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Abstract

Markov chain Monte Carlo algorithms have been used to explore complicated distri-
butions in physics, chemistry, and most recently Bayesian and classical statistics. The
computation time needed to obtain estimates for the parameters of the target distribution
can sometimes be extremely large.

In this thesis, we propose three Markov chain Monte Carlo algorithms that reduce the
computational effort for obtaining estimates at a given precision. The first two extend the
scope of overrelaxation methods. The first algorithm, random sequence overrelaxation,
suppresses random walks for Gaussian distributions with highly negatively-correlated com-
ponents. The second algorithm, Jacobian overrelaxation, is applicable to non-Gaussian
distributions for which the components are highly positively-correlated. The last method
is based on coupling two chains, one sampling from the target distribution and one from
an approximating distribution. By exploiting the correlation between these two chains we
can obtain more precise estimates for a given computational effort.

To demonstrate empirically the performance of these algorithms, we perform a sim-
ulation study for each and we compare their performance with the performance of an
appropriate existing algorithm. These simulations show that the proposed algorithms

improve the efficiency of the Markov chain Monte Carlo estimators.
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Chapter 1

Introduction

Markov chain Monte Carlo (MCMC) algorithms were first applied in statistical physics
and were later used in spatial statistics and image restoration. For the past few years,
MCMC methods have been extensively used in Bayesian inference and in classical statistics
as well.

Gibbs sampling and simple forms of the Metropolis algorithm tend to produce a chain
that moves in random walk fashion. Therefore the chain needs n? steps to move to a point n
steps away. For Bayesian inference problems of high dimensions, for which the components
are usually highly-dependent, the distance the chain moves in one step is very small, so
it is important to reduce the number of steps the chain needs to move to a state n steps
away. Random walks could be suppressed either by hybrid Monte Carlo, introduced by
Duane, Kennedy, Pendleton and Roweth (1987), or through the overrelaxation technique
presented by Adler (1981) in a physics context. Adler’s overrelaxation is applicable to
distributions whose full-conditional distributions are Gaussian.

Standard overrelaxation suppresses random walks for Gaussian distributions with

highly positively-correlated components, but fails to do so for highly negatively-correlated
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components. Standard overrelaxation applied to Gaussian distribution with highly
negatively-correlated components with «, the overrelaxation parameter, set close to —1
produces a chain that has a circular movement. Because the chain moves a small amount
in one step,and moreover moves nearly in a circle, the chain explores the state space
very slowly and inefficiently. The algorithm we introduce, solves this problem by updat-
ing components in a random order by a random sequence that is repeated several times,
causing the chain to move in a consistent direction. Different random sequences cause
the chain to move in different directions, thereby allowing the chain to efficiently explore
the state space. The algorithm is presented in Chapter 3, along with a simulation study
for Gaussian distributions of different dimensions and covariance matrices with different
correlation magnitudes.

Extensions of standard overrelaxation, applicable to a wider class of distributions, were
investigated by Brown and Woch (1987), Green and Han (1992), and Fodor and Jansen
(1994). All these overrelaxation type methods have a common approach: they propose
a new state based on the overrelaxation type update and the new state is accepted or
rejected by criteria similar to the one used in Metropolis algorithm. Even a moderate
rejection rate might prevent the chain from moving along the length of the distribution
for a substantial period of time. Neal (1998) and Neal (2003) presents two solutions to
this problem, one called ordered overrelaxation and the other overrelaxed slice sampling.
For the first method the acceptance/rejection step is not present and for the latter method
the rejection rate can be made very small. Therefore both methods allow the chain to
move for a long time in the same direction. These methods might pose computational
difficulties; therefore other overrelaxation type methods can still be developed.

In Chapter 4 we propose an algorithm, that we call Jacobian overrelaxation, that sup-

presses random walks for distributions with highly positively-correlated components even
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for non-Gaussian distributions. This is achieved by generating S states using standard
overrelaxation updates, without adding Gaussian random noise, and then choosing the
next state according to the density of each state multiplied by a Jacobian factor. The
method requires two tuning parameters, a range for the overrelaxation parameter, o, and
the number of states to chose the next state from, S + 1. We derive a relationship that
requires the choice of only one parameter, say S, the other parameter o being derived from
the relationship. A detailed simulation study for a logistic regression problem is conducted
to investigate the performance of Jacobian overrelaxation versus the Metropolis algorithm,
as well as to confirm the validity of the formula developed when the distributions are not
Gaussian.

