authors suggested dividing the global map into sub-maps, within which

the complexity can be bounded [6, 39]. Other researchers [23, 20, 9, 13] have proposed

hierarchical approaches to SLAM, in which a topological map is maintained, organizing

the landmarks in smaller regions where feature-based mapping strategies are applied.

2.3 Natural vs Artificial Landmarks

The landmarks can be either natural distinctive features in the environment, or artificial

landmarks designed to be easily recognized and distinguished. Numerous researchers

have taken this latter approach, e.g., [22, 34, 43, 7]. However, it has the drawback that

an artificial modification of the environment to include the landmarks, besides requiring

a prior and generally human intervention, is not always possible or desirable.

Some researchers have chosen as natural landmarks simple features such as lines. For

example, Moon et al. [30] used vertical lines, under the assumption that they can be

reliably extracted from image edge information, and if using a camera vertically aligned,

vertical structures will be observed as vertical lines from all viewpoints. Although these

features remain invariant to changes in perspective, they lack distinctiveness. Further-

more, these assumptions can break down if the terrain is not flat, the camera is not firmly

mounted, or if there is a scarcity of straight, vertical structures.

Recent work in the object recognition community has yielded a class of interest point-

Chapter 2. Related Work 11

based features that are stable under significant changes in scale, viewpoint, and illumina-

tion, making them ideally suited to landmark-based navigation [25, 8, 4]. Lowe, Se and

Little [36] have used scale- and rotation-invariant features as landmarks, extracted using

Lowe’s scale-invariant feature transform (SIFT) [25]. The robot automatically updates

a 3D landmark map with the reliable landmarks seen from the current position using

Kalman filtering techniques. The position of the robot is estimated using the odometry

of the robot as an initial guess, and is improved using the map. Trinocular vision is

used to estimate the 3D locations of landmarks and their regions of confidence, with all

reliable landmarks stored in a dense database.

2.4 View-Based Approaches to Localization

Navigation by landmark recognition is still possible without knowledge of the locations

of the landmarks in a map of the environment. Localization can be accomplished in a

view-based fashion, in which the robot knows only the image location of the landmarks

in a collection of model views of the environment acquired at known positions and orien-

tations. One such approach is the linear combination of views (LC) technique, which was

first introduced by Ullman and Basri for object recognition, and later applied to vision-

based navigation by Basri and Rivlin [2]. (See section 7.3.) The authors proved that if a

scene is represented as a set of 2D views, each novel view of the scene can be computed

as a linear combination of the model views. From the value of the linear coefficients, it

is possible to estimate the position from which the novel view was acquired, relative to

that of the model views. Wilkes et al. [46] described a practical robot navigation system

that used the LC technique. Their method consists of decomposing the environment into

regions within which a set of model views of a particular piece of the environment may

be used to determine the position of the robot. In these original applications of the LC

method, the features comprising the model views were typically linear features extracted

Chapter 2. Related Work 12

from the image.

The view-based approach of Sim and Dudek [37] consists of an off-line collection of

monocular images sampled over a space of poses. The landmarks consist of PCA encod-

ings of the neighborhoods of salient points in the images, obtained using an attention

operator. Landmarks are tracked between contiguous poses and added to a database

if stable through a region of reasonable size and sufficiently useful for pose estimation

according to an a priori utility measure. Each stored landmark is parameterized on the

basis of a set of computed landmark attributes. The localization is performed by finding

matches between the candidate landmarks visible in the current image and those in the

database. A position estimate is obtained by merging the individual estimates yielded

by each computed attribute of each matched candidate landmark.

While all of these approaches demonstrate how robot localization can be performed

from a set of landmark observations, none consider the issue of eliminating redundancy

from the landmark-based map, which at times can grow to contain tens of thousands of

landmark models. Additionally, little or no attention has been given to the number of

landmark look-ups required for localization. In this thesis, we will study the problem of

automatically selecting a minimum size subset of landmarks such that reliable navigation

is still possible. While maximizing precision is clearly an important issue, in this thesis

we are concerned primarily with selecting landmarks that are widely visible.1

1The algorithms presented in this work can be easily extended to select sets of features that fulfill
any given additional constraints.

Chapter 3

Landmark Selection Problem

Definition

In this chapter, we present a definition of the particular problem of view-based navigation

that we try to solve in this thesis. We would like to address the question: What is an

optimal set of visual landmarks by which a mobile robot can reliably navigate in a given

environment?

3.1 Optimal Landmark Selection

This section starts by explaining the processes involved in a view-based navigation ap-

proach: the collection of images of the environment, and how the view-based localization

process makes use of those images. Finally, we introduce the problem that is the main

focus of this thesis: how to select an optimal set of landmarks for practical, reliable,

view-based navigation.

13

Chapter 3. Landmark Selection Problem Definition 14

(a)

1 2 3

4

567

8

(b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.1: (a) A simple world with a square perimeter (in green), a square (blue) obstacle
in its center and eight features (red circles on its perimeter). (b)-(g) Visibility areas of
some features, (h) A covering of the world using 4 features. (i) A covering of the world
using 2 features.

3.1.1 Off-line Image Collection

In view-based navigation, there is an off-line training phase, in which images are first

collected at known discrete points in pose space, e.g., the accessible vertices (points) of

a virtual grid overlaid on the floor of the environment. During collection, the known

pose of the robot is recorded for each image, and a set of interest point-based features

are extracted and stored in a database. For each of the grid points, we therefore know

exactly which features in the database are visible. Conversely, for each feature in the

database, we know from which grid points it is visible. Consider the example shown

in Figure 3.1. Figure 3.1 (a) shows a simple 2-D world having a square perimeter, a

square obstacle in its center, and eight features evenly distributed along its perimeter.

In figures 3.1 (b) - 3.1 (g), the area of visibility of some of the features is shown as a

coloured region. The feature visibility areas, computed from a set of images acquired at

a set of grid points in the world, constitute the input to our problem.

Chapter 3. Landmark Selection Problem Definition 15

3.1.2 View Based Localization

In a view-based localization approach, the current pose of the robot is estimated using,

as input, the locations of a small number of features in the current image matched

against their locations in the training images. This set of simultaneously visible features

constitutes a landmark. The minimum number of features necessary for this task depends

on the method employed for pose estimation. For example, three features are enough for

localization in Basri and Rivlin’s linear combination of views technique [2], which uses a

weak perspective projection imaging model. (See section 7.3 for a detailed explanation

on this localization method.) The essential matrix method [48], that properly models

perspective projection in the imaging process, requires at least eight features to estimate

pose.

To reduce the effect of noise, a larger number of features can be used to overconstrain

the solution. This presents a trade-off between the accuracy of the estimation and the

size (in features) of the landmark. Requiring a larger number of features for localization,

will yield better pose estimation. However, the more constrained a landmark is, the

smaller its region of visibility becomes. We will define the parameter k as the number of

features that will be employed to achieve pose estimation with the desired accuracy, i.e.,

the number of features constituting a landmark.

3.1.3 An Optimal Set of Landmarks for View-Based Navigation

Robot localization from a given position is possible if, from the features extracted from

an image taken at that position, there exists a subset of k features that exist in the

database and that are simultaneously visible from at least two known locations. For a

large environment, the database may be large, and such a search may be costly. For

each image feature, we would have to search the entire database for a matching feature

until not only k such matches were found, but that those k features were simultaneously

Chapter 3. Landmark Selection Problem Definition 16

visible from at least two separate positions (grid points).

Recalling that k is typically far less than the number of features in a given image, one

approach to reducing search complexity would be to prune features from the database

subject to the existence of a minimum of k features visible at each point, with those same

k features being visible at one or more other positions. Unfortunately, this is a complex

optimization problem whose solution still maintains all the features in a single database,

leading to a potentially costly search. A more promising approach is to partition the

pose space into a number of regions, i.e., sets of contiguous grid points, such that for

each region, there are at least k features simultaneously visible from all the points in

the region. Such a partitioning of the world, in turn, partitions the database of features

into a set of smaller databases, each corresponding to what the robot sees in a spatially

coherent region. In this latter approach, since k is small, the total number of features

(corresponding to the union of all the databases) that need to be retained for localization

is much smaller than that of the unique database in the previous approach. Therefore,

even without prior knowledge of the region in which the robot is located, the search

results to be far less costly.

Let’s return to the simple world depicted in Figure 3.1. In this example, we will

assume, for sake of clarity, that a single (k = 1) feature is sufficient for reliable navigation.

However the reader must note that in practice a k greater than 1 is generally required for

localization, its particular minimum value depending on the method employed. Under

this assumption, one possible decomposition of the world into a set of regions (such that

each pose of the world sees at least one feature) is achieved using features 2, 4, 6, and

8, as shown in Figure 3.1 (h). It is clear that all four features in this set are needed to

cover the world, since removing any one of them will yield some portion of the world from

which the remaining three features are not visible, meaning that the robot is blind in this

area. However, this decomposition is not optimal, since other decompositions with fewer

regions are possible. Our goal is to find the minimum decomposition of the world which,

Chapter 3. Landmark Selection Problem Definition 17

3 4

1

A B

5

6

DC

2

Figure 3.2: Example of a world with four poses (A, B, C, D), in which the minimum
decomposition in regions with two features each, does not correspond to minimizing the
total number of active features.

in this case, has only two regions, corresponding to the areas of visibility of features 1

and 5, (or its symmetric solution using features 3 and 7), as shown in Figure 3.1 (i). This

minimum set of maximally sized regions is our desired output, and allows us to discard

from the database all but features 1 and 5. Since at least one of these two features is seen

from every point in pose space, reliable navigation through the entire world is possible.

3.1.4 Advantages of This Approach

Besides reducing the total number of features to be stored, a partitioning of the world into

regions offers additional advantages. While navigating inside a region, the corresponding

k features are easily tracked between the images that the robot sees. If the expected k

features are not all visible in the current image, this may indicate that the robot has

left the region in which it was navigating and is entering a new region. In that case, the

visible features can vote for the regions they belong to, if any, according to a membership

relationship computed off-line. The new region(s) into which the robot is likely moving

will be those with at least k votes. Input features would therefore be matched to the

Chapter 3. Landmark Selection Problem Definition 18

k model features defining each of the candidate regions. This approach also provides a

solution to the kidnapped robot problem, i.e., if the robot is blindfolded and released at

an arbitrary position, it can estimate its current pose.

3.1.5 Minimizing Regions 6= Minimizing Features

From the example in Figure 3.1, it may seem to some readers that the problem of min-

imizing the number of regions is equivalent to that of minimizing the total number of

used features. However, although these two problems are equivalent when the number

of features required per regions is k = 1, that is not the case when k > 1. Consider

for example Figure 3.2, which models a world with four poses (i.e., the points labeled

A, B, C, D), and six features whose regions of visibility are pictured as Venn diagrams,

numbered from 1 to 6. We attempt to find a decomposition of this world into regions

that see at least k = 2 features per region. There is a unique decomposition into four

regions (one per pose), if only features 1 through 5 are used. However, if all 6 features are

employed, we can achieve a decomposition with three regions (features C and D belong

to the same region now, commonly seeing features 5 and 6.)

3.2 A Graph Theoretic Formulation

In this section, we introduce a novel, graph theoretic formulation of the problem of

optimal landmark selection.

3.2.1 Definition of Terms

Before we formally define the minimization problem under consideration, we will intro-

duce some terms.

Definition 3.1. The set of positions at which the robot can be at any time is called the

pose space. The discrete subset of the pose space from which images were acquired is

Chapter 3. Landmark Selection Problem Definition 19

modeled by an undirected planar graph G = (V,E), where each node v ∈ V corresponds

to a sampled pose, and two nodes are adjacent if the corresponding poses are contiguous

in 2D space.

Definition 3.2. Let F be the set of computed features from all collected images. The

visibility-set of v is the set Fv ⊂ F of all features that are visible from pose v ∈ V .

Definition 3.3. A world instance consists of a tuple 〈G = (V,E), F, {Fv}v∈V 〉, where

the graph G models a discrete set of sampled poses, F is a set of features, and {Fv}v∈V

is a collection of visibility-sets.

Definition 3.4. A set of poses R ⊂ V is said to be a region iff for all poses u, v ∈ R,

there is a path between u and v completely contained in R, i.e.,

∀u, v ∈ R : ∃{u = v0, . . . , vh = v} ⊆ R, such that (vi, vi+1) ∈ E for all 0 ≤ i < h.

Definition 3.5. A set of regions D = {R1, . . . , Rd} ⊂ 2V is said to be a decomposition

of V iff
⋃

1≤i≤dRi = V .

Definitions 3.1 to 3.5 define the set of inputs and outputs of interest to our problem.

In view of our optimization problem, for a given world instance 〈G = (V,E), F, {Fv}v∈V 〉,

one would like to create a minimum cardinality D. In addition, it will be desirable for

a given solution to the optimization problem to satisfy a variety of properties. One

property of interest is that of ensuring a minimum amount of overlap between regions

in the decomposition. The purpose of overlap is to ensure smooth transitions between

regions, as different sets of features become visible to the robot. When one region’s

features start to fade at its border, the robot can be assured to be within the boundary

of some other region, where the new region’s landmark is clearly visible. The following

definitions formalize this property:

Definition 3.6. The ρ-neighborhood of a pose v ∈ V is the set Nρ(v) = {u ∈ V :

δ(u, v) ≤ ρ}, where δ(u, v) is the length of the shortest path between nodes u and v in G.

Chapter 3. Landmark Selection Problem Definition 20

Definition 3.7. A decomposition D = {R1, . . . , Rd} of V is said to be ρ-overlapping iff

(∀v ∈ V)(∃i) : Nρ(v) ⊂ Ri.

3.2.2 The Minimum Overlapping Region Decomposition Prob-

lem

With these definitions in hand, the problem can now be formally stated as follows:

Definition 3.8. Let k be the number of features required for reliable localization at each

position, according to the localization method employed. The ρ-Minimum Overlapping Re-

gion Decomposition Problem (ρ-MORDP) for a world instance 〈G = (V,E), F, {Fv}v∈V 〉

consists of finding a minimum-size ρ-overlapping decomposition D = {R1, . . . , Rd} of V

into regions, such that ∀i : |⋂v∈Ri
Fv| ≥ k.

Note that given a solution of size d to this problem, the total number of features needed

for reliable navigation is bounded by d · k.

Chapter 4

Complexity Analysis

In the previous chapter, we introduced a novel, graph theoretic formulation of the problem

of optimal landmark selection. In the present chapter, we will proceed to prove its

intractability.

4.1 ρ-MORDP = 0-MORDP

Before we consider the complexity of ρ-MORDP, we will present two theorems indicating

that ρ-MORDP can be reduced to 0-MORDP (ρ = 0), and that a solution to the reduced

0-MORDP can be transformed back into a solution of the more general ρ-MORDP. The

first of the following two theorems states that if there is a ρ-overlapping decomposition,

such that k features are visible in each region for a certain world instance, then there is a

0-overlapping decomposition for the related problem also with k features visible in each

region. This theorem guarantees that if a solution exists for the ρ-MORDP, then there

is also a solution to the related 0-MORDP.

The second theorem states that whenever the related 0-MORDP has a solution D̃,

then the ρ-MORDP has a solution too, and it presents the method to construct it from D̃.

The theorems depend on three lemmas which will be proven below. It should be noted

that while the transformation from ρ-MORDP to 0-MORDP and back to ρ-MORDP

21

Chapter 4. Complexity Analysis 22

may create a different ρ-overlapping decomposition, the cardinality of the decomposition

under this two-step transformation will remain the same, hence the optimality will not

be affected.

Theorem 4.1. If D = {R1, . . . , Rd} is a ρ-overlapping decomposition of V for a world

instance 〈G = (V,E), F, {Fv}v∈V 〉, such that |⋂v∈Ri
Fv| ≥ k for all i = 1, . . . , d, then

D̃ = {R̃1, . . . , R̃d}, where R̃i = {v ∈ Ri : Nρ(v) ⊆ Ri}, is a 0-overlapping decomposi-

tion for a world instance 〈G = (V,E), F, {F̃v}v∈V 〉, where F̃v =
⋂

w∈Nρ(v) Fw, such that

|⋂v∈R̃i
F̃v| ≥ k for all i = 1, . . . , d.

