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Review of Importance Sampling

We want to estimate expectations with respect to the distribution with
probability density m(x) = f(x)/Zy, where Z; = [ f(z)dz.

Suppose we can’t sample from 7 (x). Instead, we sample from the

distribution with density proportional to g(x), with normalizing constant
Zg = [g(z)dz.
Given points z1,...,x, drawn from g, we can estimate (a) ¢, the

expectation of a(x) with respect to m, by
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Here, w; = f(x;)/g(x;) is the importance weight for point x;.

We can estimate the ratio Z;/Z, by (1/n) > w;.
i=1



Difficulties with Importance Sampling

For a complex, high-dimensional distribution 7 (x), it is difficult to choose

a distribution g(x) that satisfies all of the following requirements:

1)

It is a good approximation to mw. If not, the importance weights will be
highly variable, and the effective sample size when estimating (a) ¢

will be very small.

We can feasibly sample from it (independently). Easily-sampled
distributions like Gaussians aren’t good approximations. We need
something like the distribution defined by K Metropolis updates

starting from a uniformly-distributed start state.

We can compute g(x), and hence the importance weights. Sadly,
the density for the distribution defined by K Metropolis updates

involves an infeasible integral over all intermediate states.



Jarzynski’s Method

Jarzynski’s method — independently invented by myself slightly later,
under the name Annealed Importance Sampling — is a way of bypassing
these difficulties.

e It uses a complicated importance sampling distribution, involving
many MCMC updates (eg, Metropolis), pertaining to a sequence of

distributions.
e We can’t compute the density for this sampling distribution.

e But: We can use importance weights that don’t require this density.
Instead, the weights are products of density ratios involving

intermediate states and intermediate distributions.

This works, but using these weights is likely to be less efficient than if we

could use the true importance weights.



Properties of Hamiltonian Importance Sampling

I will describe a new importance sampling scheme, which can be used to
estimate the partition function as well as equilibrium averages. This

“Hamiltonian importance sampling” scheme has three desirable properties:

e It’s exact, apart from round-off and statistical errors (no error from

using a finite MD stepsize).

e It uses a annealing-style importance sampling distribution that will

tend to visit various potential wells (eg, different conformations).

e We can compute the true importance weights for this importance

sampling distribution.

e It cools the system by extracting energy (from the momentum) a bit

at a time, so the system passes through all intermediate energy states.

The last property may be of pragmatic as well as theoretical importance,
since it eliminates the need to determine a detailed schedule of

temperatures for intermediate distributions (as in Jarsynski’s method).



Probability Densities for
Transtformations of Variables

Before introducing the scheme, I'll review a crucial topic: How

probabability densities transform.

Let the multi-dimensional variable & have density 7, (x). Define a

transformed variable y = h(z), where h is differentiable and invertible.

The probability density for y is given by

my(y) = mo(h7 () / |det W'(h7(y))

where h'(z) is the Jacobian matrix for the transformation.

Simple example: If y = ax, then m,(y) = m(y/a)/a?, where d is the

dimensionality of x and y.



Basic Hamiltonian Importance Sampling

From now on, let’s assume x = (q,p) and 7 (x) is proportional to
f(x) = exp(—BH(q,p)), with H(q,p) = U(q) +p'p/2.

We define an importance sampling distribution for (q, p) as follows:

e Generate an initial value for ¢ uniformly, and an initial value for p

from its canonical distribution at some high temperature.

e Apply K leapfrog steps to move from this initial (g, p) to a final (g, p).

Note: The Jacobian for each such transformation is one.

e After each leapfrog step, multiply p by some factor, «, less than one.
This cools the system towards the desired lower temperature.

Note: The Jacobian for this multiplication is a.

The randomness comes only from generation of the initial state. The
Jacobian for the subsequent deterministic transformation is just a®¢,
so we can easily compute the density of the final point, and hence its

importance weight.



Details of Basic Hamiltonian Importance Sampling

We generate each x; = (¢;, p;) and associated weight, w;, as follows:

L.

. Let ¢; = ¢, and p; = p,

Generate ¢\

- uniformly from its range (assumed bounded).

Generate @M ) from its Gaussian canonical distribution at inverse

temperature [y, having density Kq(p).

.Fork=1,... K:

Perform one (or more) leapfrog steps with stepsize €
to produce S\M@“mmsv from A@M?C%M?CV.

Let pi* = Qmmi.

7

(K) (K)

. Let w; = exp(—BH (g, pi)) / (Ko(p\”)/aX?), where d is the

dimensionality of p (and gq).

We will need to tune 3y, €, a, and K to get good performance.



When Would We Expect This to Work?

For importance sampling to work well,

e All points typical of w(x) must have a reasonably high probability of

being sampled. This is crucial.

e Points not typical of () must not be sampled too often. But this is

less crucial.

To check how well Hamiltonian Importance Sampling will work, we can
imagine backward trajectories with division of p by «, starting from points
drawn according to . These backward trajectories must lead to points

typical of the initial distribution (uniform for ¢, temperature 1/3y for p).