In Chapter 5 we show how large improvements in the accuracy of an estimator can be
obtained by coupling a Markov chain with an approximating chain. The approximating
chain can sample from a Gaussian approximation to the distribution of interest or from
any other distribution that is easy to sample from, as long as high correlations between
the chains are produced. We propose an efficient estimator that takes advantage of this
correlation between the chains, and demonstrate it on the pumps data from Gelfand and
Smith (1990).

In Chapter 6 we summarize the ideas of the thesis and present possible extensions of
those ideas.

We begin in the next chapter with background material about basic Markov chain

Monte Carlo algorithms, as well as an overview of the present overrelaxation techniques.



Chapter 2

Markov Chain Monte Carlo

In this chapter we present background material necessary to understand this thesis. In
Section 2.1 we present some of the basic properties of Markov chains together with one
way of evaluating different Markov chains based on autocorrelation time. In Section 2.2
we review two well-established algorithms: Metropolis algorithm and Gibbs sampling.
Random walks behaviour and the overrelaxation techniques that are suppressing them

are outlined in Section 2.3.

2.1 Markov Chain Monte Carlo Integration

Bayesian inference problems require calculation of the expectations of various functions of
the model parameters with respect to their posterior distribution. If the posterior density,
f(y), is easy to sample from, the expectation of a(y) with respect to f can be estimated

using Monte Carlo integration by

n

Ba(y) ~ @ = =Y a(y) = %Za (2.1)

1=1
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where y1,...,y, is a sample of n independent points drawn from f and a; = a(y;), i =
1,...,n.

Drawing samples independently from the posterior distribution is not feasible in most
Bayesian inference problems because the posterior distribution, f, is usually too compli-
cated. We can instead generate dependent points from f using a Markov chain ¥, ..., ¥y,
that has f as its stationary distribution. A Markov chain y is a discrete time stochastic pro-
cess with the property that the distribution of y; given all the previous states y1,...,y:—1
depends only on y;_;. The starting point y; is drawn from an initial distribution and each
subsequent state y; is generated using a transition kernel that we will denote by P(y:|y;_1)-
The distribution f is stationary or invariant with respect to the transition probabilities if
once a state y; has reached the distribution, f, y will have the same distribution f, for

all ¢ > t. This condition can be written as:

/P(y'ly)f(y)dy = f) (2.2)

In practice, it is often easier to verify the stronger condition known as detailed balance:

P'ly)fly) = P(yly)f(y") forall y and 3’ (2.3)

One can easily show that if detailed balance holds for a distribution f with respect to P,
then f is stationary for P. By integrating both sides of equation (2.3) with respect to y,

we obtain:

/ Pl fy)dy = / Pyly)f(4')dy (2.4)

— ) / Plyly')dy (2.5)
— ) (2.6)

A chain that satisfies the detailed balance condition is called reversible.
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An ergodic Markov chain is a Markov chain that converges from any initial state to a
unique invariant distribution called its equilibrium distribution.

Estimating the expectation with respect to a distribution f requires a Markov chain
whose stationary distribution is f, that converges to this equilibrium distribution quickly,
and that produces states that are not highly dependent.

Although the states of the Markov chain are dependent, estimator (2.1) will still be
nearly unbiased if we discard sufficient initial burn-in states that are not from f. Because
the states are dependent, we may require a larger number of states to produce an estimate
with the same precision as the estimate based on independent states. If the states are
independent with Var(a;) = 02, i=1,...,n then

2

Var(a,) = % (2.7)

For Markov chain states, the variance of estimator (2.1) is

Cov(a;,
Var(a,) = Var(a +...+an) _ i Covlas, a5) (2.8)

n? n?