Proof: According to Lemma 4.1, we know that D̃ is a 0-overlapping decomposition

of V . By Lemma 4.3, we know that
⋂

v∈Ri
Fv ⊆ ⋂

v∈R̃i
F̃v, for all i = 1, . . . , d. Therefore,

|⋂v∈R̃i
F̃v| ≥ |⋂v∈Ri

Fv| ≥ k, for all i = 1, . . . , d. �.

Theorem 4.2. If D̃ = {R̃1, . . . , R̃d} is a solution to 0-MORDP for a world instance

〈G = (V,E), F, {F̃v}v∈V 〉, then D′ = {R′
1, . . . , R

′
d}, where R′

i =
⋃

v∈R̃i
Nρ(v), is a solution

to ρ-MORDP for the world instance 〈G = (V,E), F, {Fv}v∈V 〉.

Proof: We have to show that:

1. D′ is a ρ-overlapping decomposition of V , i.e., (∀v ∈ V)(∃i) : Nρ(v) ⊂ R′
i. (This is

direct from Lemma 4.2.),

2. |⋂v∈R′
i
Fv| ≥ k for all i = 1, . . . , d. (Direct from Lemma 4.3 and the facts that D̃

is a 0-MORDP solution, and R′
i =

⋃
v∈R̃i

Nρ(v).), and

3. D′ is minimum size.

(We’ll prove this by contradiction. We’ll suppose that there is solution D′′ to ρ-

MORDP that has size less than D′, and will show that from this, we can construct

Chapter 4. Complexity Analysis 23

a 0-MORDP decomposition D̃′′ for the original problem of size smaller than D̃ with

the property |⋂v∈R̃′′
i
F̃v| ≥ k. This is a contradiction, since D̃ was a decomposition

of minimum size with that property.

Suppose D′′ = {R′′
1, . . . , R

′′
h} is a decomposition for the original ρ-overlapping prob-

lem such that h < t and |⋂v∈R′′
i
Fv| ≥ k for all i = 1, . . . , h.

Let D̃′′ = {R̃′′
1, . . . , R̃′′

h}, where R̃′′
i = {v ∈ R′′

i : Nρ(v) ⊆ R′′
i } for all i = 1, . . . , h.

By Lemma 4.1, we know that D̃′′ is a 0-overlapping decomposition of V , and by

Lemma 4.3, we can affirm that |⋂v∈R̃′′
i
F̃v| ≥ |⋂v∈R′′

i
Fv| ≥ k.)

�.

Lemma 4.1. {R1, . . . , Rd} is a ρ-overlapping decomposition of V if and only if {R̃1, . . . , R̃d}

is a 0-overlapping decomposition of V , where R̃i = {v ∈ Ri : Nρ(v) ⊆ Ri} for all

i = 1, . . . , d.

Proof: {R1, . . . , Rd} is a ρ-overlapping decomposition of V ⇐⇒ (∀v ∈ V)(∃i : 1 ≤

i ≤ d)Nρ(v) ⊆ Ri
(∗)⇐⇒ (∀v ∈ V)(∃i : 1 ≤ i ≤ d)v ∈ R̃i ⇐⇒ (∀v ∈ V)(∃i : 1 ≤ i ≤

d)N0(v) ⊆ R̃i ⇐⇒ {R̃1, . . . , R̃d} is a 0-overlapping decomposition of V .

In (*) we use the definition of R̃i.

�.

Lemma 4.2. {R̃1, . . . , R̃d} is a 0-overlapping decomposition of V if and only if {R′
1, . . . , R

′
d}

is a ρ-overlapping decomposition of V , where R′
i =

⋃
v∈R̃i

Nρ(v) for all i = 1, . . . , d.

Proof: First, observe that R′
i is a region, since R̃i is a region and Nρ(v) is path con-

nected, as it can be inferred from its definition. Now, {R̃1, . . . , R̃d} is a 0-overlapping

decomposition of V ⇐⇒ (∀v ∈ V)(∃i) : N0(v) ⊂ R̃i ⇐⇒ (∀v ∈ V)(∃i) : v ∈ R̃i
(∗)⇐⇒

(∀v ∈ V)(∃i) : Nρ(v) ⊆ R′
i

(∗∗)⇐⇒ {R′
1, . . . , R

′
d} is a ρ-overlapping decomposition of V .

Chapter 4. Complexity Analysis 24

In (*) we use that (∀v ∈ R̃i) : Nρ(v) ⊆ R′
i, which is a direct implication of the definition

of R′
i. In (**) we use that R′

i is a region.

�.

Lemma 4.3. If {R1, . . . , Rd} is a ρ-overlapping decomposition of V , R̃i = {v ∈ Ri :

Nρ(v) ⊆ Ri} for all i = 1, . . . , d, and F̃v =
⋂

w∈Nρ(v) Fw, then for all i = 1, . . . , d :

⋂
v∈Ri

Fv ⊆ ⋂
v∈R̃i

F̃v, with equality holding if Ri =
⋃

v∈R̃i
Nρ(v).

Proof: From the definition of R̃i, we know that (∀v ∈ R̃i) : Nρ(v) ⊆ Ri, and hence

⋃
v∈R̃i

Nρ(v) ⊆ Ri. Therefore
⋂

w∈Ri
Fw ⊆ ⋂

w∈
(⋃

v∈R̃i
Nρ(v)

) Fw, and the equality holds

when Ri =
⋃

v∈R̃i
Nρ(v). Now,

⋂
w∈

(⋃
v∈R̃i

Nρ(v)
) Fw =

⋂
v∈R̃i

(⋂
w∈Nρ(v) Fw

)
=

⋂
v∈R̃i

F̃w.

�.

The transformation applied in Theorem 4.1 from a ρ-overlapping to a 0-overlapping

solution effectively shrinks the regions of D by ρ, and reduces the visibility-set of each

vertex v to correspond to only those features that are visible over the entire neighborhood

Nρ(v) of v.1 Theorem 4.2 assumes that the collection of visibility-sets F̃ input to 0-

MORDP is defined by a reduction of the ρ-overlapping instance of the problem to a

0-overlapping instance using the transformation described in Theorem 4.1.

4.2 Complexity of 0-MORDP

We will now show that 0-MORDP is NP-complete. The proof is by reduction from the

Minimum Set Cover Problem.

Definition 4.1. Given a set U , and a set of subsets S = {S1, . . . , Sm} of U , the Minimum

Set Cover Problem (MSCP) consists of finding a minimum set C ⊂ S such that each

1Strictly speaking, the region reduction is impervious to boundary effects at the boundary of G, due
to the definition of Nρ(v).

Chapter 4. Complexity Analysis 25

U = {A,B,C,D}
S = {{A,B}, {C},

{A,D}, {C,D}}

Figure 4.1: An instance of the Minimum Set Cover Problem

element of U is covered at least once, i.e.,
⋃

Si∈C Si = U .

Figure 4.1 presents an instance of MSCP. The optimal solution for this instance is

C = {{A,B}, {C,D}} and, in fact, this solution is unique. An instance 〈U, S, r〉 of the

Set Cover decision problem, where r is an integer, consists of determining if there is a set

cover of U , by elements of S, of size at most r. The decision version of SCP was proven

to be NP-complete by Karp [19], with the size of the problem measured in terms of |S|.

Theorem 4.3. The decision problem 〈0-ORDP, d〉 is NP-complete.

Proof: It is clear that 0-MORDP is in NP, i.e., given a world instance 〈G = (V,E), F, {Fv}v∈V 〉

and D = {R1, . . . , Rd}, it can be verified in time polynomial in max(|V |, |F |) if D is a

ρ-overlapping decomposition of V such that ∀i : |⋂v∈Ri
Fv| ≥ k. We now show that any

instance of SCP can be reduced to an instance of 0-ORDP in time polynomial in |V |.

Given an instance 〈U, S = {S1, . . . , Sm}〉 of the Minimum Set Cover Problem, we con-

struct a 0-ORDP for the world instance 〈G = (V,E), F, {Fv}v∈V 〉 in the following way:

• Let v∗ be an element not in U; then V = U ∪ {v∗}

• E = {(u, v∗) : u ∈ U} (Note that the graph G thus generated is planar.)

• F = {f1, . . . , fm} where fi = Si ∪ {v∗}

• Fv = {f ∈ F : v ∈ f}

• k = 1

The introduction of the dummy vertex v∗ will be used in the proof to ensure that

elements of U that belong to the same subset Si can be part of the same region in the

Chapter 4. Complexity Analysis 26

decomposition, by virtue of their mutual connection to v∗. Each visibility-set Fv in the

transformed problem instance corresponds to a list of the sets Si in the SCP instance

that element v is a member of.

Now we show that from a solution to 0-ORDP of size d, we can build a SC of size d.

Let D = {R1, . . . , Rd} be a solution to the transformed 0-ORDP instance, i.e.,

1. Ri ⊆ V is a region, for i = 1, . . . , d,

2.
⋃

1≤i≤dRi = V , and

3. |⋂v∈Ri
Fv| ≥ k = 1, for i = 1, . . . , d.

Claim: C = {C1, . . . , Cd}, with Ci = firstlex(
⋂

v∈Ri
Fv) − {v∗} is a Set Cover for the

original problem, where firstlex(A) returns the first element in lexicographical order from

the non-empty set A. (For each Ci, the choice of an element f from
⋂

v∈Ri
Fv is arbitrary in

that any such f yields a valid solution.) Note that Ci is well-defined, since |⋂v∈Ri
Fv| ≥ 1.

Proof: We must show that:

1. ∀i = 1, . . . , d : Ci ∈ S:

From the definition of Ci we can affirm that (∃j) : [1 ≤ j ≤ m and Ci = fj − {v∗}].

Hence Ci = Sj ∈ S.

2.
⋃

1≤i≤d Ci = U :

From the definition of Fv:

⋂

v∈Ri

Fv =
⋂

v∈Ri

{f ∈ F : v ∈ f}

= {f ∈ F : Ri ⊆ f}

Chapter 4. Complexity Analysis 27

Therefore, from the definition of Ci:

Ci = firstlex{f ∈ F : Ri ⊆ f} − {v∗}

=⇒ Ri ⊆ Ci ∪ {v∗}

=⇒ V =
⋃

1≤i≤d

Ri ⊆
⋃

1≤i≤d

Ci ∪ {v∗} ⊆ V

=⇒
⋃

1≤i≤d

Ci ∪ {v∗} = V

=⇒
⋃

1≤i≤d

Ci = V − {v∗} = U,

Finally, we have to show that if there is a set cover of size d, then there is a decom-

position of size d for the 0-ORDP. Let C ′ = {C ′
1, . . . , C

′
d} be a set cover for the original

SCP instance.

Claim: D′ = {R′
1, . . . , R

′
d}, where R′

i = C ′
i ∪ {v∗}, is a 0-overlapping region decom-

position such that |⋂v∈R′
i
Fv| ≥ 1.

Proof: We must show that:

1. Each R′
i ⊆ V is a region2:

∀i : 1 ≤ i ≤ d, since C ′
i ⊆ U , then R′

i = C ′
i ∪ {v∗} ⊆ V .

R′
i is a region because v∗ ∈ R′

i and, by the definition of the graph G, v∗ is connected

to all other nodes in Ri.

2.
⋃

1≤i≤dR
′
i = V :

⋃

1≤i≤d

R′
i =

⋃

1≤i≤d

C ′
i ∪ {v∗} = U ∪ {v∗} = V

2Recall that a region corresponds to a subset R of vertices in V for which a path exists between any
two vertices in R that lies entirely within R.

Chapter 4. Complexity Analysis 28

3. |⋂v∈R′
i
Fv| ≥ 1:

C ′
i is a set cover

=⇒ C ′
i ∈ S

=⇒ ∃j = 1, . . . , m : C ′
i = Sj

=⇒ R′
i = Sj ∪ {v∗} = fj ∈ F

=⇒ 1 ≤ |{f ∈ F : R′
i ⊆ f}|

= |
⋂

v∈R′
i

{f ∈ F : v ∈ f}| = |
⋂

v∈R′
i

Fv|

�.

Chapter 5

Searching for an Approximate

Solution

The previous chapter established the intractability of our problem. Fortunately, the full

power of an optimal decomposition is not necessary in practice. A decomposition with a

small number of regions is sufficient for practical purposes. We therefore developed and

tested six different greedy approximation algorithms, divided into two classes, to realize

the decomposition.

5.1 Limitations in the Real World

In real world visibility data, there are usually sampled poses at which the count of visible

features is less than the required number k. This is generally the case for poses that lie

close to walls and object boundaries, as well as for areas that are located far from any

visible object and are therefore beyond the visibility range of most features. For this

reason, the set of poses that should be decomposed into regions has to include only the

k-coverable poses, i.e., those sampled poses whose visibility-set sizes are at least k.

29

Chapter 5. Searching for an Approximate Solution 30

5.2 Growing Regions From Seeds

The A.x class of algorithms decomposes pose space by greedily growing new regions from

poses that are selected according to three different criteria. Once a new region has been

started, each growth step consists of adding the pose in the vicinity of the region that has

the largest set of visible features in common with the region. This growth is continued

until adding a new pose would cause that region’s visibility set to have a cardinality less

than k.

The pseudocode of this class of algorithms is shown in Figure 5.1. Algorithms A.1,

A.2 and A.3 implement each of three different criteria for selecting the pose from which

a new region is grown. These three algorithms differ only in the implementation of line

3 (Figure 5.1):

• A.1 selects the pose v ∈ U at which the least number of features is visible, i.e.,

v = arg minu∈U |Fu|.

• A.2 selects the pose v ∈ U at which the greatest number of features is visible, i.e.,

v = arg maxu∈U |Fu|.

• A.3 randomly selects a pose v ∈ U .

In cases of ties in line 3, they are broken randomly.

The set U , which is initialized in line 1 of the algorithm, contains the k-coverable

poses which are still unassigned to some region. The set D that will contain the regions

in the achieved decomposition, is also initialized to be empty. The main loop starts in

line 2, and it is executed while there are unassigned poses. In lines 3 and 4, a pose v

is selected from U according to the criteria given above, and a new region R containing

only v is created. The loop that starts in line 5 adds neighboring poses to the region

R, until the addition of a new pose would cause the set of features commonly visible in

the region to have cardinality less than k. An iteration of this loop is realized in the

Chapter 5. Searching for an Approximate Solution 31

Input: world 〈G = (V, E), F, {Fv}v∈V 〉
Output: decomposition D

1: U = {v ∈ V : |Fv | ≥ k}, D = ∅
2: while U 6= ∅ do

3: Select v ∈ U (See text)
4: R = {v}
5: repeat

6: W = {u ∈ {N1(v) : v ∈ R} − R : |Fu ∩ [
⋂

v∈R Fv]| ≥ k}
7: if W 6= ∅ then

8: if W ∩ U 6= ∅ then

9: W := W ∩ U
10: end if

11: u = arg maxw∈W |Fw ∩ [
⋂

v∈R Fv]|
12: R = R ∪ {u}
13: end if

14: until W = ∅
15: U = U − R
16: D = D ∪ {R} (See Section 5.5)
17: end while

Figure 5.1: Algorithm A.x

following way: In line 6, the set W is formed by all poses u in the vicinity of the region

R (i.e., the set of poses not in R that are at distance exactly 1 from a pose in R), such

that u together with the poses in R commonly see at least k features.

In lines 8 through 10, if W contains unassigned poses, then W is restricted to those

poses. Since the region R is going to grow with a pose selected from W , this step is

intended to give priority to the growth of R with poses that still have not been assigned

to any other region. In lines 11 and 12, the pose from W that together with the poses in

R commonly sees the maximum number of features, is added to R. In case of a tie, it is

broken randomly. Finally in lines 15 and 16, the poses in R are removed from the set of

unassigned poses U , and the new region R is added to the decomposition set D.