There’s reason to doubt this:
e We'd need to make a good guess at K to match the cooling time.

e There may be no good value for K, if there are multiple potential
wells of different depths.



Picturing the Problem

Here’s a picture of how the backward trajectories might not reach the

region of high initial probability:
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Picking the Number of Steps Randomly

We can fix this problem by choosing the number of leapfrog steps
randomly, from some range, Kin, ..., Kmax. If we choose K;, we then

use the same procedure as before to produce (g;, p;) = S\Mﬁ.v“ @Mxtv.

But: To compute the importance weight, we now need to add together
the probability of generating (g;, p;) using any value for K, not just K;.
To do this, we simulate backwards (dividing p by «) from S\Meg @MSV for
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The total probability of generating (g;, p;), ignoring the uniform density

for q, can then be computed as
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Picturing this Solution

Here’s how the problem seen before goes away if we randomizing the

number of leapfrog steps to the previous number plus —1, 0, or +1:
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Ensuring Equipartition of Kinetic Energy

Another potential problem: Backward trajectories from typical points
may result in states at the initial temperature that aren’t in equilibrium

with respect to partition of kinetic energy among momentum variables.

Example: Backward trajectories from a cluster will lead to atoms
escaping from the cluster at various times, with various kinetic energies,

which may be unlikely to interact thereafter.

A solution: Periodically mix the momentum variables by doing a
rotation in momentum space, using a series of random rotation axes and
angles. Choosing randomly avoids the possibility that we’re unlucky
enough to fix on some particularly bad rotations, but for good

performance, almost all the random choices must be good.



Simultaneously Producing Multiple Trajectories

Rather than get just one sampled state from a trajectory K; steps long,
with K; randomly chosen from K, to Knax, we can with little extra

effort get sampled states for all trajectory lengths from K,in to Kpax.

We just simulate forward for K,,,x steps, and backward for K,.x — Kmin
steps, then look at the Ki,ax — Kmin+1 trajectories that start at the

random initial state.

Here’s a picture when Kip = 6 and K ,x = &:
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Tests on 13-Atom Lennard-Jones Clusters

I tried Hamiltonian Importance Sampling on the simple problem of finding

properties, including free energy, of 13-atom Lennard Jones clusters.

The atoms were in a 3D space with periodic boundary, with each

dimension of length 10.
The LJ pair potential is
o\ 12 o\ 6
€ (7) - (5) ]
r r
I set e =1 and o = 1, and imposed an upper limit of 7.5 on the potential.

I looked at the canonical distribution at inverse temperature 8 = 4.

The initial distribution used was uniform for positions, and the canonical

distribution at Gy = 1 for momenta.



Results

I tried Hamiltonian Importance Samling with various settings of «, e,
NWBWS and NWB@M.

Useful results were obtained using leapfrog steps with e = 0.001 (repeated
10 times), a = 0.9995, Kin = 4000, Kax = 7999. With 500 trajectories,
the result for free energy was log(Z¢/Z,) ~ 57.87 £+ 0.32, where Z, is for
an ideal gas at g = 1.

Better results were obtained (at five times the cost per trajectory) with
e = 0.001 (repeated 5 times), a = 0.99995, Kinin = 40000, Kpax = 79999.
With 100 trajectories, the result was log(Z;/Z,) ~ 56.82 £ 0.17.

In both cases, momentum mixing to ensure equipartition was done. This

turns out to be essential in this problem.

The result using Jarzynski’s method, with 1000 runs using 4000

intermediate distributions, spaced manually to get good results, was
log(Zy/Z4) ~ 56.90 £ 0.11.

All three of these methods took roughly the same amount of time.



A Test Using Backwards Trajectories

Let’s check that we really are seeing the whole distribution by simulating

backward trajectories from states gotten from a canonical MD simulation.
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Same Test But Without Momentum Mixing

If we omit the momentum mixing, equipartition is not maintained, and
the method fails.

KINEtc energy

200 500 1000 2000

100

50

<=

&
N~

~20 -10
potential energy

10

Now all but one of the tra-
jectories misses the region of
high initial probability.

To get good results with-
out momentum mixing, one
would need to use a much

higher initial temperature.



Conclusions From the Tests

e Hamiltonian Importance Sampling can be applied successfully, at
least to small problems. I've done preliminary work on larger
problems with hundreds of atoms, in bulk, and I think this will work
too. Using the NPT rather than NVT ensemble may help here in

allowing a good initial distribution.

e Some time is “wasted” at present from using a small stepsize that
may be needed only at the higher temperatures, and in simulating

backward trajectories past the point where they could possibly matter.

e Efficiency is currently comparable to Jarzynski’s method, but I hope

that refinements will improve the comparison.



Future Work

Refine the efficiency of the method — eg, figure out how to use

variable stepsizes for varying temperatures.

Try it out on various problems, including Bayesian statistical

inference problems (my usual area of application).

The same basic idea can be used in conjunction with Metropolis
updates, with accept/reject decisions made deterministically based

on how much energy is in a reservoir.
Try to better understand the theory of such methods.

Software implementing the method will be released soon. (This is

only “toy” software, not meant for real MD applications go.)