For any k, because the chain is stationary we can define
c(k) = Cov(a;, aivk) = Cov(aiyk,ai) = c(—k) (2.9)

and ¢(0) = Cov(a;,a;) = Var(a;). Therefore

Var(a,) = Z (n — |k|)e(k) (2.10)
=—(n-1)
1 n—1 |k|
= — — — ) c(k) (2.11)
2< )

For large n, the variance from equation (2.11) can be written as:

Var(a,) = % (02 + Qic(k)> (2.12)
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= %2 (1 +2 ip(k)) (2.13)

- 7;‘—; (2.14)

where p(k) = c(k)/o* is the autocorrelation function and 7 = 1+ 2", p(k) is the
autocorrelation time.

We will estimate 7 by summing over all positive and negative autocorrelations up to
the lag for which the autocorrelations seem to be nearly zero. The autocorrelations are
positive for most chains, and therefore the variance of the estimator @, when the states
are dependent will be higher than when the states are independent. The autocorrelations
could be negative as well; in this case the estimator based on dependent states will be

more precise than if the states were independent. The unbiased estimate for o? is:

62 — Z?:l(a’i - En)Q (2 15)
" n—r '
Indeed, one can prove that
E((a;—a,)?) = Var(a) Z Cov(a;, a;) + Var(ay,) (2.16)
] 1

Therefore, by summing over ¢ in the above equation, we obtain

E (Z(ai —En)Q) = Za - —ZZCOU ai,a;) + nVar(a,) (2.17)

i=1 i=1 j=1
= no’— %nZVar(En) + nVar(ay,) (2.18)
= no’—o’r (2.19)
= o’(n—71) (2.20)

where in the equation (2.18) we used that

n

ZCOU(ai,aj) =n*Var(a,) (2.21)

i=1 j=1
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and

Var(a,) = — 2.22
ar(a) = 7 (222
The estimate for the variance of @, is:
Var(@,) = 2n = 2iza(0i — @n)° 7 (2.23)
n/7T n—7 n

2.2 Basic Markov Chain Monte Carlo Algorithms

This section presents a few of the existing algorithms that produce Markov chains con-

verging to an equilibrium distribution, whose density will be denoted by f.

2.2.1 The Metropolis-Hastings Algorithm

The Metropolis algorithm was introduced in a statistical physics paper by Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller (1953) and generalized by Hastings (1970).
Transitions for the Metropolis-Hastings algorithm are defined as follows. A new state y’

is generated from a proposal density ¢(y'|y;). The new state is accepted with probability:

min (1, 20800 it f(y)q(y/ 1) > 0

1 if f(ye)a(y'ly.) =0

aly,y') = (2.24)

If the new candidate is accepted, set y;;1 = y' otherwise set y;,1 = y;. We can check
that f is a stationary distribution for this Markov chain by checking detailed balance. For

example, in the discrete case when y;.1 # vy,

FW)P(yiraly) = f(e)a(Yesr|ye) min (1’ f;?;;;?ﬁiﬁ;?)

= min(f(ye)qWer1|ye), fYer1)a(Welyes1)) (2.26)

= f(Wer1) P(elye+1) (2.27)

(2.25)
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The Metropolis update therefore leaves the distribution f invariant. The ergodicity of the
chain depends on the proposal, ¢, as well as on the equilibrium distribution, f. Theoretical
results regarding ergodicity can be found in Tierney (1994) and Nummelin (1984).

The special case where the proposal is symmetric, ¢(y'|y) = ¢(y|y') is called the
Metropolis algorithm. The acceptance probability (2.24) becomes min(1, f(y')/f(y:)) af-
ter canceling ¢(y'|y) = q(y|y'). Therefore the new state will be accepted with probability
1 if it is a point with higher density and with probability f(vy')/f(y:) otherwise.

If f is the joint distribution of y = (y1,...,yn), instead of updating the whole y,, we
can update one component at a time at each iteration. Suppose at time ¢+ 1 component 2
is updated using a proposal q;(y;|ys, Y, _;), where y, ; = (Ys1,-- -, Yei-1,Yr,i+1, Ys,n)- The

acceptance probability for the proposed value is:

. T WY —) 0 (Y,ilY5 Yo —s) ) .
min | 1 (AL il ALt if iy —)as (Y yes ;) >0
o(ys,y') = (’f(yt,i|yt,—i)qz‘(y§|yt,i7yt,—i) Tyeilye - (wilyei ve,—0) (2.28)
1 if f(ye,ilye,— )€ (Wilye,i, ye,—) =0

where f(y.i|y,_;) is the distribution of the i component of y given all the other remain-
ing components. The remaining components are not changed at time ¢. It can be easily
checked that the single-component Metropolis-Hastings algorithm leaves the distribution
f invariant.