5.3 Shrinking Regions Until k Features are Visible

Algorithms B.x and C take an incremental approach to defining the k features, start-

ing with a large region that “sees” one feature, and iteratively shrinking the region as

additional features (up to k) are added. The resulting region is added to the decom-

position, a new region is started, and the process continued until the world is covered.

These algorithms select as a new region the set of poses from which the most widely

Chapter 5. Searching for an Approximate Solution 32

Input: world 〈G = (V, E), F, {Fv}v∈V 〉
Output: decomposition D

1: U = {v ∈ V : |Fv | ≥ k}, D = ∅
2: while U 6= ∅ do

3: R = U, L = ∅
4: for i = 1 to k do

5: f = arg maxφ∈(F−L) |{v ∈ R : φ ∈ Fv}|

6: R = {v ∈ R : f ∈ Fv}
7: L = L ∪ {f}
8: end for

9: R = {v ∈ V : L ⊆ Fv}
10: U = U − R
11: D = D ∪ {R} (See Section 5.5)
12: Purge D (See text)
13: end while

Figure 5.2: Algorithm B.x

visible feature, taken from a set F , is seen among the poses that are not yet assigned to

a region. Algorithms B.x and C differ in the criteria by which F is defined, as shown

in Figures 5.2 and 5.3, respectively. In the case of algorithm B.x, F is just the set of

all features, while algorithm C systematically selects as F the set of features commonly

visible in a circular area centered at each pose v ∈ V . If the number of unassigned poses

in the circular area is less than a certain fraction α of the size of the circular area, or the

size of F is less than k, then no further processing is performed for pose v, and the next

pose is processed.

The class B.x comprises two algorithms, B.1 and B.2, that differ only in their treat-

ment of the decomposition D after adding to it a new region R (line 12). While Algorithm

B.1 leaves D as it is, Algorithm B.2 greedily eliminates regions from D as long as the

total number of poses that become unassigned, after the regions are removed from D,

is less than the number of cells that the recently added region R has covered but were

unassigned before.1 This algorithm is adapted from the algorithm “Altgreedy”, appear-

ing in [17], where it is empirically shown to achieve very good approximation results for

the set cover problem.

In line 1 of algorithm B.x, the sets U and D are initialized as in algorithm A.x. The

1Notice that this discarding rule ensures that the number of poses assigned to regions strictly increases
with each iteration, so that the algorithm always terminates.

Chapter 5. Searching for an Approximate Solution 33

main loop starts in line 2, and it is executed while there are unassigned poses. In line 3,

a new region R is initialized containing all unassigned poses, and the set L, which will

contain features that all poses in the region commonly see, is initialized to be empty.

Each iteration of the for-loop in lines 4 to 8 greedily selects the feature f not in L that

is most widely visible in the region R, shrinks R to be formed only by those poses, and

extends L to include f . At the exit of the for-loop, which is executed k times, R contains

at least one pose, (since R entered the loop containing k-coverable poses), and the set L

contains the k features that greedily decreased the least the size of the region R. In line

9, R is set to be the set of all poses (not only the unassigned ones) that at least see the

k features in L. Finally, in lines 10 and 11, the poses in R are removed from the set of

unassigned poses U , and the region R is added to the decomposition D.

Algorithm C, in line 1 initializes the set of unassigned poses U and the decomposition

set D, in the same way that algorithms A.x and B.x do. In line 2, the variable r is assigned

the maximum natural number such that at least half of the k-coverable poses have a r-

neighborhood such that the k-coverable poses of the neighborhood commonly see at least

k features. The main loop of this algorithm starts in line 3 and is executed for every

pose v ∈ V . In line 4, C is assigned the set of unassigned poses in the r-neighborhood of

v, and in line 5, F is assigned the set of features commonly visible in all poses of C. The

condition verified in line 6 is if the proportion of unassigned poses in the r-neighborhood

of the current pose v is greater or equal than a constant α (defined by the user), and if

the number of features commonly visible from all unassigned poses in the r-neighborhood

of v is at least k. If this condition is true, then the process continues in a way similar

to lines 3 to 11 of algorithm B.x: a for-loop greedily select the k “most visible features”

from the set of unassigned poses, and finally a region containing all poses seeing those

k features is created. The only difference is in the fact that in this algorithm, in the

for-loop, the features are greedily selected from the set F − L, while in algorithm B.x

such features are selected from F − L. With this difference, algorithm C ensures that

Chapter 5. Searching for an Approximate Solution 34

Input: world 〈G = (V, E), F, {Fv}v∈V 〉
Output: decomposition D

1: U = {v ∈ V : |Fv | ≥ k}, D = ∅

2: r = max{ρ ∈ N : |{u ∈ U : |
⋂

w∈Nρ(u)∩U Fw | ≥ k}| ≥ |U|
2

}

3: for all v ∈ V do

4: C = Nr(v) ∩ U
5: F =

⋂
u∈C Fu

6: if
|C|

|Nr(v)|
≥ α and |F| ≥ k then

7: R = U,L = ∅
8: for i = 1 to k do

9: f = arg maxφ∈(F−L) |{v ∈ R : φ ∈ Fv}|

10: R = {v ∈ R : f ∈ Fv}
11: L = L ∪ {f}
12: end for

13: R = {v ∈ V : L ⊆ Fv}
14: U = U − R
15: D = D ∪ {R} (See Section 5.5)
16: end if

17: end for

Figure 5.3: Algorithm C

the for-loop will exit with a region R that has a minimum number (which depends on r

and α) of newly assigned poses that are in Nr(v). This algorithm may terminate leaving

some poses unassigned to a region. A process (not shown in the pseudocode) is therefore

applied to cover those areas. Such a process is equivalent to Algorithm B.1, but with

line 1 making U equal to the set of unassigned poses.

Algorithms B.x and C are based on the assumption that the set of poses from which

each feature is visible form a connected region, and that the intersection of such feature

visibility areas is also a connected region. This assumption is true if all feature visibility

areas are simple and convex. In our experiments with real data, we have observed that

the feature visibility regions are not always convex or connected, and they sometimes

have some small holes. Since the number of extracted features is quite large, we can

afford to exclude from the decomposition process those features with significant holes in

their visibility regions. Visibility regions with many concavities can also be trimmed to

the set of poses that have a more or less convex shape. Also, if a visibility region has more

than one connected component, each component of significant size can be considered to

be the visibility region of a different feature.

Chapter 5. Searching for an Approximate Solution 35

5.4 Elimination of Redundant Regions

All algorithms, except B.2, can terminate with a solution that is not minimal. Re-

dundancy is therefore eliminated from their solutions by discarding regions one by one

until a minimal solution is obtained. This process greedily selects for elimination the re-

gion R from the solution D with the largest minimum-overlapping-count ω value, where

ω = min{|{R′ ∈ D : v ∈ R′}| : v ∈ R}, i.e., it is the minimum number of regions that

overlap at a pose contained in the region. The worst-case running time complexity of

algorithm A.x is bounded by O(|V |2|F |), while algorithms B.x and C are bounded by

O(k|V |2|F |).

5.5 Relaxing the Requirement for a Complete De-

composition

A decomposition that tries to cover all k-coverable poses may include a large number of

regions in total, since many regions will serve only to cover small “holes” that could not

be otherwise covered by larger regions. These holes generally lie in areas for which the size

of the visibility-set is very close to k, leaving very few features to choose from. In order

to avoid the inclusion of regions that are only covering small holes, our implementations

of the algorithms add a region to the decomposition only if its number of otherwise

uncovered poses is greater than a certain value σ.2

2The presence of a few small holes does not prevent reliable navigation. In general, whenever the
robot is at a point for which the number of visible features is less than k, advancing a short distance in
most directions will get it to a point that is assigned to some region.

Chapter 6

Off-line Exploration

The off-line exploration stage consists of the following tasks:

• Image sampling at discrete locations on the floor.

• Computation of camera position and orientation at each sampled location.

• Extraction of image features and their classification according to what scene feature

gave rise to them, and construction of a feature visibility vector for each sampled

position, specifying the scene features visible from that location.

In this chapter, we suggest methods to perform the last two tasks. We refer the inter-

ested reader to [38] for a discussion of methods for automatically performing the image

collection task and links to related work on this topic.

6.1 Pose Estimation of Collected Images

View-based localization consists of estimating the current robot’s position given image

point correspondences between the image currently seen by the robot and two model

views that were acquired at known positions and orientations. The set of model views

used in the on-line localization stage are a subset of the images collected during the offline

36

Chapter 6. Off-line Exploration 37

exploration phase. The particular selection of images that will be used as model views is

done during the landmark database construction phase. In order to build the database

of landmarks, the database construction phase also needs to know the topology of the

pose space of sampled images, and the set of scene features visible at each pose. These

requirements of the successive stages of the view-based framework justify the need for

computing the position and orientation at which each sampling image has been acquired,

and the generation of a feature visibility vector at each sampling pose.

Several methods have been proposed to compute the camera pose for each of the

sampled images. One is simply using the robot’s odometry to measure pose, but as it has

been mentioned in the introduction chapter to this thesis, this approach has the problem

that the error in the estimate grows limitless. Another possibility is using range data,

but this approach only works in restricted environments, generally indoors, where walls

and obstacles are within the sensor range. Interferences are also a cause of measurement

error for this type of sensor. Collaborative exploration has also been suggested by some

authors, e.g., [33, 32], in which two or more robots that see each other act together to

reduce odometry errors.

All these approaches have the problem that either their measurements are unreliable,

the proposed methods are restricted to particular environments, or more than one robot

or non-standard sensors are required for the task. In this section, we propose a method

to estimate the camera pose using nothing else but the set of collected images, when the

camera calibration parameters are known.

A set of approaches that is related to the problem of computing the pose of the robot

during image collection is that of Simultaneous Localization and Mapping (SLAM). In

SLAM, a map of the environment is built on-line at the same time that robot localiza-

tion is performed. Most of the work available in this area addresses this problem by

performing data fusion (generally via Kalman filtering) of the information provided by

all the available robot sensors. These approaches solve the problem of map construction

Chapter 6. Off-line Exploration 38

from an object-based point of view, where the 3D position of each landmark is estimated.

Recent work in this area can be found in [11, 35, 12, 32].

In our case, we need to solve a less ambitious problem, namely, an off-line estimation

of the locations and orientations from which each image was taken. Since, in images

taken from close locations, there is redundant visual information, we can take advantage

of that redundancy to find the best set of camera poses that minimizes the total residual

error. Here, we propose a rather simple methodology to construct the map of sampled

images without the need to compute the 3D positions of the landmarks. Our proposal

is based on a weighted least squares approximation of the camera pose of each collected

image, by minimizing the total residual error when taking into account all the landmark

data from all images.

6.1.1 Noise Filtering

In chapters 3 and 5, we showed how the robot environment can be decomposed into a set

of overlapping regions, such that a certain number (k) of features are commonly visible

from any point in a region. An extra benefit from the clustering of features into regions

that we can take advantage of is the fact that the locations of the k features in all the

images of the region are correlated. Therefore, we can exploit lower rank approximation

techniques to de-noise the location measurements of features in each region. Stewart [41]

presents an analysis of the effects of noise on the singular values and singular vectors of

a matrix. It is shown that small singular values tend to grow under perturbation.

Based on the fact that in the absence of noise, a matrix of highly correlated measure-

ments is rank deficient and noise in the measurements has the effect of increasing the rank

of such a matrix, Muijtjens et al. [31] used lower rank approximation to de-noise image

data measurements. They were interested in de-noising image data used to perform a 3D

reconstruction of the motion of a wall of a live heart. They tracked radiopaque markers

implanted on a live heart through a sequence of images acquired in a time interval. A

Chapter 6. Off-line Exploration 39

matrix was then created containing the measured image locations of the markers. Each

row of the matrix corresponded to a particular marker, and each column corresponded

to the image taken at a particular instant in time. Here, we follow their same idea, but

instead of dealing with images of a dynamic object acquired over time, we are working

with images of a rigid 3D object (the “landmark” formed by the k features) taken from

different locations and orientations. Our problem is equivalent to theirs in the sense that

the images of the features could be thought as being acquired from a fixed camera with

the 3D structure of scene features changing pose through time.

Here is the de-noising procedure. Assume the number of images in a given region is r.

We need to create a block matrix P such that Pij = −→p j
i , with −→p j

i being the 2D location

of the i-th feature in the j-th image, where i = 1, . . . , k and j = 1, . . . , r. Formally, let

U ·

s1 0 . . . 0 0

0 s2 . . . 0 0

.

0 0 . . . sr−1 0

0 0 . . . 0 sr

· V t = P

be the singular value decomposition of P . The “de-noised” version of P will be the

matrix

P̃ = U ·

s1 0 . . . 0 0 . . . 0

0 s2 . . . 0 0 . . . 0

. .

0 0 . . . sr−h 0 . . . 0

0 0 . . . 0 0 . . . 0

. .

0 0 . . . 0 0 . . . 0

· V t,

where h determines the rank reduction.

Chapter 6. Off-line Exploration 40

Input: Set of images {Ii}i=1,...,n

Output: A set Y of indices of pairs of images for which motion parameters were computed, a set of rotation matri-

ces {Rij}(i,j)∈Y , and a set of unitary translation vectors {
−→
T̂ ij}(i,j)∈Y encoding the camera motion between pairs of

views.

1: Y = ∅
2: for i = 1, . . . , n do

3: Compute set of feature points Fvi
from image Ii

4: end for

5: for 1 ≤ i < j ≤ n do

6: Compute correspondences Fvi∧vj
= Fvi

∩ Fvj
between features in images Ii and Ij

7: if |Fvi∧vj
| ≥ m then

8: Estimate motion parameters Rij and
−→
T̂ ij using the locations of Fvi∧vj

in Ii and Ij .

9: Y = Y ∪ {(i, j)}
10: end if

11: end for

Figure 6.1: Algorithm to compute the motion parameters between all pairs of collected
images.

6.1.2 Motion Parameters Between Views

We will first use weighted least squares to find the set of rotations between all pairs

of views that minimize the total rotation error of the whole set of images. Then we

will use weighted least squares again to find the set of camera locations that minimizes

the total translational error of the complete set. To apply these ideas we first need,

given a set of calibrated sampled images {I i}i=1,...,n corresponding to sampling positions

v1, . . . , vn, respectively, to estimate the rotation and translation of the camera between

pairs of images. Depending on the method used and the desired accuracy, there is a

minimum number m of point correspondences needed to estimate the motion parameters.

Algorithm 6.1 computes and stores the motion parameters between all pairs of views that

commonly see at least m feature points. In line 8 of this algorithm, a robust method has

to be employed to estimate the motion parameters (a rotation matrix Rij and unitary

translation vector
−→̂
T ij) in the presence of outliers, i.e., wrong point correspondences

between views. In chapter 7, we present several methods to estimate these parameters

from the locations of feature point correspondences in both views.

Chapter 6. Off-line Exploration 41

6.1.3 Best Fit of Rotations Between Views

The set of estimated parameters, although redundant, is also inconsistent due to the

presence of noise and outliers in the measurements. In this section, we present a method

for computing an estimate of the camera rotations that minimizes the total residual

error. The set of resulting rotations that minimizes the error will be the solution to a

linear system of equations with its elements in the set of quaternions, subject to a certain

constraint.

Quaternions are a non-commutative extension of the complex numbers. A quaternion

q can be represented by a real number α and a vector −→v ∈ R
3, and is noted as q = α+−→v

or q = (α,−→v). α is called the real part of q, and −→v is called the imaginary part of

q. The conjugate of a quaternion q is defined as q = α + (−−→v). If q1 = α1 + −→v 1 and

q2 = α2 +−→v 2 are two quaternions, the sum and product between quaternions are defined

as q1+q2 = (α1+α2)+(−→v 1+
−→v 2), and q1·q2 = (α1α2−−→v t

1
−→v 2)+(α1

−→v 2+α2
−→v 1+

−→v 1×−→v 2),

respectively. The norm of q is defined as ‖q‖ =
√
aa =

√
aa =

√
α2 + −→v t−→v .

