net = gtm(dimlatent, nlatent, dimdata, ncentres, rbfunc) net = gtm(dimlatent, nlatent, dimdata, ncentres, rbfunc, prior)
net = gtm(dimlatent, nlatent, dimdata, ncentres, rbfunc)
,
takes the dimension of the latent space dimlatent
, the
number of data points sampled in the latent space nlatent
, the
dimension of the data space dimdata
, the number of centres in the
RBF model ncentres
, the activation function for the RBF
rbfunc
and returns a data structure net
. The parameters in the
RBF and GMM sub-models are set by calls to the corresponding creation routines
rbf
and gmm
.
The fields in net
are
type = 'gtm' nin = dimension of data space dimlatent = dimension of latent space rbfnet = RBF network data structure gmmnet = GMM data structure X = sample of latent points
net = gtm(dimlatent, nlatent, dimdata, ncentres, rbfunc, prior)
,
sets a Gaussian zero mean prior on the
parameters of the RBF model. prior
must be a scalar and represents
the inverse variance of the prior distribution. This gives rise to
a weight decay term in the error function.
gtmfwd
, gtmpost
, rbf
, gmm
Copyright (c) Ian T Nabney (1996-9)