The proposal distribution can be, for example, a Gaussian distribution centered at
the current point y;, or more generally, any proposal of the form q(v'|y) = ¢(ly — ¥'|).
A proposal of this form gives rise to a special case of the Metropolis algorithm called
random-walk Metropolis.

The best choice for the proposal depends on the equilibrium distribution f. Roberts,
Gelman and Gilks (1997) and Gelman, Roberts and Gilks (1995b) provide some theoret-
ical arguments for having an acceptance rate between 0.15 and 0.5 for high-dimensional

problems. In general, the proposal step should be small enough to have a reasonably high
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acceptance rate and large enough to move a reasonable distance.

2.2.2 Gibbs Sampling

Suppose f is the joint distribution for y = (y1,...,yn). We may not able to sample
directly from f, but we might nevertheless be able to sample from the distribution of
one component conditioned on all others. Given that at time ¢ we have state y,, we can
generate the state at time ¢ 4 1 as follows:

Generate y;41; from the conditional distribution f(y1|yio,- .-, Ye.n)

Generate y;41 2 from the conditional distribution f(ye|yit1,1,Yt3---,YtN)

Generate ;41 ; from the conditional distribution

f(yi\ytﬂ,l, e Y i1 Yt - - yt,N)

Generate y;41 v from the conditional distribution f(yn|¥t+1.15-- -5 Yt+1,8-1)
Notice that the update of component ¢ is done by using the new value for previously
updated component ¢ — 1.

These transitions will leave the distribution f invariant if each step of the above transi-
tion leaves f invariant. At step i, all y;, j # ¢ are unchanged, so the marginal distribution
for these components does not change and y; is generated from the desired conditional
distribution. Therefore if the distribution of y, is f, the joint distribution of y, , that
is the product of the marginal distribution of y;, j # ¢ and the conditional distribution
of y; given the other components, does not change. Although the transitions leave the
distribution invariant, there is no guarantee that the resulting chain is ergodic. Ergodicity
has to be established for each equilibrium distribution.

Conditions for irreducibility and aperiodicity of Gibbs sampler and therefore ergodicity
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were investigated by, among others, Chan (1993), Roberts and Polson (1994), and Roberts
and Smith (1994).

The name of the algorithm, Gibbs sampling, was given by Geman and Geman (1984)
and comes from the “Gibbs distributions” used in their Bayesian image restoration ap-
plication. Gelfand and Smith (1990) applied Gibbs sampling to many Bayesian inference
problems.

The Gibbs sampler can be seen as a special case of the single-component Metropolis-
Hastings algorithm in which the proposals are the full conditional distributions and the
acceptance probability is always one.

For Gaussian target distributions, rates of convergence for Gibbs sampling were es-
tablished by Amit and Grenander (1991), Amit (1991), and Barone and Frigessi (1990).
Roberts and Sahu (1997) obtain exact rates of convergence for the Gibbs sampler used for
Gaussian target distributions. They studied the effect of correlation structure, updating,

and blocking schemes on the convergence rates.

2.3 Overrelaxation

2.3.1 Markov Chains and Random Walks

Gibbs sampling and simple forms of the Metropolis algorithm typically move in a random
walk, as at each step the direction in which the chain moves is randomized.

Gibbs sampling generates randomly at each step a new state from the conditional
distribution, f(y;|{y;};2:). For highly-correlated variables, the conditional distribution is
much narrower than the marginal distribution, and Gibbs sampling produces a chain that
moves very slowly. Consider also the single-component random-walk Metropolis algorithm

with a Gaussian proposal, centered at the current state and with standard deviation o. If
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o is large, the acceptance rate will be small because mostly states of low density will be
proposed, causing the chain to stay in the same state for a long time. If ¢ is small, the
acceptance rate will be high, but the chain will move slowly because the proposal step is
small.

Because high-dimensional Bayesian problems usually have high dependencies between
the variables, the distance moved in one step is small. Moreover, at each iteration the
direction of these steps is randomized, causing the chain to have a random walk behaviour.
Therefore, on average n? steps are needed to move to a point n steps away. Due to the
random walk behaviour, the chain converges slowly to the equilibrium distribution, and
once it has converged, it will explore the distribution very slowly.