The set of quaternions H with the sum and product defined over them 〈H,+, ·〉 form

a division algebra, that is, a non-commutative field. Since 〈H,+, ·〉 is a division algebra,

and in particular a non-commutative ring, then 〈Hn,+, ·〉 is a module over H. A module

over a ring is a more general algebraic structure than a vector space over a field, in which

most of the desirable properties of linear algebra on vector spaces also work. This means

that we can solve systems of linear equations with its variables and vectors in Hn using

the same mathematical tools used to solve systems of equations over R or C, taking care

of replacing sum and product by the appropriate definition of those operations in H. And

since also 〈H,+, ·〉 is isomorphic to the subspace

〈
{

a −b d −c

b a −c −d

−d c a b

c d b a

∈ R4×4},+, ·
〉

,

Chapter 6. Off-line Exploration 42

(through isomorphism h : H → R
4×4 defined by

h((a, (b, c, d)t) =

a −b d −c

b a −c −d

−d c a b

c d b a

),

all matrix operations involving quaternions can be realized using block matrices of reals.

An interesting fact that we will exploit is that rotations can be represented by quater-

nions of norm 1. This means that there is an isomorphism between the set of rotations

in 3D and the set of quaternions lying on the four-dimensional unitary sphere S3. This is

a continuous mapping, i.e., close points on the sphere correspond to close rotations and

vice versa. The rotation of angle θ around the axis −→v ∈ R3 is represented by the unitary

quaternion:

qv = cos θ
2

+ sin θ
2

−→v
‖−→v ‖

.

To rotate a 3D vector −→x using the quaternion qv, we must compute qvx̃qv, where x̃ is

a quaternion with real part zero and imaginary part −→x . The benefit of representing 3D

rotations using quaternions is that only one non-linear constraint has to be enforced on

a quaternion in order for it to correspond to a rotation, i.e., its norm being 1. When

rotations are represented using 3×3 matrices of reals, there are six non-linear constraints

that a matrix has to satisfy in order to correspond to a rotation, i.e., the orthonormality

of its rows and columns. Since our problem can be posed as the solution to a linear

system of equations in which the unknowns are rotations, using quaternions means just

solving the system subject to the constraint that each unknown has norm 1.

We then propose the following method to find an estimate of the orientation of the

cameras during the image collection phase that minimizes the total residual error of all the

computed rotations between pairs of views. Let qij be a unitary quaternion encoding the

3D rotation Rij between cameras i and j, obtained, for example, from the factorization of

Chapter 6. Off-line Exploration 43

the essential matrix Eij [28]. Let qi be a unitary quaternion representing the orientation

of the i-th camera during the image collection phase. We wish to obtain an estimate of

qi, for i = 1, . . . , n. From each measured rotation qij between cameras, we can create the

equation

qij · qi − qj = 0 (6.1)

We create a vector of unknowns −→q = (q1, . . . , qn)t ∈ Hn, and a matrix Q with

all the equations generated from each Rij, weighted by a scalar inversely proportional

to the uncertainty of the estimation of Rij. (See next section for an explanation of

how to compute this weight.) The solution to our problem is therefore the minimizer

vector −→q ∈ Hn of ‖Q−→q ‖2 subject to the constraints ‖qi‖ = 1, for i = 1, . . . , n. Since

the constraints are in the Cartesian product of the four-dimensional unit sphere, they

form a compact set. (It is closed because each component is defined by an equality

of a continuous function, and it is bounded because each component is a unit sphere.)

Therefore, since ‖Q−→q ‖2 is a continuous function, then it must achieve its minimum on

the constraint set.

An iterative minimization method is not guaranteed to converge to a global minimum

in our problem, due to the non-linearity of the function being optimized. However, the

minimization process would at least be guaranteed to improve on the current solution,

and if we could start from a fairly good initial guess of the solution −→q , it could eventually

converge to the global minimum. We actually can construct such a fair initial guess from

the measurements we have for the rotations between cameras. We can set an arbitrary

orientation for the first camera, e.g., q1 = 1, and then set all other orientations in terms

of this one by means of an arbitrary selection of a consistent subset of constraints, as

defined by Equation 6.1, until all orientations qi have been initially assigned.

Chapter 6. Off-line Exploration 44

6.1.4 Best Fit of Translations Between Views

Each estimated translation
−→̂
T ij is expressed in the coordinate frame of camera i. We need

to express all translations using the same coordinate frame, e.g., the one corresponding to

camera 1. This can be accomplished by
−→
T ij = R1it

−→̂
T ij. If the measurements had been free

of error, then the unitary translation vector
−→
Tij has the direction of translation between

locations vi and vj. That is, there exists a magnitude aij ∈ R, such that aij

−→
T ij = −→vj −−→vi .

We would like to recover a good approximation of these image locations from the noisy

measurements of the translation vectors that we have. So we propose to use a weighted

least squares approach to do this, taking advantage of the redundancy present in the

relationship between all the measured translations between images.

For each (i, j) ∈ Y we create the vector equation

−→vj −−→vi − aij

−→
T ij =

−→
0 , (6.2)

which gives rise to three linear equations, one per vector component. We choose one of

the image locations, e.g., −→v1 , as the center of our coordinate frame, i.e., we fix −→v1 =
−→
0 .

Our unknowns are then the locations −→vi , 1 < i ≤ n, and the magnitudes of the translation

vectors aij, (i, j) ∈ Y. We set the unknowns as components of a vector

−→x = (vx
2 , v

y
2 , v

z
2, v

x
3 , v

y
3 , v

z
3 , . . . , v

x
n, v

y
n, v

z
n, ay1 , . . . , ayr)

t ∈ R(3(n−1)+|Y|),

with Y = {y1, . . . , yr} From the system of equations 6.2, we create a matrix A of size

(3|Y|)× (3(n− 1)+ |Y|), such that rows 3k+1, 3k+2, and 3k+3 of A encode the three

components of vector equation (i, j) = yk+1, k = 0, . . . , r − 1. The linear system to be

solved becomes then A−→x =
−→
0 .

Knowledge of the uncertainty present in the the estimation of T ij from the image

point correspondences can be used to weight the equations in the system, giving a

heavier weight to those equations that come from more reliable measurements. The

uncertainty can be computed from some measure of the residual error in the estima-

Chapter 6. Off-line Exploration 45

tion of the translations from the inliers (i.e., the point correspondences that agreed

on the value of the estimated translation), and from the proportion of inliers in the

set of point correspondences. If wij, (i, j) ∈ Y, are weights inversely proportional to

the uncertainty in the estimation of T ij, the solution to the weighted system is the

vector −→x that minimizes
∑3r

k=1wydk/3e
(Ak

−→x)2, subject to the constraint ‖−→x ‖ = 1,

where Ak is the k-th row of matrix A. The solution to this weighted least squares

system lies in the null space of Â = WA, where W is a diagonal matrix such that

W3k+1,3k+1 = W3k+2,3k+2 = W3k+3,3k+3 =
√
wyk+1

, k = 0, . . . , r − 1.

The null space of Â will have dimension one in the case of the existence of a unique

solution to the system, up to a scale factor. The vector spanning the null space of the

matrix can be obtained from its singular value decomposition Â = UDV t, as the last

column of V corresponding to the smallest singular value in the diagonal of D. Although

the matrix of the system is large, it is sparse, since each equation only relates unknown

position between two images that commonly see a certain minimum number of 3D points.

Yet this will only happen between images acquired from close locations and looking at

the same scene. Therefore the matrix can be built in a band diagonal shape, and sparse

linear algebra algorithms can be employed to solve the system [1].

An incremental method to compute the translation between cameras is the following:

Start by estimating the translation direction between two arbitrary cameras, e.g.,
−−→
T 1,2

between cameras 1 and 2, and create the set I = {1, 2} containing the indexes of the

cameras for which translations were already computed. Then, iteratively compute a

set of translations T = {
−−→
T k,i1, . . . ,

−−→
T k,ih} between a new camera k /∈ I and cameras

i1, . . . , ih ∈ I, such that the dimension of the space generated by the vectors in T is at

least 2; and then add k to I.

It is a sufficient condition for the existence of a unique solution, up to a scale factor,

(in the absence of noise), to generate the system of equations from the translations

between cameras computed in this incremental way. This can be proven inductively:

Chapter 6. Off-line Exploration 46

It is obvious that for the base case of two cameras related by a translation, there is a

unique solution, up to scaling, for the magnitude of the translation and location of the

camera centers. Inductively, assume the property is true for the system of equations

corresponding to the structure S of translations and camera locations so far computed,

and now at least two non-parallel translations are computed between a new camera k and

cameras i, j in S. A change in scale to any of the translations or camera locations in S, by

inductive hypothesis, will proportionally scale the distance between the locations −→vi and

−→vj , and therefore the vertex −→vk and the other two sides of the triangle −→vi

M−→vk
−→vj , (i.e., the

translations with directions
−−→
T k,i and

−−→
T k,j), will have to be proportionally scaled in order

to preserve their directions. Analogously, if the camera location −→vk or the translations

with directions
−−→
T k,i or

−−→
T k,j change their magnitude, then the triangle −→vi

M−→vk
−→vj will have

to be proportionally scaled in order to preserve the directions of its sides, and hence the

camera location −→vk and the translations
−−→
T k,i and

−−→
T k,j will be scaled, and also the distance

between −→vi and −→vj will change proportionally, which will in turn scale all translations

and camera locations in S. �.

As evidence that the way that this method computes the translations is not a neces-

sary condition for the existence of a unique solution, see Figure 6.2. In the graph shown

in this figure, the nodes represent camera locations, and the edges represent translations

between cameras. The translations of this example cannot be computed in the suggested

incremental way, however, there is a unique solution for the translation magnitudes and

camera locations, up to a scale factor. It is easy to see that if the magnitude of one of the

edges is changed, then all other edges have to change their magnitudes proportionally, in

order to preserve their directions and still remain with the same adjacency relationship.

Chapter 6. Off-line Exploration 47

�� ����

��

��

	
 ��

�

��

Figure 6.2: Example of a camera layout that has a unique solution, up to a scale factor,
for camera locations (nodes) and magnitude of the translations (edges), but cannot be
computed using the suggested incremental method.

6.2 Generation of the Feature Visibility Vectors

The feature visibility vector of a pose specifies the scene features that are visible from

the image taken at that pose. In order to build these vectors, we need to create classes

of images features. Each class will group the image features that correspond to the

same scene feature. In order to realize this classification, we have to be able to compute

reliable correspondences between image features of different views, and to discard the

image features that are ambiguous, that is, those that may seem to belong to more than

one class. This section proposes a method to do these tasks.

6.2.1 Computing Feature Correspondences

For a particular family of image features to be useful, a function δ̂(·, ·) has to be provided

to measure the “similarity” between two features. The similarity accounts for how likely

the two features are of being images of the same scene feature, i.e., the smaller the

value of δ̂ is, the more likely the same scene feature gave rise to both image features.

(Ideally δ̂ should be a distance function in a metric space; in particular it should be

positive, commutative, δ̂(f, f) = 0 for all image features f , and the triangular inequality

Chapter 6. Off-line Exploration 48

should hold.) For example, in the case of Lowe’s SIFT features [25], and the phase-based

features of Carneiro and Jepson [8], an image feature is implemented as a vector in a

high dimensional space. Similarity between SIFT features is measured by the Euclidean

distance between feature-vectors, while for phase-based features, similarity is measured

using phase-correlation.

We want to group the image features f into classes f , such that there is exactly one

class per scene feature, and such that all image features due to that scene feature belong

to that class. However, not only do we want to separate image features into classes, we

likewise want to discard all the features that are not distinctive enough, i.e., that can be

easily confused as belonging to a different class. This, in turn, suggests that all image

features belonging to a class for which there is at least one ambiguous feature have to

be discarded as well. We take this drastic approach, because during on-line localization,

we will match visible features to those in the database and we want to keep only one

exemplar image feature representing the class.

Other less strict approaches to matching are possible, e.g., instead of just retaining one

image feature per class, the database can keep a representative collection of the various

appearances that the scene feature has in pose space. The correspondence between image

features in the sample images can be done via tracking the features between adjacent

viewpoints, in which their changes in appearance are small. Such an approach will achieve

larger areas of visibility for each scene feature than the method proposed here, but it will

be more susceptible to incorrect matchings during on-line localization. We aim to study

these ideas as future work to this thesis.

In the proposed method that follows, we will assume that there is exactly one image

per sampling position. If two or more images are available at a particular position,

they should all be integrated into a unique panorama, to guarantee that for each scene

feature, at most one corresponding image feature is visible at each sampling position.

Let G = (V,E) be an undirected planar graph describing the topology of the set of

Chapter 6. Off-line Exploration 49

sampling poses, with each pose being a node of the graph. Let F̂ be the set of all image

features. Let F̂v ⊂ F̂ be the set of image features visible from the image acquired at pose

v ∈ V . Two different image features from the same image have to necessarily correspond

to different scene features. Then it is reasonable to specify that the equivalence relation

between image features satisfy the local uniqueness property:

(∀v ∈ V)(∀f, g ∈ F̂v) : f = g ⇐⇒ f = g, (6.3)

where the notation f means “the class of f”, and = refers to identity. If more than one

scene feature having the same appearance are visible from the same pose, it is possible to

have repeated identical image features in the image. And since we will enforce the above

property on the equivalence relation, those features will be excluded from the relation,

although they do correspond to different scene features. That is actually something good,

since in our localization framework, we are interested only in image features corresponding

to scene features that are rather unique.

We will now define a relation between image features that uses the notion of similarity

defined by δ̂ and with the property specified by (6.3). Given a threshold τ ∈ R>0, we

define the relation =F between two image features f ∈ F̂ and g ∈ F̂w by

f =F g ⇐⇒ δ̂(f, g) ≤ τ ∧ g = arg min
φ∈F̂w

δ̂(f, φ) (6.4)

This is not an equivalence relation over all F̂ , but just a nearest-neighbor relation. Al-

though it is clearly reflexive, it is not symmetric or transitive, in general. We will turn

it into an equivalence relation by restricting it to the maximal subset of image features

F̃ ⊂ F̂ for which the symmetry and transitivity properties hold. Clearly, the features

that break the property of symmetry and/or transitivity are ambiguous in the sense that

they can be confused as belonging to a different class than the one that they actually

belong to, depending on the “direction” in which the relation is verified, or to what par-

Chapter 6. Off-line Exploration 50

ticular feature in the class they are compared to. We therefore are interested in using

only the image features in F̃ for localization.

Although the set F̃ will contain only those image features that are distinctive enough

among all images collected during the off-line phase, there is no guarantee that symmetry

will hold when a feature f ∈ F̃ is matched, using =F in one direction, to an image

feature g visible in a novel view during localization. However, since we only retain in F̃

the features that statistically belong to clearly defined classes among all image features

visible in pose space (where our sample was the set of images collected during the off-line

exploration phase), it is more likely that g will belong to the same class as f . (Actually,

for the purpose of matching verification during on-line localization, we could even retain

all image features visible in each model view, to use them to verify the symmetry of =F

between f and g. If symmetry does not hold, then g should be discarded as ambiguous.)

Algorithm 6.3 computes F̃ by verifying the symmetry of =F between image features

from different poses, and by computing the transitive closure of =F over F̂ . Whenever

two features are found such that =F is not symmetric, all the elements in the classes to

which they both belong are excluded from F̃ . Finally, after transitive closure, all elements

in the classes of features for which 6.3 does not hold are excluded from F̃ . The algorithm

takes as input a collection {F̂v}v∈V of sets of image features extracted from the images

acquired at each pose, and outputs a collection of feature class identifiers {Fv}v∈V , where

Fv is the set of class identifiers of the image features in F̃ that are visible from the image

taken at pose v.

To soften the drastic nature of the suggested approach to compute the equivalence

classes, we introduced a parameter γ ∈ Z>0 in our algorithm. This parameter specifies

to what extent violations to the symmetry and transitivity properties of the equivalence

relation are going to be checked. The symmetry and transitive closure between features

is not verified for all pairs of poses, but this verification is realized only between the

poses that are separated at most by a distance γ, where the distance between poses is

Chapter 6. Off-line Exploration 51

Input: {F̂v}v∈V

Output: A set F̃ , over which =F is a relation of equivalence; and a collection {Fv}v∈V , where

Fv = {class(f) : f ∈ F̂v ∩ F̃}.

1: ⊥ = F̂
2: classesToExclude = ∅
3: for all v, w ∈ V : δ(v, w) ≤ γ do

4: for all f ∈ F̂v do

5: if f ∈ ⊥ then

6: class(f) = new class
7: ⊥ = ⊥− {f}
8: end if

9: f ′ = arg minφ∈F̂w
δ̂(f, φ)

10: if δ̂(f ′, f) ≤ τ then

11: if f = arg minφ∈F̂v
δ̂(f ′, φ) then

12: if f ′ ∈ ⊥ then

13: class(f ′) = class(f)
14: ⊥ = ⊥− {f ′}
15: else if class(f ′) 6= class(f) then

16: if class(f) ∈ classesToExclude∨ class(f ′) ∈ classesToExclude then

17: classesToExclude = classesToExclude− {class(f), class(f ′)}
18: Merge class(f) and class(f ′) into a unique class.
19: classesToExclude = classesToExclude∪ {class(f)}
20: else

21: Merge class(f) and class(f ′) into a unique class.
22: end if

23: end if

24: else

25: classesToExclude = classesToExclude∪ {class(f)}
26: if f ′ ∈ ⊥ then

27: class(f ′) = new class
28: ⊥ = ⊥− {f ′}
29: end if

30: classesToExclude = classesToExclude∪ {class(f ′)}
31: end if

32: end if

33: end for

34: end for

35: for all v ∈ V do

36: classesToExclude = classesToExclude∪ {class(f) : f ∈ F̂v ∧ (∃g ∈ F̂v) : f 6= g ∧ class(f) = class(g)}
37: end for

38: F̃ = {f ∈ F̂ : class(f) /∈ classesToExclude}
39: for all v ∈ V do

40: Fv = {class(f) : f ∈ F̂v ∩ F̃}
41: end for

Figure 6.3: Algorithm to compute image features equivalence.

measured in terms of the shortest distance function δ(·, ·) between nodes in the graph

G. The greater γ is, the lower the probability of having a class with ambiguous image

features in F̃ at the end of the algorithm’s execution, with that probability being zero if γ

is greater or equal to the maximum distance between two poses in pose space. Actually,

to achieve an exact solution, it suffices that γ is as large as the radius of the maximum

feature visibility region. On the other hand, if γ = 1 is used, the equivalence classes

are computed by relating similar features from images acquired at adjacent poses (i.e.,

Chapter 6. Off-line Exploration 52

tracking image features between adjacent poses), with the symmetry and transitivity

checked only for features extracted from images acquired from sets of poses in which

each pose is at distance 1 from any other pose in the set.

This more relaxed approach to compute the equivalence classes is reasonable, because

we expect the image features to tend to preserve their appearance in images acquired

from a set of contiguous poses. There is a trade-off between the computational cost and

the accuracy of the solution, since the approximate computation is O(|V |
γ2) times faster

than the exact one. In our Results chapter, we applied this algorithm and obtained

excellent results. We used γ = 5 to compute the correspondences between SIFT features

extracted from images acquired on a 6m by 3m sampling grid at intervals of 25 cm, i.e.,

a lattice of 25 by 12 poses. In a visual analysis of the results, we were able to determine

that only one class, out of a total of 897, contained an incorrectly classified image feature

from one particular image out of a total of 1152 images.

6.2.2 Retaining Only Good Features

If the number of available features is large, which is generally the case, we can afford the

luxury of discarding features that are not suitable for our needs. Once the classification

of image features by scene feature correspondence has been performed, not all of the

obtained features have desirable properties when using our proposed method to build

the landmark database. A bad feature is one which is not widely or consistently visible,

i.e., either it is not visible from a large number of contiguous poses, or its region of

visibility is too narrow, it has many holes, or it is fragmented into several non-connected

components.

We have to avoid using features with these bad visibility properties in our decompo-

sition method. Since a region in the decomposition is obtained from the intersection of

the visibility regions of individual features, the result of the intersection of a region with

the mentioned characteristics with another arbitrary region, is a region with generally

Chapter 6. Off-line Exploration 53

the same bad characteristics, which is not good for our proposed method of navigation.

Features with almost convex and wide visibility regions should be preferred over others

to be used in the region decomposition stage.

Chapter 7

On-line Localization

This chapter explains how to perform the on-line localization stage of the view-based

navigation framework. We discuss how to use the decomposition of the environment

in regions that commonly see k features to achieve efficient robot localization. The

localization stage involves two main tasks: the robot needs to recognize the features that

constitute a landmark in the current view, and based on the recognized landmark, it has

to compute its pose in the world. We start this chapter with a high-level explanation of

the steps involved in the landmark recognition and pose computation tasks, and then we

discuss in depth different techniques to compute the robot’s position and orientation.

7.1 Recognition of Landmarks

The landmark recognition in the current view can be performed in two possible scenarios:

it is either the case that the robot knows in what region it is located, or it simply does

not, i.e., it is starting navigation, or it was kidnapped. If the robot does not know in

what region it is, the features visible in the current image can vote for the regions they

belong to, if any, according to a membership relationship computed off-line. The region

in which the robot is will be assumed to be one of those with at least k votes.

On the other hand, when the robot is navigating inside a known region, the k features

54

Chapter 7. On-line Localization 55

that form the landmark commonly visible from all locations inside that region can be

easily tracked between the images that the robot sees. If at any point the expected k

features are not all visible in the current image, this may indicate that the robot has left

the region in which it was navigating and is entering a new region. In that case, using a

graph map of the regions, and knowing the direction of movement of the robot, we can

constrain the number of possible regions to which the robot might have moved. In the

worst case, the same voting scheme mentioned above, using all regions, can be applied.

The region overlapping can also be exploited to avoid the voting scheme, when the

robot is approaching the boundary of the current region, by switching to the overlapping

region to which it is headed. Before a motion command is executed, the current location

and direction of motion of the robot should be used to predict the position to which the

robot will arrive after the execution of the motion step. If such a position is near the

boundary of the current region or outside of it altogether, the robot should switch, before

moving, to a region that contains both the current and the predicted new position. Such a

region is guaranteed to exist if the overlapping value ρ used for the region decomposition

is greater than or equal to the magnitude of the motion steps of the robot. If more than

one region containing both positions exist, the one that spans most of the path that the

robot will follow should be selected.

7.2 Computation of the Robot’s Pose

Each region has associated with it two model views, i.e., two images acquired at two

extremes of the region, in which all k features that form the landmark corresponding to

the region are simultaneously visible. To compute the robot’s position and orientation,

the locations of each of the k features in each of the model views and their locations in the

current image are used as input to a method that estimates the position and orientation

of the current view relative to that of the model views.

Chapter 7. On-line Localization 56

When two or more calibrated model views are available, and the position and orien-

tation at which each image was acquired is known, there are several possible approaches

to estimate the position and orientation of a calibrated novel view, relative to that of the

model views that see the same scene. (By calibrated view, we mean that the intrinsic cam-

era parameters at the moment of image acquisition are known.) In the following sections,

we discuss different techniques to solve this problem: Basri and Rivlin’s linear combina-

tion of views approach, methods that use the essential matrix, and a technique that we

devised for the case of panoramic images when the robot undergoes planar motion.

7.3 Localization Using Linear Combination of Views

Here we explain Basri and Rivlin’s scheme for localization using their Linear Combination

of Views approach. The material in this section is taken from [2]. From a list of feature

points in an image, two view vectors are constructed containing the x and y coordinates

of the points in the image, in order of correspondence. The environment is modeled by

a set of such views. The location of a feature point in a novel view can be obtained as a

linear combination of its locations in the model views. The position and orientation at

which the novel view was acquired, with respect to that of the model views, is recovered

from the coefficients of the linear combination. Formally: Let pi = (xi, yi, zi), 1 ≤ i ≤ n

be a set of n object points. The position p′i of these points in an image I, under weak-

perspective projection is given by

x′i = sq11xi + sq12yi + sq13zi + tx (7.1)

y′i = sq21xi + sq22yi + sq23zi + ty, (7.2)

where qij are the elements of a 3 × 3 matrix Q, and s is a scale factor.

Let x,y, z,x′,y′ ∈ Rn be the vectors of xi, yi, zi, z
′
i and y′i coordinates respectively,

Chapter 7. On-line Localization 57

and 1 = (1, 1, . . . , 1). Then Equations 7.1 and 7.2 can be rewritten in vector form as:

x′ = sq11x + sq12y + sq13z + tx1

y′ = sq21x + sq22y + sq23z + ty1.

Therefore x′,y′ ∈ span{x,y, z, 1}, i.e., x and y belong to a subspace of Rn of dimension

four. This subspace is spanned by any four linearly independent vectors in the subspace.

Let I1 and I2 be two views of the scene. Let x1,y1 and x2,y2 be the location vectors of

the n feature points in I1 and I2, respectively. These four vectors are linearly independent

and belong to the subspace in question; therefore, there exist coefficients a1, a2, a3, a4 and

b!, b2, b3, b4, such that

x′ = a1x1 + a2y1 + a3x2 + a41

y′ = b1x1 + b2y1 + b3x2 + b41.

Note that vector 1 is a generator of the four-dimensional subspace, so we only need

three other linearly independent vectors to have a complete base for it. Therefore we

chose to disregard vector y2. Assume that I2 is obtained from I1 by a rotation R,

translation T = (Tx, Ty, Tz), and scaling s. The previous equations can then be rewritten

as

x′ = a1x1 + a2y1 + a3(sr11x1 + sr12y1 + sr13z1 + Tx) + a41

y′ = b1x1 + b2y1 + b3(sr11x1 + sr12y1 + sr13z1 + Tx) + b41.

Re-arranging those equations, we arrive at

x′ = (a1 + a3sr11)x1 + (a2 + a3sr12)y1 + (a3sr13)z1 + (a3Tx + a41) (7.3)

y′ = (b1 + b3sr11)x1 + (b2 + b3sr12)y1 + (b3sr13)z1 + (b3Tx + b41). (7.4)

Chapter 7. On-line Localization 58

Assuming I was obtained from I1 by a rotation U , translation tn, and scaling sn, we

have

x′ = snu11x1 + snu12y1 + snu13z1 + tnx1 (7.5)

y′ = snu21x1 + snu22y1 + snu23z1 + tny1, (7.6)

and due to the orthonormality of the rows in U , we can derive the following constraint

from Equation 7.3:

s2
n = (snu11)

2 + (snu12)
2 + (snu13)

2

= (a1 + a3sr11)
2 + (a2 + a3sr12)

2 + (a3sr13)
2

= a2
1 + a2

2 + a2
3s

2 + 2a3s(a1r11 + a2r12). (7.7)

Analogously, from Equation 7.4, we can derive

s2
n = b21 + b22 + b23s

2 + 2b3s(b1r11 + b2r12). (7.8)

And due to orthogonality, we can also derive from 7.3 and 7.4 the constraint

0 = (snu11)(snu21) + (snu12)(snu22) + (snu13)(snu23)

= (a1 + a3sr11)(b1 + b3sr11) + (a2 + a3sr12)(b2 + b3sr12) + (a3sr13)(b3sr13)

= a1b1 + a2b2 + a3b3s
2 + (a1b3 + a3b1)sr11 + (a2b3 + a3b2)sr12. (7.9)

If the weak perspective approximation is valid, Equations 7.7 and 7.8 should give similar

results, and Equation 7.9 should hold.

Comparing Equation 7.5 with 7.3, and Equation 7.6 with 7.4, we can derive the x

and y components of the translation tn between the position where the model view I1

Chapter 7. On-line Localization 59

was acquired and the position from which image I was taken:

tnx = a3Tx + a41

tny = b3Tx + b41.

The z component of this translation can be computed from the z component of the

translation T , between model views I1 and I2, in a value proportional to the change in

scale between the object in image I and I2:

tnz =
1 − 1

sn

1 − 1
s

Tz.

Comparing Equation 7.5 with 7.3, and Equation 7.6 with 7.4, and because U is a rotation

matrix, we infer

u11 = a1+a3sr11

sn
u12 = a2+a3sr12

sn
u13 = a3sr13

sn

u21 = b1+b3sr11

sn
u22 = b2+b3sr12

sn
u23 = b3sr13

sn

(u31, u32, u33) = (u11, u12, u13) × (u21, u22, u23).

U , tn and sn are recovered in terms of R, T and s, assuming a calibrated camera

model. Erroneous correspondences and/or bad orthographic approximations will yield

erroneous alignment coefficients, which will result in incorrect solutions to the positioning

problem. tnx and tny depend linearly on the errors in the coefficients, while tnz is inversely

dependent on them. A better estimate of the coefficients can be achieved by using a large

number of point correspondences in the computation.

7.4 Localization from the Essential Matrix

In contrast to the linear combination of views method, which approximates perspective

projection using a scaled orthographic projection camera model, we can estimate the

Chapter 7. On-line Localization 60

1
p p

2

c
1 c

2
R

p

T

Figure 7.1: Basic geometry of the camera motion problem.

position and orientation of a novel view with respect to that of the model views using

an exact perspective projection camera model. Most of the approaches to compute the

relative position between cameras from a set of point correspondences exploit the so-called

epipolar constraint, which relates the locations of the feature points in both images. The

basic geometry of the problem under discussion consists of two cameras with their optical

centers located at 3D points c1 and c2, as shown in Figure 7.1. The second camera has

been translated T from the first camera, and has been rotated R with respect to the

orientation of the first camera. A 3D scene point p is projected onto the image planes of

both cameras at locations p1 and p2, respectively, measured in the coordinate frame of

each camera.

We’ll assume that the images are calibrated, i.e., pi = P−1
iint

piim
, i = 1, 2, where Piint

is the projection matrix of intrinsic coordinate parameters of the i-th camera, and piim
is

the location of the projection of p on the non-calibrated image. As seen on the schematic

of Figure 7.1, the points p, c1 and c2 define a plane, called the epipolar plane. The

vector T × Rp1 is normal to the plane, and hence we can derive the epipolar constraint

pt
2(T × Rp1) = 0. For all vectors −→x we can write T ×−→x as the product T× · −→x , where

T× =

0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

.

Chapter 7. On-line Localization 61

Then, the epipolar constraint can be rewritten as pt
2(T× · Rp1) = 0. The matrix E =

T× · R is called the essential matrix. There is a vast literature on how to compute

the essential matrix from point correspondences and how to factor it in its corresponding

rotation and translation; see, for example, [28]. It must be observed that the translation is

computed up to a scale factor, since in the image projection process the depth information

is lost.

We can estimate the position and orientation of a novel view Iu with respect to that

of the model views via estimating the essential matrices Evu and Ewu between the novel

view and each of two model views Iv and Iw, respectively, from the correspondence of

point-features between the images. Each of the two essential matrices Evu and Ewu can

then be factored into a rotation matrix (Rvu and Rwu) and a translation vector (
−→
T vu and

−→
T wu) representing the camera motion between the model images Iv, Iw and the novel

view Iu.

Since the position and orientation of the model views is known, the position −→u of

the novel image Iu can be computed as the intersection of the lines that go through −→v

and −→w , with directions given by the translation vectors
−→
T vu and

−→
T wu, respectively,

when both vectors are expressed in the same coordinate system. Such intersection

−→u = (−→v + λ
−→
T vu) ∩ (−→w + µ(Rvw)t−→T wu), (expressed in the coordinate system of image

Iv), where λ, µ ∈ R and Rvw is the rotation between images Iv and Iw, can be computed

from the solution of the linear system of equations

−→
T vu −(Rvw)t−→T wu

λ

µ

 = −→w − −→v .

Since this method accurately models perspective projection, it has the advantage over

the linear combination of views that there is no possibility of errors due to camera model

Chapter 7. On-line Localization 62

approximation when the camera distance to objects in the scene is too small. However,

this approach is still very sensitive to noise in the values of the coordinates of the matched

points. Several methods have been proposed for the computation of the essential matrix.