Gibbs sampling is invariant under translation and scaling, but is sensitive to rotation
and therefore the preferred solution is to find a transformation that will decorrelate the
variables, but for most high-dimensional Bayesian problem this is not feasible. At each
step the chain moves a distance proportional to square root of the smallest eigenvalue of
the variance-covariance matrix for which the marginal variances were all scaled to be one.
To explore the state space the chain needs to move in the long direction that is given by
the square root of the largest eigenvalue. If the components are highly correlated, because
the step size and because of the random walk behaviour, Gibbs sampling needs to perform
a large number of updates to move to a distant state. Global Metropolis is invariant under
rotation, therefore a rotation will not improve its performance.

Suppressing random walks can be achieved either by the overrelaxation methods we
will present in Section 2.3.2, or by hybrid Monte Carlo methods.

Hybrid Monte Carlo, introduced by Duane et al. (1987), uses Hamiltonian dynamics
to generate a trajectory whose end point is proposed as a candidate state, and this state is

accepted or rejected based on the change in total energy, as in the Metropolis algorithm.
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Hamiltonian dynamics moves in the same direction for many steps, therefore suppressing
random walks. Hybrid Monte Carlo is applicable to continuous state variables whose
density has first derivatives that can be efficiently computed. The method requires fine
tuning of two parameters: the step size used in the discretization of the dynamics, and
the number of steps of the dynamics to perform before the accept/reject test.
Overrelaxation, presented in the next section, is another method of suppressing random

walks.

2.3.2 An Overview of Overrelaxation Techniques

Overrelaxation methods have been used for solving system of linear equations iteratively
(Young 1971), and in particular for finding numerical solutions of partial differential equa-
tions. In this context, the method is known as “successive overrelaxation” (SOR). The
first MCMC overrelaxation method was introduced by Adler (1981) in a physics context.
Whitmer (1984) later studied different applications of overrelaxation to physics problems.

Adler’s overrelaxation method can be applied to distributions f for which all full
conditional distributions, f(y;|{y;};.i) are Gaussian. At time ¢ + 1 we update the 7™
component of the vector y. The other components are kept fixed. A new state ;11 is

generated as follows:
Yeai = i+ (i — i) + 0/ (1 — a?) € (2.29)

where p; and o; are the conditional mean and standard deviation of y; given all other
components {y; ;};.i, € is a Gaussian random variable with mean zero and variance one,
and « is the parameter that controls the overrelaxation. For the algorithm to leave the
distribution invariant, we need —1 < a < 1. For o = 0, (2.29) is Gibbs sampling. We

illustrate how Adler’s overrelaxation suppresses random walks for a bivariate Gaussian in



CHAPTER 2. MARKOV CHAIN MONTE CARLO 14

BN N
N NN
15F ~ N 1 151 VB
\\ A \\ S N\
1 N N 1 S
AN N <
AN AN
057 NN | 0.5}
N .
0 N N 0 N N
AN N N N
N N \

0.5 NN -0.5f N
— N \ N n

1 A !

N N
L N
-1.5 N N
N -1.5 N
_2 - . . . . _2 . . . .
-1 0 1 2 -1 0 1 2
Gibbs Sampling Adler’s overrelaxation

Figure 2.1: Gibbs sampling and Adler’s overrelaxation method applied to a bivariate
Gaussian distribution with correlation p = —0.99. The left plot shows twenty Gibbs
sampling iterations and the right plot twenty iterations of overrelaxation with o = —0.98.
The thin line is the path obtained after updating each component. The thick lines are the

paths after each iteration. An iteration consists of updating each component once.

Figure 2.1.

The efficiency of Adler’s overrelaxation for a bivariate Gaussian distribution was in-
vestigated in Neal (1998). He found that with a correlation coefficient p of 0.998, Adler’s
overrelaxation with an @ = —0.89 is 22 times more efficient than Gibbs sampling in esti-
mating E(y;) and 16 times more efficient in estimating E(y?). For a bivariate Gaussian
distribution, Adler’s overrelaxation performs the same for positively or negatively corre-
lated components due to the symmetry of these distributions.

Barone and Frigessi (1990) derived the optimal value for the parameter « for some
interesting cases of multivariate Gaussian distributions and showed that overrelaxation

can be arbitrarily better than Gibbs sampling in certain cases. They find that the fastest
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rate of convergence for a multivariate Gaussian distribution with all correlations negative
is achieved for o > 0. For Gaussian distributions with all positive correlations, the fastest
convergence rate is achieved for a < 0. Adler’s overrelaxation does not sample efficiently
for Gaussian distributions with negatively-correlated components of dimension N > 2.

Extensions of overrelaxation to non-Gaussian distributions were investigated by Brown
and Woch (1987). They propose two different methods. One is to transform the coordi-
nates to bring conditional distributions to a Gaussian form. Overrelaxation is performed
in the transformed space and then the state is transformed back to the original space. The
second method proposed is an overrelaxed Metropolis algorithm. A new state is proposed
corresponding to an a = —1 overrelaxed step in which the point of reflection is the mode
of the conditional distribution. To produce an ergodic chain, the method is combined
with a few conventional Metropolis or Gibbs sampling steps in between.

Green and Han (1992) proposed to find a Gaussian approximation to the conditional
distribution, f(y;|{y,} i), whose mean, j;, and standard deviation, o;, do not depend on
the current component to be updated (y;;). The component y;; is then updated using a
standard overrelaxation step as in (3.1), and the new state is accepted or rejected using a
Metropolis acceptance test.

In a physics context, Fodor and Jansen (1994) proposed a method that is useful when
the conditional distributions are unimodal. They proposed a new state y; on the other
side of the mode such that f(y;|{y;};«i) = f(vil{y;};2i). The new state will be accepted
or rejected based on the ratio of the derivative of the conditional density evaluated at the
old state to the derivative evaluated at the proposed state. To achieve ergodicity one has
to mix in some other transitions, such as Metropolis updates.

The drawback of all of these extensions of overrelaxation, except Brown and Woch'’s

(1987) method of transformation to Gaussian, is that the rejection rate might be high.
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Even a low rejection rate might diminish the benefits of overrelaxation in suppressing
random walks. By rejecting an overrelaxed proposed state, the direction of the movement
of the chain along the harder to investigate axis will be reversed. The rejection rate has
to be low to allow the chain to move along the length of the distribution for a substantial
period of time.

Neal (1998) proposed an overrelaxed Markov chain Monte Carlo method based on order
statistics that can be efficiently applied when the full conditional distributions are such
that the cumulative distribution and the inverse cumulative distribution functions can be
easily computed. This method has the advantage that the proposed state is never rejected,
thereby maintaining the feature of suppressing random walks of Adler’s overrelaxation.

Neal (2003) discusses one way of doing overrelaxation using slice sampling. Due to
the fact that the overrelaxation method is usually applied when the conditional distribu-
tions are unimodal, overrelaxed slice sampling could potentially be performed such that
the rejection rate of the proposal state will be eliminated. Suppose we want to update
component 7 by sampling from the conditional distribution p(y;) = f(vi|{y;};2i)- Slice
sampling consists of three steps: (a) Generate z uniformly random from (0,p(y;)) and
define a horizontal ‘slice’ S = {y; such that z < p(y;)}; (b) Use bisection method or some

other to accurately approximate the slice with a single interval (L, R); (¢) Propose a new

state: y = # — (yi — #) . Rejection occurs only if the end points of the slice are not
accurately approximated.
None of these methods is a perfect solution for all problems, therefore there is still

room for development of new overrelaxation algorithms.
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2.4 The Coupling Technique

Two chains are coupled when their transitions are determined by the same random num-
bers. Suppose we have two distributions, g and f, from which we want to draw samples
(z1,-..,2,) and (y1,--.,Yn), respectively. At each iteration we randomly draw v; from
some distribution V' and generate the updates for the two chain by z, = ¢4(z;—1,v;) and
Yt = ¢7(yi—1,v:). The transition functions, ¢, and ¢, take two inputs, the state at time
t — 1 and some randomness v;, and return the state at time ¢. These transition functions
are chosen to keep the target distributions, f and g, invariant. In the applications de-
scribed below, g and f are the same, but in our method presented in Chapter 5 they are

different.