(See [27, 48] for a description and comparison of several algorithms.) Among all the

algorithms, the method introduced by Longuet-Higgins [24] is the most remarkably simple

one. The eight-point algorithm, as it is called, computes the components of the essential

matrix by solving a linear system of equations.

For many years, this algorithm was highly criticized for its excessive sensitivity to

noise in the coordinates of the matched points. In 1997, Hartley [18] presented a mecha-

nism to normalize the coordinates before running the eight-point algorithm, and showed

that the results so achieved are comparable with the ones obtained using the best itera-

tive algorithms. Robust estimation methods such as RANSAC (Random sampling and

consensus) [16], or M-estimators [47, 45] can also be employed in the computation of the

essential matrix to overcome the effect of outliers due to incorrect point correspondences.

Recently, Feng and Hung [15] presented a robust method that finds inliers using random

minimum sets, and the estimated matrix is evaluated over the entire data set using the

2D re-projection error as a measure. Their method is shown to perform better than

previous robust methods.

A drawback of using the essential matrix for localization, however, is the fact that a

larger number of point correspondences are needed to apply it, in contrast with just three

required for the linear combination of views approach. (At least eight correspondences

are needed to apply the eight point algorithm, although there is an algorithm that only

uses five points, but it requires solution of the roots of a 10th degree polynomial and is

quite sensitive to noise.) In practice, the algorithms should be applied using more than

the minimum number of points required so as to reduce the effects of noise. In the next

section, we present a localization method using the essential matrix, in which only three

point correspondences are needed when the camera is restricted to motion on a plane.

Chapter 7. On-line Localization 63

7.5 Estimating Camera Motion on a Plane

When the camera motion is restricted to the 〈x, z〉 plane, i.e., translations have a zero

y component and rotations are limited to be around the y-axis, we can estimate the

motion parameters using as few as three image point correspondences. In the following

sections, we present two solutions to this problem, depending on the imaging model used

to acquire the images. In the first approach we assume that images were obtained using a

pinhole camera and we propose a method to estimate a simplified version of the essential

matrix under this kind of motion, including a simple way to extract the translation

and rotation parameters from it without any ambiguities. We as well propose a novel

approach to estimate the motion parameters when the images were acquired using 360

degree panoramic cameras.

7.5.1 Pinhole Camera Model

The essential matrix E encodes the motion between two calibrated images as E = [T]× ·R,

where

[T]× =

0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

.

In the case of planar motion on the 〈x, z〉 plane, since Ty = 0 and R is a rotation

around the y-axis, it follows that

E =

0 −Tz 0

Tz 0 −Tx

0 Tx 0

·

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

(7.10)

=

0 −Tz 0

Tz cos θ + Tx sin θ 0 Tz sin θ − Tx cos θ

0 Tx 0

. (7.11)

Chapter 7. On-line Localization 64

Let pi and p′i be the location of the i-th image point in the calibrated model images

I1 and I2, respectively, for i = 1, . . . , n. The epipolar constraint given by the essential

matrix is p′ti Epi = 0 for i = 1, . . . , n. With four points, we can find an estimate of

E by solving a linear system of equations, following the same idea behind the“8-point

algorithm”, as follows:

0 = p′tEp

= (p′xp
′
yp

′
z)

e11 e12 e13

e21 e22 e23

e31 e32 e33

px

py

pz

= p′x(pxe11 + pye12 + pze13) + p′y(pxe21 + pye22 + pze23) + p′z(pxe31 + pye32 + pze33).

Hence, each constraint gives rise to a linear equation that has the form −→c t−→e = 0,

where

−→c =

(
p′xpx p′xpy p′xpz p′ypx p′ypy p′ypz p′zpx p′zpy p′zpz

)t

−→e =

(
e11 e12 e13 e21 e22 e23 e31 e32 e33

)t

.

In our planar motion model e11 = e13 = e31 = e33 = 0, therefore we can reduce the

constraint vector −→c and the unknown vector −→e to

−→c =

(
p′xpy p′ypx p′ypz p′zpy

)t

−→e =

(
e12 e21 e23 e32

)t

.

Chapter 7. On-line Localization 65

From Equation 7.11, we know that

e12 = −Tz

e21 = Tz cos θ + Tx sin θ

e23 = Tz sin θ − Tx cos θ

e32 = Tx.

From the components of E, we can obtain T = (e32, 0,−e12), and compute sin θ and

cos θ as follows:

e32e21 − e12e23
e232 + e212

=
Tx(Tz cos θ + Tx sin θ) + Tz(Tz sin θ − Tx cos θ)

T 2
x + T 2

z

=
TxTz cos θ + T 2

x sin θ + T 2
z sin θ − TzTx cos θ

T 2
x + T 2

z

=
T 2

x sin θ + T 2
z sin θ

T 2
x + T 2

z

= sin θ

−e32e23 + e12e21
e232 + e212

= −Tx(Tz sin θ − Tx cos θ) − Tz(Tz cos θ + Tx sin θ)

T 2
x + T 2

z

= −TxTz sin θ − T 2
x cos θ − T 2

z cos θ − TzTx sin θ

T 2
x + T 2

z

= −−T 2
x cos θ − T 2

z cos θ

T 2
x + T 2

z

= cos θ.

Observe that, in reality, our problem only has three unknowns (Tx, Tz and θ.) We

therefore could express −→c t−→e = 0 as a non-linear system of equations by replacing −→e

with its definition in terms of Tx, Tz and θ, obtaining

0 = −p′xpyTz + p′ypx(Tz cos θ + Tx sin θ) + p′ypz(Tz sin θ − Tx cos θ) + p′zpyTx.

We could attempt to solve this system with as few as three independent equations. How-

ever, it doesn’t seem reasonable for the sake of just using one less point correspondence to

embark on this path that not only requires much more complex minimization techniques,

but also for which there is no guarantee of converging to the optimal solution due to the

Chapter 7. On-line Localization 66

1

2

c 2
θ

α

α

c1

T

p

Figure 7.2: Two panoramic cameras centered at points c1 and c2. The second camera
has been translated T , and has rotated an angle θ with respect to the orientation of the
first camera. The point p is seen with a deviation angle of α1 from the orientation of
camera 1, and with a deviation angle α2 from the orientation of camera 2.

presence of local minima in the function under consideration.

7.5.2 Panoramic Cameras

The epipolar constraint, as explained in section 7.4 can be applied to the case of cylin-

drical panoramic cameras, by noting that a point with cylindrical coordinates (α, y) on

a panoramic camera has 3D coordinates (cosα, y, sinα). In this section, we introduce an

alternative method to compute the relative motion between a pair panoramic cameras.

Let C1 and C2 be two cylindrical panoramic cameras located on the plane 〈x, z〉 centered

at points c1 and c2, respectively, such that there exists a rotation θ around the y-axis

between them. Each camera defines a camera direction that corresponds to its azimuth

0. See Figure 7.2.

Let I1 and I2 be the images corresponding to cameras centered at c1 and c2, respec-

tively. The projection of the 3D point p in each image is defined by a pair of angles

(αi, γi), i = 1, 2, where αi corresponds to the azimuth of the projection of p on the i-th

camera, and γi measures the elevation of the projection of p over the horizon of the i-th

camera.

Given a point correspondence (α1, γ1); (α2, γ2), we can deduce the relationship be-

Chapter 7. On-line Localization 67

tween the angles and the translation and rotation in the following way: Let p′ be the

projection of p onto the plane < X,Z >. Let A ∈ < be the length of the ray between c1

and the 3D point p. The distance between c1 and p′ is D1 = A · cos γ1, and the distance

between p and p′ is py = A · sin γ1. The distance between p′ and c2 is D2 = py · cot γ2.

Therefore, the translation between camera centers (in the coordinate system of c1) is

−→
T = D1(cosα1, sinα1)

t −D2(cos(α2 − θ), sin(α2 − θ))t

= A cos γ1(cosα1, sinα1)
t − A sin γ1 cot γ2(cos(α2 − θ), sin(α2 − θ))t

= A sin γ1(cot γ1(cosα1, sinα1)
t − cot γ2(cos(α2 − θ), sin(α2 − θ))t)

∝ cot γ1(cosα1, sinα1)
t − cot γ2(cos(α2 − θ), sin(α2 − θ))t. (7.12)

Computing
−→
T and θ

We will present in this section a method for computing the translation
−→
T and rotation

angle θ between cameras. It will be shown that two point correspondences determine, in

a closed form, two possible solutions for the value of θ. The proposed method consists of

computing these solutions for each pair of correspondences, and then robustly deciding

for the more likely estimate of θ, given the set of computed values. Finally,
−→
T can be

computed from the values of θ and the point correspondences.

Let {((αj
1, γ

j
1), (α

j
2, γ

j
2))}j=1,...,n be a set of point correspondences between images I1

and I2. Let −→v j = cot γj
1(cosαj

1, sinα
j
1)

t and −→w j = − cot γj
2(cosαj

2, sinα
j
2)

t. With these

definitions, Equation 7.12 can be written as

−→
T ∝ −→v j +Rθ

−→w j ∈ R
2, (7.13)

where Rθ is a 2 × 2 rotation matrix of angle θ, with
−→
T and θ being the unknowns.

Equation 7.13 states that if we knew θ and computed the vectors −→v j +Rθ
−→w j ∈ R2, they

would all have the same orientation, that is, the orientation of
−→
T . That suggests that θ

Chapter 7. On-line Localization 68

can be computed as the angle of rotation η that makes all vectors −→v j +Rη
−→w j to be the

closest in orientation. A set of vectors can be tested for their agreement in orientation

by normalizing them and setting them as rows of a matrix Aη, and checking how close

Aη is to having rank one. In our particular case, because the vectors are in R2 \ {−→0 },

this is equivalent to measuring how close Aη is to being rank deficient, i.e., its null space

having dimension one.

One way to measure this is by evaluating how close to zero the smallest singular value

of Aη is, which can be computed through a singular value decomposition of the matrix.

However, this process is not robust in the presence of outliers in the form of incorrect

image point correspondences. An approach that is less affected by outliers is one in which

the likelihood of an angle θ to be the correct camera rotation is measured in terms of

the number of vectors that get aligned (within a certain threshold) when using such an

angle. Therefore, we search for the angle that maximizes the number of vectors agreeing

on a direction.

Formally, given a threshold τ , θ could be found as

θ = arg max
η

|ψ({−→v i +Rη
−→w i}i=1,...,n)|,

where the function ψτ : 2R2 → 2R2
, when applied to a set of vectors, returns the largest

subset of vectors in the set that agree on a direction within the threshold τ . Even more

sophisticated techniques could be applied to robustly measure the agreement in direction

between the vectors. For example, if an adequate distribution is assumed for outliers

and inliers, Expectation Maximization could be utilized, and the agreement would be

measured by the estimated standard deviation of the distribution of inliers in the mix.

Once θ is estimated, the orientation of
−→
T can be computed as the principal direction of

the set ψ({−→v i +Rθ
−→w i}i=1,...,n) via SVD.

Chapter 7. On-line Localization 69

There is a problem that makes this approach impractical: a search via steepest ascent

is doomed to fail to find the global maximum of the function being optimized, due to its

high non-linearity. A possible way around this problem, since we know that θ ∈ [0, 2π),

is to initially exhaustively sweep the whole interval at a certain arbitrary precision, and

then perform a local search in the vicinity of the minimum point(s) (within a certain

threshold) found during the exhaustive search. The total running time of this whole

process can be easily calculated to be k(n2 + 7n) + t + O(n2), where k is the number of

discrete points in which the interval was discretized, t is the running time of the final local

search, and O(n2) is the running time of the proposed method to measure agreement at a

particular θ. Yet, we’ll present an alternative way to estimate θ that has a total running

time of 37n2 + O(n2), and since k would typically need to be fairly greater than 37 to

apply the exhaustive search idea, it doesn’t make sense to apply this approach at all.

To derive the proposed method that effectively computes the motion parameters, we

model the plane 〈x, z〉 by means of the complex plane. Hence, vectors are represented by

complex numbers, and a rotation matrix is modeled by a complex number with absolute

value one. Thus, Equation 7.13 becomes

T̃ ∝ ṽj + R̃θw̃
j ∈ C, (7.14)

where T̃ , ṽj, R̃θ and w̃ are complex numbers defined as T̃ = Tx + iTy, ṽ
j = vj

x + ivj
y,

R̃θ = cos θ + i sin θ and w̃j = wj
x + iwj

y.

Given the image point location corresponding to two point correspondences j and k,

Chapter 7. On-line Localization 70

from Equation 7.14 we know that ∃r ∈ R such that

ṽj + R̃θw̃
j = r(ṽk + R̃θw̃

k) ⇔

ṽj − rṽk = R̃θ(rw̃
k − w̃j) ⇒ (7.15)

∣∣ṽj − rṽk
∣∣2 =

∣∣rw̃k − w̃j
∣∣2 ⇔

∣∣ṽj
∣∣2 − 2(vj

xv
k
x + vj

yv
k
y)r +

∣∣ṽk
∣∣2 r2 =

∣∣w̃k
∣∣2 r2 − 2(wk

xw
j
x + wk

yw
j
y)r +

∣∣w̃j
∣∣2 ⇔

0 = (
∣∣ṽk

∣∣2 −
∣∣w̃k

∣∣2)r2 + 2((wk
xw

j
x + wk

yw
j
y) − (vj

xv
k
x + vj

yv
k
y))r + (|ṽj|2 − |w̃j|2).

Solving this quadratic polynomial yields two solutions for r which, in turn, defines two

possible values for R̃θ. From Equation 7.15, we see how to compute R̃θ from r:

R̃θ =
ṽj − rṽk

rw̃k − w̃j
=

(ṽj − rṽk)(rw̃k − w̃j)

|rw̃k − w̃j|2
. (7.16)

There are two possible values for R̃θ from each pair of image point correspondences,

but only one of those two values is the correct estimate. To find it, robust estimation

has to be applied to the set of all pair of values computed from each pair of point

correspondences. We know that at least half of the values are “outliers”, for which

we can assume a uniform distribution. The remainder are the inliers and should be

concentrated around the correct value of the parameter θ, so we can assume that they

have a normal distribution. The measured angles belong to a mixture distribution with

known proportions, and hence we could try to estimate the mean of the Gaussian applying

Expectation Maximization. We can easily compute the running time of this approach as

37n2 + t+O(n2), where t is the running time of the final robust estimation of θ (typically

O(n2)). Once θ is estimated,
−→
T can be computed as the principal direction of the set of

vectors ψ({−→v i +Rθ
−→w i}i=1,...,n).

Chapter 7. On-line Localization 71

Conditions for the Existence of Solutions

We will study here under what conditions a pair of image point correspondences is suf-

ficient to estimate the motion parameters between cameras. According to Equation

7.16, two solutions for R̃θ can be obtained from two image point correspondences when
∣∣rw̃k − w̃j

∣∣2 6= 0. When this condition does not hold, there are an infinite number of

solutions for the motion parameters, since Equation 7.15 will hold for any rotation angle

θ. Let’s analyze what particular relation between the image point locations will make

this condition hold, and therefore produce exactly two solutions. First, observe that

∣∣rw̃k − w̃j
∣∣2 = 0 ⇐⇒ rw̃k = w̃j. (7.17)

And since r is such that
∣∣rw̃k − w̃j

∣∣2 =
∣∣ṽj − rṽk

∣∣2, then

0 =
∣∣rw̃k − w̃j

∣∣2 =
∣∣ṽj − rṽk

∣∣2 ⇐⇒ rṽk = ṽj. (7.18)

From Equations 7.17 and 7.18, it must be the case that

w̃j

w̃k
=
ṽj

ṽk
.

And using the definitions of ṽj, ṽk, w̃j and w̃k, and the fact that r ∈ R, this in turn means

that

cot γj
2

cot γk
2

=
cot γj

1

cot γk
1

. (7.19)

Pairs of image point correspondences that satisfy Equation 7.19 should be avoided.