Coupling is used to prove theoretical bounds on the total variation distance between
the distribution of the state of the Markov chain after &k steps and the equilibrium distribu-
tion. We imagine running two chains, one starting from the equilibrium distribution and
the other from some arbitrary distribution. The same transition functions and random
numbers are used for the two chains. The total variation distance between the probability
distributions of the two states after £ steps can be bounded by the probability that the
chains have not coalesced at step k. For a review of the coupling method in Markov chain
theory context see Rosenthal (1995a). The convergence of general state space Markov

chains using coupling techniques is analyzed in Rosenthal (1995b).

Coupling has also been used in Propp and Wilson’s (1996) coupling from the past
method of exact sampling. In this context, chains are started from all possible starting

points and are run using the same transition probability function. Under certain assump-
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tions, if we start the chains far enough back in the past, they will all coalesce by time
zero. The point obtained in this way can be proved to come from the exact equilibrium

distribution.



Chapter 3

Random Sequence Overrelaxation

Adler’s overrelaxation moves well through the state space when applied to a Gaussian
distribution with positively correlated components, but fails to do so well when the com-
ponents are negatively correlated. In this chapter we present an overrelaxation algorithm
that samples efficiently when applied to Gaussian distributions with negatively correlated

components.

3.1 How Standard Overrelaxation behaves for
Gaussian Distributions with Negatively

Correlated Components
Let y = (y1, .-, yn) be a random vector distributed according to a multivariate Gaussian

distribution. Adler’s overrelaxation algorithm updates one component at a time in a

deterministic order as follows:

Y1 = Wi + a(Yri — i) + i/ (1 — o?) €41 (3.1)

Yi+1,5 = Ut,j for j #1 (3-2)

19
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where i is the component updated at time ¢, y;; is the i component of y at time ¢, y;
and o; are the conditional mean and standard deviation of y; given the other components,
y; for j # 1, and €, is Gaussian random variable with mean zero and variance one. For
—1 < a <1, the distribution of y is left invariant under the above update.

For a bivariate distribution, Adler’s overrelaxation performs well for both negative
and positive correlation between the components, but Adler’s overrelaxation becomes
inefficient for N > 3 when the components are negatively correlated.

Consider y = (y1, Y2, - - -, yn) ~ N(0,X) where

(1p...p

p 1 ... p

K;p...l)

The variance-covariance matrix X is positive definite for p € (-1/(N —1),1). For N > 3
and p < 0, a variance-covariance matrix of the form (3.3) has N — 1 large eigenvalues
and one small eigenvalue. When p is close to its lower limit of —1/(/N — 1), the ratio of
the largest to the smallest eigenvalue is large. The N — 1 directions given by the N — 1
eigenvectors corresponding to the large eigenvalues will then be difficult to explore.

For such a Gaussian distribution with p < 0, Adler’s overrelaxation produces a chain
that has a circular movement, exploring the states of the space inefficiently, and not
providing a good estimate of the expected value of a non-linear function of the state.
Figure 3.1 illustrates the movement of the chain for a Gaussian distribution with N = 3,
p = —0.499. To produce a good estimate for the expected value of a linear function, the
chain will have to move at least once in a circle, which due to the slow movement of the
chain, will require a large number of iterations. Green and Han (1992) showed that the

asymptotic variance of an estimator of the expectation of a linear function of the states
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Figure 3.1: The plot shows the states of the chain projected on the space generated
by the eigenvectors corresponding to the two large eigenvalues, obtained using Adler’s
overrelaxation with o = —0.99 for a Gaussian distribution of dimension N = 3 with the
variance-covariance matrix as in (3.3) for which p = —0.499. There are 500 states plotted,

each state is obtained by updating all the components once.

goes to zero as a goes to —1. This is an asymptotic behaviour only, however, and in
practice for a fixed length run this result will not provide us any information regarding
the accuracy of the estimator. Also, if we were interested only in a linear function of the
states, we could simply find the mode of the distribution and evaluate the function at the
mode.