A particular example of a configuration of two 3D points that satisfies this equation is

one in which both points have the same x and z value, but different y > 0. It is easy to

mentally picture this configuration and intuitively see that any translation and rotation

Chapter 7. On-line Localization 72

between two cameras that see these points is possible. Let pj = (x, y, zj), j = 1, 2 be the

two 3D points seen from both cameras, such that zj > 0. Let dj
i be the distance from the

i-th camera center to the projection of pj onto the 〈x, z〉 plane for i = 1, 2. (Note that

d1
i = d2

i because the x and z components of p1 and p2 are the same.) Then cot γj
i =

dj
i

zj
.

Equation 7.19 for this point and camera configuration therefore becomes

cot γ1
2

cot γ2
2

=
cot γ1

1

cot γ2
1

⇐⇒

(
d1
2

z1

)

(
d2
2

z2

) =

(
d1
1

z1

)

(
d2
1

z2

)

which holds, since d1
1 = d2

1 and d1
2 = d2

2. In practice, this is not a problem, since it is very

unlikely that many image point correspondences would satisfy Equation 7.19.

Analysis of Numerical Stability

Note that points having an image location with a null elevation angle cannot be used

because in that case cot γ would be ∞, and therefore Equation 7.12 wouldn’t be well

defined. In general it should be avoided to use points with γ close to 0, since as we will

show, the errors in the computed equations (7.12) relating θ and
−→
T rapidly grow as γ

tends to 0.

The absolute difference between the cotangent of an angle γ and itself perturbed by

Chapter 7. On-line Localization 73

a small value ε is

|cot(γ) − cot(γ + ε)| =

∣∣∣∣
cos γ

sin γ
− cos(γ + ε)

sin(γ + ε)

∣∣∣∣

=

∣∣∣∣
cos γ

sin γ
− cos γ cos ε− sin γ sin ε

sin γ cos ε+ sin ε cos γ

∣∣∣∣

=

∣∣∣∣
sin γ cos γ cos ε+ sin ε cos2 γ − sin γ cos γ cos ε + sin2 γ sin ε

sin γ(sin γ cos ε+ sin ε cos γ)

∣∣∣∣

=

∣∣∣∣
sin ε(sin2 γ + cos2 γ)

sin2 γ cos ε+ sin ε sin γ cos γ)

∣∣∣∣

=
1∣∣∣ sin2 γ cos ε+sin ε sin γ cos γ

sin ε

∣∣∣

=
1∣∣sin2 γ cot ε+ sin γ cos γ

∣∣

If the amount ε of error in the measured angle is bounded, then cot ε is bounded, and

hence

lim
γ→0

|cot(γ) − cot(γ + ε)| = lim
γ→0

1∣∣sin2 γ cot ε + sin γ cos γ
∣∣ = +∞. (7.20)

By definition, −→v j = cot γj
1(cosαj

1, sinα
j
1)

t, therefore

‖−→v j‖ = ‖ cot γj
1(cosαj

1, sinα
j
1)

t‖ =
∣∣cot γj

1

∣∣ . (7.21)

In a similar manner, −→w j = − cot γj
2(cosαj

2, sinα
j
2)

t, and hence

‖−→w j‖ =
∣∣cot γj

2

∣∣ . (7.22)

Equation 7.20 tells us that for small measured values of γ, even a small error can produce

an unbounded difference between the cotangent of the measured angle and the cotangent

of the real angle γ. According to equations 7.21 and 7.22, these unbounded differences

Chapter 7. On-line Localization 74

will translate into unbounded changes in the values of ‖−→v j‖ or ‖−→w j‖.

Let’s consider the case in which the measured value of γ1 is close to 0, while the

measured γ2 is not. A large increase in ‖−→v j‖ due to errors in the measurement of γ1 will

make the orientation of vector −→v j +Rθ
−→w j to be highly influenced by the direction of −→v j

itself, while a significant decrease of ‖−→v j‖ will make the orientation of −→v j +Rθ
−→w j close

to that of Rθ
−→w j. In either case, the orientation of −→v j +Rθ

−→w j will be quite different from

the correct one. Therefore, the angle θ that aligns −→v j + Rθ
−→w j to

−→
T will differ greatly

from the correct one.

Advantages of Using Panoramic Cameras with Planar Motion

Besides the obvious fact that a larger number of feature correspondences between images

can be computed when using panoramic cameras (since the field of view in a panoramic

camera is 360 degrees, several times the field of view of a perspective camera), there is

an even greater advantage to using this type of camera when the planar motion model

can be applied. In this case, if the focal length and y-scaling factor of both cameras

is the same, then the only image calibration parameter that needs to be known is the

y-coordinate y0 corresponding to elevation 0 in the image, i.e., the level of the horizon.

To compute the azimuth of an image point, a particular image x-coordinate has to be

chosen as azimuth 0, i.e., the orientation at which the camera is “heading”, e.g., x = 0.

Since the width w of the panoramic image corresponds to a field of view of 360 degrees,

the azimuth of an image point (px, py) is α = 360px

w
degrees. When the focal length f and

the y-scaling factor sy is the same in both cameras, (which is the case when both images

where acquired by the same robot camera at different locations), we can compute the

motion between cameras without explicitly knowing those calibration parameters. Let

γi be the elevation angle of an image point pi = (pix, piy). Then cot γi = f
sy(piy−y0)

, and

Chapter 7. On-line Localization 75

so f and sy can be extracted as part of a common factor in Equation 7.12:

−→
T ∝ cot γ1(cosα1, sinα1)

t − cot γ2(cos(α2 − θ), sin(α2 − θ))t

∝ f

sy(p1y − y0)
(cosα1, sinα1)

t − f

sy(p2y − y0)
(cos(α2 − θ), sin(α2 − θ))t

∝ f

sy

(
1

p1y − y0
(cosα1, sinα1)

t − 1

p2y − y0
(cos(α2 − θ), sin(α2 − θ))t

)

∝ 1

p1y − y0
(cosα1, sinα1)

t − 1

p2y − y0
(cos(α2 − θ), sin(α2 − θ))t

∝ (p2y − y0)(cosα1, sinα1)
t − (p1y − y0)(cos(α2 − θ), sin(α2 − θ))t.

As a result, y0 is the only calibration parameter that needs to be known in order to

estimate θ and
−→
T .

Chapter 8

Results

In this thesis, we have proposed methods to accomplish the three main tasks involved in a

view-based navigation system, i.e., off-line exploration, landmark database construction,

and on-line localization. We are only going to demonstrate the results obtained for

what has been the main contribution of this work, namely, our proposed method for

optimal landmark selection by region decomposition. We start by briefly describing the

simulator that we used to generate synthetic worlds and to run decomposition algorithms

on visibility data. We finish by commenting on the results obtained when we applied the

heuristic algorithms presented in previous chapter to decompose both synthetic and real

worlds.

8.1 Simulator Description

Synthetic visibility data was produced using a simulator we developed. A world consists of

a 2-D top view of the pose space defined by a polygon, with internal polygonal obstacles,

and a collection of features on the polygons (both external and internal). Each feature

is defined by two parameters, an angle (visibility angle extent), and a range of visibility

(visibility range), determining the span of the area on the floor from which the feature is

visible. An example of a randomly generated world and the visibility area of some of its

76

Chapter 8. Results 77

Figure 8.1: A randomly generated world. The green polygon defines the perimeter of the
world. The blue polygons in the interior define the boundaries of obstacles. The small
red circles on the polygons are the features. As an illustration, the visibility areas of
selected features are shown as coloured regions.

features is illustrated in Figure 8.1.

The worlds can either be designed manually through a graphical user interface shown,

in Figure 8.2, or generated randomly. In the latter case, a mixture probability distribution

has to be specified for each of the defining parameters of the world, which are shown in

Table 8.1. Given a sampling grid, the simulator creates the visibility data of a synthetic

world by considering that a feature is visible from a grid vertex if the line connecting the

vertex to the feature does not intersect an obstacle or the perimeter, and if that line is

entirely contained in the visibility region of the feature. The simulator provides, as well,

an object-oriented framework, in which a decomposition algorithm can be built as a new

class, implementing a class method that returns the decomposition that the algorithm

achieves for the visibility data provided as its input. Such visibility data can either be

the one computed in a synthetic world, or come from real world imagery. Finally the

simulator includes a visualization tool that allows the user to display the decomposition

produced by an algorithm on a particular world by selecting a set of regions to display.

Chapter 8. Results 78

(a)

(b)

Figure 8.2: Simulator graphic user interface. (a) World edition. (b) Visualization of a
region decomposition.

Chapter 8. Results 79

8.2 Decomposition of Synthetic Worlds

Independent tests of the algorithms on synthetic data were performed for four different

world settings. The settings combined different feature visibility properties with different

shape complexities for the world and obstacle boundaries. Two types of features were

used, having visibility ranges: N (0.65, 0.2) to N (12.5, 1)m with an angular range N (25, 3)

degrees for Type 1, and N (0.65, 0.2) to N (17.5, 2)m with an angular range N (45, 4)

degrees for Type 2 (where N (µ, σ) is normally distributed with mean µ and variance σ2).

Two classes of shapes were tested for the world and obstacles: irregular and rectangular.

For the case of irregular worlds, the number of sides of its perimeter was generated from

the mixture distribution {U(4, 4) with p = 0.1; N (5, 0.5) with p = 0.45; N (7, 2) with

p = 0.45]}, and the number of obstacles from the distribution {U(5, 9) with p = 0.5;

N (8, 2) with p = 0.5}. The number of obstacles in each rectangular world was generated

from the mixture distribution {U(6, 9) with p = 0.5; N (10, 2) with p = 0.5}. The

generated worlds had an average diameter of 40m, and feature visibility was sampled in

pose space at points spaced at 50cm intervals.

Table 8.1: Parameters of a world
Component Parameters

Perimeter
• Sides count

• Vertex radius

Obstacles

• Total obstacles count

• Sides count

• Vertex radius

Features

• Total features count

• Visibility angular extent

• Visibility range

Chapter 8. Results 80

1 2 3 4
0

50

100

150

200

R

eg
io

ns

1 2 3 4
0

100

200

300

A
vg

 R
eg

io
n

A
re

a

1 2 3 4
0

200

400

600

F

ea
tu

re
s

Experiment Settings

Figure 8.3: Results for Experiments on Synthetic Data. The x-axes of the charts represent
the four world settings used in the experiments. (Rectangular worlds were used in settings
1 and 2, while irregularly shaped worlds in settings 3 and 4. Type 1 features were used
in settings 1 and 3, and Type 2 features in settings 2 and 4.) The y-axes correspond to
the average value of 300 experiments for the total number of regions, average number of
poses per region, and total number of used features in each decomposition. From left to
right, the bars at each setting correspond to Algorithms A.1, A.2, A.3, B.1, B.2, and C.

The parameters used in the experiments were overlapping ρ = 1, and features com-

monly visible per region k = 4. (Basri and Rivlin [2] showed that reliable localization

can be accomplished using their linear combination of model views method with as few

as three point correspondences between the current image and two stored model views.)

The allowed maximum area of a hole was set to σ = 9 poses, i.e., on average, a hole has

a diameter of at most 1.5m. The parameter α of algorithm C was set to 0.85.

Figure 8.3 shows the results of the experiments on synthetic data. The performance

of each algorithm in the four settings described above is compared in terms of the number

of regions in the decomposition, the average area of a region in a decomposition, and the

size of the set formed by the union of the k features commonly visible from each region

in a decomposition. Each value in the figure is the average computed over a set of 300

randomly generated worlds. The decomposition of each world took only a few seconds

for each algorithm.

Unsurprisingly, the average size of a region is strongly dependent on the stability of

Chapter 8. Results 81

its defining features in pose space. Also as expected, the total number of regions in each

decomposition increases as the average size of the regions decreases. Tables 8.2 and 8.3

show the number of regions and the average number of poses in a region, respectively,

achieved by each algorithm and setting, averaged over all the randomly generated worlds.

In the case of worlds with widely visible features (settings 2 and 4), the best results, in

terms of minimum number of regions in the decomposition, are achieved by Algorithm

B.2, closely followed by algorithms B.1 and C. For the worlds with less visible features

(settings 1 and 3), Algorithm B.2 outperformed the rest.

Table 8.2: Average number of regions in a decomposition
Setting A.1 A.2 A.3 B.1 B.2 C

1 173.81 156.96 154.97 127.76 112.63 140.10
2 59.30 56.45 54.72 44.74 42.10 44.17
3 112.40 100.46 98.97 82.11 73.08 82.29
4 44.71 40.00 39.11 31.99 30.02 31.11

Table 8.3: Average number of poses per region
Setting A.1 A.2 A.3 B.1 B.2 C

1 70.76 76.49 75.74 80.60 80.99 71.85
2 253.88 276.37 272.83 281.63 279.81 251.86
3 69.04 74.60 73.95 78.63 79.29 71.61
4 215.15 237.68 234.67 244.44 241.26 218.56

In our simulations, we obtained fairly big regions, as seen in Table 8.3. Each pose

corresponds to a sampled area of 0.25m2 (50cm by 50cm), so the averages achieved by

the best algorithm correspond to region areas of 20m2 for features of Type 1, and 65m2

for features of Type 2. These results were achieved with only a few features visible per

pose, as shown in Table 8.4, where the average number of features visible per pose was on

the order of a hundred. In real image data, however, the number of stable features visible

per pose is on the order of several hundred, and each feature has a visibility range close

to that of our simulated features of Type 1 (see [25], for example). These findings lead

Chapter 8. Results 82

us to predict that this technique will successfully find decompositions useful for robot

navigation in real environments.

Table 8.4: Average number of features visible from a pose
Setting Average Number

of Features

1 30
2 95
3 41
4 117

8.3 Region Decomposition Using Real Data

We took Algorithm B.2, the algorithm that achieved the best results on synthetic data,

and as a further evaluation we applied it to two real datasets of real imagery.

8.3.1 Decomposition of a 2m by 2m World

We first applied Algorithm B.2 to visibility data collected in a 2m by 2m space sampled at

20 cm intervals, with a total of 46 visible features. All images were taken with the camera

in a fixed orientation (looking forward), and features were extracted using the Kanade-

Lucas-Tomasi (KLT) operator [4] and tracked between images. The parameters used in

the decomposition were k = 4, ρ = 0, σ = 3. The four regions of the decompositions

can be seen in figure 8.4. The larger gray area present in each one of the images of the

regions corresponds to the set of k-coverable poses. As can be seen from the figure, the

union of the four regions covers almost completely the k-coverable area of the world.

8.3.2 Decomposition of a 6m by 3m World

Our next experiment involved visibility data acquired in a 6m by 3m grid sampled at 25

cm, (i.e., a lattice of 25 by 12 poses), from Room 408, McConnell Engineering Building,

Chapter 8. Results 83

(a) (b) (c) (d)

Figure 8.4: (a)-(d) The 4 regions of the decomposition of real visibility data collected in
a 2m by 2m space, sampled at 20 cm intervals.

in McGill University. Images were taken with the robot’s camera orientation fixed in four

different orientations at 0, 90, 180 and 270 degrees. Each image’s position was measured

using a laser tracker and a target mounted on the robot [32]. Figure 8.5 shows some

images of the employed dataset where the variations in image scale can be appreciated.

The images shown for 0 and 180 degree orientations correspond to poses that are furthest

back along the orientation. The images at 90 and 270 degree orientations correspond to

poses that are furthest front, center, and furthest back along the orientations.

We extracted SIFT features from the images in the dataset using David Lowe’s im-

plementation [26]. On average, about 420 SIFT feature vectors were extracted from each

image. We then used the method that we proposed in section 6.2.1 to match the feature

vectors from different images, and to discard those that were ambiguous. We ended up

with a total of 897 classes of image features that are visible from at least 16 different

poses. An example of the typical feature visibility regions that we obtained after we ran

Algorithm 6.3 can be seen in Figure 8.6. Each of these images represents the visibil-

ity region of a particular feature in the 25 by 12 pose sampling grid. Each thumbnail

corresponds to the appearance of a (30 by 30 pixels) context around the feature point

extracted from the image taken at the corresponding grid position in pose space.

Following our suggestions in section 6.2.2, from the set of distinctive features that

remained after the grouping into classes, we only retained those that were widely and

consistently visible, that is, those that were visible from at least 16 poses, whose visibility

regions had few small holes, and that contained at least one connected component of at

Chapter 8. Results 84

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.5: Examples of the images used in the experiments on visibility data collected
at a 6m × 3m space. The images shown were acquired in orientations: (a) 0 degrees; (b)
180 degrees; (c), (e), (g) 90 degrees; and (d), (f), (h) 270 degrees.

Chapter 8. Results 85

(a) (b) (c)

(d) (e) (f)

Figure 8.6: Typical examples of feature visibility regions obtained after executing Algo-
rithm 6.3.

Chapter 8. Results 86

0 50 100 150 200 250
0

10

20

30

40

50

60

70
Before Filtering

0 50 100 150 200 250
0

10

20

30

40
After Filtering

Figure 8.7: Distribution of Feature Visibility Regions by Size (i.e., number of poses).

least 3 by 3 poses. The set of poses of each of these feature visibility regions was further

reduced to a subset that had a fairly convex shape. This was achieved by first retaining

only the poses in the largest connected component of the visibility region. Secondly,

poses were then removed from this component which did not have a neighbor with at

least 7 out of 8 of its neighbor poses in the region. After these steps, the feature visibility

regions of each class not only reduced in size, but also the total number of image feature

classes decreased to 554, since many of the visibility regions became empty as a result of

the mentioned operations. Figure 8.7 shows the distribution of feature visibility regions

by size before and after this filtering process. The visibility regions, after filtering, had

an average size of 33 poses, and a median of 23.

In Figure 8.8 we can see the 7 regions obtained in the decomposition when we used

these visibility regions as input to Algorithm B.2, using parameteres k = 4, ρ = 0, and

σ = 3. The decomposition obtained using these same parameters but with ρ = 1 has 9

Chapter 8. Results 87

(a) (b) (c) (d)

(e) (f) (g)

Figure 8.8: Region decomposition of the 6m by 3m Real world for k = 4 and ρ = 0 using
Algorithm B.x.

Chapter 8. Results 88

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 8.9: Region decomposition of the 6m by 3m Real world for k = 4 and ρ = 1 using
Algorithm B.x.

Chapter 8. Results 89

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.10: Region decomposition of the 6m by 3m Real world for k = 6 and ρ = 0
using Algorithm B.x.

Chapter 8. Results 90

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

(j) (k) (l) (m)

Figure 8.11: Region decomposition of the 6m by 3m Real world for k = 6 and ρ = 1
using Algorithm B.x.

Chapter 8. Results 91

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8.12: Region decomposition of the 6m by 3m Real world for k = 8 and ρ = 0
using Algorithm B.x.

Chapter 8. Results 92

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 8.13: Region decomposition of the 6m by 3m Real world for k = 8 and ρ = 1
using Algorithm B.x.

Chapter 8. Results 93

regions, as shown in Figure 8.9. The decompositions obtained when using values of 6, 8

and 10 for k, and 0 and 1 for ρ can be seen in Figures 8.10, 8.11, 8.12, 8.13, 8.14, and 8.15.

As expected, the decompositions for larger values of k contain a larger number of regions

of smaller size. As an example of this, notice that some of the regions in Figure 8.14 are

too small or irregularly shaped, and therefore not likely useful for navigation purposes.

It can also be observed in the figures that the 1-overlapping decompositions had a larger

number of regions than when no overlapping was required, which is a reasonable thing to

expect. Also it is interesting to note that the regions of the 1-overlapping decompositions

are generally more regularly shaped than their 0-overlapping counterparts. This is a

natural consequence of the method used to obtain these type of decompositions, which

imposes a minimum diameter to the obtained regions. As an example compare Figures

8.12 and 8.13, and Figures 8.14 and 8.15, in which the regions in the 1-overlapping

decomposition seem more suitable for navigation than those obtained for ρ = 0.

These results, using real feature visibility data, appear to be satisfactory for robot

navigation, since regions of acceptable size and without many holes were achieved in the

decompositions for sufficiently large values of k. As mentioned earlier, the size of the

regions in the decomposition is strongly influenced by the size of the feature visibility

regions. From the results that we obtained in our experiments, we can assert that if

distinctive features that remain stable through larger areas of pose space are available,

and it is employed a matching method that achieves larger visibility regions without

compromising feature distinctiveness during the on-line localization stage, then the pro-

posed method of decomposition into regions is a promising and practical technique to

accomplish reliable view-based robot navigation.

Chapter 8. Results 94

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

(l) (m) (n) (o) (p)

Figure 8.14: Region decomposition of the 6m by 3m Real world for k = 10 and ρ = 0
using Algorithm B.x.

Chapter 8. Results 95

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 8.15: Region decomposition of the 6m by 3m Real world for k = 10 and ρ = 1
using Algorithm B.x.

Chapter 9

Conclusions

We conclude this thesis reviewing the main contributions made and we discuss possible

directions for future research.

9.1 Contributions

The main contributions of this thesis can be outlined as follows:

1. We have presented a novel graph theoretic formulation of the problem of auto-

matically extracting an optimal set of landmarks from an environment for visual

navigation.

2. We have analyzed its complexity and shown that the problem is intractable.

3. We have developed six algorithms to solve for approximate solutions to the problem.

4. We have developed a simulator on which these six, and any other such algorithm,

can be evaluated.

5. We have evaluated the algorithms on both synthetic and real data.

6. We have developed a technique for computing the input grid graph, including a

feature tracking method and a grid point localization method.

96

Chapter 9. Conclusions 97

7. We have developed a technique for computing the position and orientation at which

a novel view was acquired, i.e., for localizing the robot.

9.2 Future Work

There are a number of extensions to this work that we plan to pursue:

• Integrating the image collection phase with the region decomposition stage into a

unique on-line process as the robot is exploring its environment, as in a view-based

SLAM fashion.

• Path planning through decomposition space, minimizing the number of region tran-

sitions in a path.

• Extend the proposed framework to detect and cope with environmental change.

• Compute the performance guarantee of our heuristic methods and provide tight

upper bounds on the quality of our solution compared to those of optimal decom-

positions.

• Study the use of feature tracking during the image collection stage, to achieve larger

areas of visibility for each feature, since tracking the features between images taken

from adjacent viewpoints allows for tracking small variations of appearance (which

may integrate to large ones over large areas). Such a framework would require

maintaining equivalence classes of features in the database.

Bibliography

[1] C. Ashcraft and R. Grimes. SPOOLES: An Object-Oriented Sparse Matrix Library.

In Proceedings of the 9th SIAM Conference on Parallel Processing for Scientific

Computing, San-Antonio, Texas, USA, 1999.

[2] Ronen Basri and Ehud Rivlin. Localization and Homing Using Combinations of

Model Views. Artificial Intelligence, 78(1–2):327–354, October 1995.

[3] Margrit Betke and Leonid Gurvits. Mobile Robot Localization using Landmarks.

IEEE Transactions on Robotics and Automation, 13(2):251–263, April 1997.

[4] Stan Birchfield. KLT: An Implementation of the Kanade-Lucas-Tomasi Feature

Tracker. http://vision.stanford.edu/∼birch/klt.

[5] J. Borenstein, B. Everett, and L. Feng. Navigating Mobile Robots: Systems

and Techniques. A. K. Peters, Wellesley, MA, USA, 1996. http://www-

personal.engin.umich.edu/∼johannb/my book.htm.

[6] M. Bosse, P. Newman, J. Leonard, and S. Teller. An Atlas Framework for Scalable

Mapping. In IEEE International Conference on Robotics and Automation, Taiwan,

September 2003.

[7] A. Briggs, D. Scharstein, and S. Abbott. Reliable Mobile Robot Navigation From

Unreliable Visual Cues. In Fourth International Workshop on the Algorithmic Foun-

dations of Robotics, Hanover, NH, USA, March 2000.

98

Bibliography 99

[8] Gustavo Carneiro and Allan D. Jepson. Multi-scale Phase-based Local Features. In

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

pages 736–743, Madison, WI, USA, June 2003.

[9] H. Choset and K. Nagatani. Topological Simultaneous Localization and Mapping

(SLAM): Toward Exact Localization Without Explicit Localization. IEEE Trans-

actions on Robotics and Automation, 17(2):125–137, April 2001.

[10] I. J. Cox. Blanche - An Experiment in Guidance and Navigation of an Autonomous

Mobile Robot. IEEE Transactions on Robotics and Automation, 7(3):193–204, 1991.

[11] Andrew Davison. Real-Time Simultaneous Localization and Mapping with a Single

Camera. In IEEE International Conference on Computer Vision, Nice, France, 2003.

[12] M. Deans and M. Hebert. Experimental Comparison of Techniques for Localiza-

tion and Mapping Using a Bearing Only Sensor. In International Conference on

Experimental Robotics, Honolulu, Hawaii, December 2000.

[13] Gregory Dudek, Paul Freedman, and Souad Hadjres. Using Multiple Models for

Environmental Mapping. Journal of Robotic Systems, 13(8):539–559, August 1996.

[14] Gregory Dudek and Deeptiman Jugessur. Robust Place Recognition using Local

Appearance based Methods. In IEEE International Conference on Robotics and

Automation, pages 1030–1035, San Francisco, CA, USA, April 2000.

[15] C. L. Feng and Y. S. Hung. A Robust Method for Estimating the Fundamental

Matrix. In International Conference on Digital Image Computing, pages 633–642,

2003.

[16] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography.

Communications of the ACM, 24:381–395, 1981.

Bibliography 100

[17] T. Grossman and A. Wool. Computational Experience with Approximation Algo-

rithms for the Set Covering Problem. European Journal of Operational Research,

101(1):81–92, August 1997.

[18] Richard I. Hartley. In Defense of the Eight-Point Algorithm. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 19(6):580–593, June 1997.

[19] R. Karp. Reducibility among Combinatorial Problems. In Miller and Thatcher,

editors, Complexity of Computer Computations, pages 85–103. Plenum Press, New

York, NY, USA, 1972.

[20] Benjamin Kuipers and Yung-Tai Byun. A Robot Exploration and Mapping Strat-

egy Based on a Semantic Hierarchy of Spatial Representations. Robotics and Au-

tonomous Systems, 8:46–63, 1991.

[21] J. J. Leonard and H. F. Durrant-Whyte. Directed Sonar Sensing for Mobile Robot

Navigation. Kluwer Academic, Boston, MA, USA, 1992.

[22] C. Lin and R. Tummala. Mobile Robot Navigation Using Artificial Landmarks.

Journal of Robotic Systems, 14(2):93–106, 1997.

[23] Brad Lisien, Deryck Morales, David Silver, George Kantor, Ioannis Rekleitis, and

Howie Choset. Hierarchical Simultaneous Localization and Mapping. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA,

October 2003.

[24] H. C. Longuet-Higgins. A Computer Algorithm for reconstructing a scene from two

projections. Nature, 293:133–135, September 1981.

[25] David Lowe. Object Recognition from Local Scale-Invariant Features. In IEEE

International Conference on Computer Vision, pages 1150–1157, Kerkyra, Corfu,

Greece, September 1999.

Bibliography 101

[26] David G. Lowe. Demo Software: SIFT Keypoint Detector.

http://www.cs.ubc.ca/∼lowe/keypoints/, September 2003.

[27] Q.-T Luong, R. Deriche, O. Faugeras, and T. Papadopoulo. On Determining the

Fundamental Matrix: Analysis of Different Methods and Experimental Results.

Technical Report RR-1894, INRIA, 1993.

[28] Q.-T. Luong and O. Faugeras. The fundamental matrix : Theory, algorithms and

stability analysis. International Journal on Computer Vision, 17(1):43–76, 1996.

[29] M. Mata, J. M. Armingol, A. de la Escalera, and M.A. Salichs. Learning Visual

Landmarks for Mobile Robot Navigation. In 15th World Congress of IFAC Inter-

national Federation of Automatic Control, Barcelona, Spain, July 2002.

[30] Inhyuk Moon, Jun Miura, and Yoshiaki Shirai. Automatic Extraction of Visual

Landmarks for a Mobile Robot under Uncertainty of Vision and Motion. In IEEE

International Conference on Robotics and Automation, pages 1188–1193, Seoul, Ko-

rea, May 2001.

[31] A.M.M. Muijtjens, J.M.A. Roos, Th. Arts, A. Hasman, and R.S. Reneman. Track-

ing Markers With Missing Data by Lower Rank Approximation. J. Biomechanics,

30(1):95–98, 1997.

[32] I. Rekleitis, R. Sim, G. Dudek, and E. Milios. Collaborative Exploration for the

Construction of Visual Maps. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, volume 3, pages 1269–1274, Maui, HI, USA, October 2001.

[33] Ioannis M. Rekleitis, Gregory Dudek, and Evangelos Milios. Multi-robot collab-

oration for robust exploration. Annals of Mathematics and Artificial Intelligence,

31(1-4):7–40, 2001.

Bibliography 102

[34] J. Salas, J. Gordillo, and C. Tomasi. Visual routines for mobile robots. Expert

Systems with Applications, 14(1–2):187–197, January 1998.

[35] S. Se, D. Lowe, and J. Little. Vision-Based Mobile Robot Localization and Mapping

Using ScaleIinvariant Features. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), pages 2051–2058, Seoul, Korea, May 2001.

[36] Stephen Se, David Lowe, and Jim Little. Mobile Robot Localization and Map-

ping with Uncertainty using Scale-Invariant Visual Landmarks. The International

Journal of Robotics Research, 21(8):735–758, August 2002.

[37] Robert Sim and Gregory Dudek. Learning and Evaluating Visual Features for Pose

Estimation. In IEEE International Conference on Computer Vision, pages 1217–

1222, Kerkyra, Corfu, Greece, September 1999.

[38] Robert Sim and Gregory Dudek. Effective Exploration Strategies for the Construc-

tion of Visual Maps. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, Las Vegas, NV, 2003.

[39] Saul Simhon and Gregory Dudek. A Global Topological Map formed by Local Metric

Maps. In IEEE/RSJ International Conference on Intelligent Robots and Systems,

Victoria, B.C., Canada, October 1998.

[40] Kristian T. Simsarian, Thomas J. Olson, and N. Nandhakumar. View-Invariant

Regions and Mobile Robot Self-localization. IEEE Transactions on Robotics and

Automation, October 1996.

[41] G. W. Stewart. Perturbation theory for the singular value decomposition. Technical

Report CS-TR-2539, University of Maryland, College Park, MD, USA, 1990.

Bibliography 103

[42] Karen T. Sutherland and William B. Thompson. Inexact Navigation. In IEEE

International Conference on Robotics and Automation, pages 1–7, Atlanta, GA,

USA, May 1993.

[43] K. Tashiro, J. Ota, Y.C. Lin, and T. Arai. Design of the Optimal Arrangement of Ar-

tificial Landmarks. In IEEE International Conference on Robotics and Automation,

volume 1, pages 407–413, 1995.

[44] Sebastian Thrun. Finding Landmarks for Mobile Robot Navigation. In IEEE Inter-

national Conference on Robotics and Automation, pages 958–963, Leuven, Belgium,

May 1998.

[45] P.H.S. Torr and D.W. Murray. The Development and Comparison of Robust Meth-

ods for Estimating the Fundamental Matrix. International Journal on Computer

Vision, 24(3):271–300, September/October 1997.

[46] D. Wilkes, S. Dickinson, E. Rivlin, and R. Basri. Navigation Based on a Network of

2D Images. In ICPR-A, pages 373–378, 1994.

[47] Z. Zhang, R. Deriche, Q.-T. Luong, and O. Faugeras. A Robust Approach to Image

Matching: Recovery of the Epipolar Geometry. In International Symposium of

Young Investigators on Information\Computer\Control, pages 7–28, Beijing, China,

February 1994.

[48] Zhengyou Zhang. Determining the Epipolar Geometry and its Uncertainty: A Re-

view. International Journal on Computer Vision, 27(2):161–198, 1998.