Adler’s overrelaxation method with a close to —1 samples efficiently for Gaussian
distributions ¥ as in (3.3) and p > 0. On the other hand overrelaxation explores the
space of the Gaussian distribution with negatively-correlated components very slowly.
We propose a method that produces efficient samples for Gaussian distributions with
p < 0. For Gaussian distribution with p > 0, our algorithm is not as efficient as Adler’s

overrelaxation, but it is more efficient than Gibbs sampling in most cases. We will call
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this method random sequence overrelazation (RSO).

3.2 Random Sequence Overrelaxation

The algorithm proposed eliminates the circular movement of Adler’s overrelaxation for
Gaussian distributions with negatively correlated components. Instead, movement in dif-
ferent directions is realized by updating the components in a sequence selected randomly
and then repeated many times.

The random generation of a sequence is done as follows. A vector of length Ns is
obtained by repeating the labels 1 to N for s times. This vector is then randomly permuted
with equal probability for all permutations. Avoiding consecutive updating of the same
component makes the method more efficient since updating the same component twice will
produce almost no movement when « is close to —1. Therefore the algorithm goes through
each component of this permuted vector and checks if two consecutive components have
the same label. If two consecutive components at positions j and j+1 have the same label,
the algorithm generates a random position, &, from j + 2 to Ns — 1. If the component at
position 7 + 1 has a different label than the components at positions k and k + 1, we shift
the components from positions 7 + 2 to k£ to positions 7 + 1 to £k — 1 and the component
that was at position j + 1 is placed at position k. If the random position £ chosen is not
acceptable, it is marked as being visited and a new random position is generated and,
if not visited before, the admissibility of this new random position is checked. If all the
positions from j+2 to Ns are visited and no position is acceptable, the algorithm finds an
acceptable position from 1 to j—2. A random number, £, between 1 and j — 2 is generated
and if the component at position j + 1 is different from the components at positions &

and k + 1, we shift to the right one position all the components at positions k£ + 1 to j
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and we place component j+ 1 at position £+ 1. Each two consecutive components of the
vector are investigated in this way, and arranged such that no two consecutive components
are the same. Note that a slightly bigger improvement could be achieved by generating
vectors for which the first and the last component are different as well.

Using RSO overrelaxation with o = —1 with a random sequence of length Ns repeated
a number of times, r, produces a chain that moves in one direction until the end of the
probability contour is reached, at which point the direction reverses. We illustrate how
RSO works on a Gaussian distribution with NV = 3. The variance-covariance matrix, X,
is of the form (3.3), with p = —0.49999. The degree of difficulty of investigating the space
is given by the square root of the ratio of the largest to smallest eigenvalue of 3, which
for this p is 273. It takes approximately 273 steps to move to a distant state. In Figure
3.2, we generate one random sequence at a time of length 6 and repeat it for 40 times
to produce movement in the same direction. In this example there were three random
sequences that account for the three directions. The updates are done with o« = —1.

There are three parameters to be chosen for this method: the number of times we
update each component in a random sequence, s, the number of times this sequence is
repeated, r, and the value of o used for overrelaxation updates. From the experiments
done, we have noticed that efficiency is optimized when the length of the sequence is
minimal. Therefore in our experiments we will use s = 2 or s = 3, producing a minimum
length sequence of 2N or 3N. The number of times the sequence is repeated, r, will be
chosen such that the product of the length of the sequence and the number of times we
repeat the sequence, rsN, is approximately equal to the square root of the ratio of the
largest to the smallest eigenvalue. This ensures that one sequence can move the chain to
an almost independent point. There are alternative ways of setting the third parameter

a. Since it is not known what « is best, we might just set o to —1, but do the first of
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Figure 3.2: The Random Sequence Overrelaxation method with p = —0.49999, s = 2 and
r = 40. The plot shows the paths produced using three random sequences ([3 1 2 1 2 3],
[132321]and [323121]) projected on the plane generated by two eigenvectors of
3 corresponding to the two large eigenvalues. The paths show the states after one full

random sequence was applied. The circle is the two standard deviation contour.

the rsN updates with o = 0, in order to allow the chain to move from one probability
contour to another. In the experiments presented later, however, we instead choose the
best « for the RSO method (no o = 0 updates), as we compare the method with Adler’s

overrelaxation for which also the best « is chosen.

3.3 Description of the Experiment

The random sequence overrelaxation method arose from the need to suppress random
walks when negatively correlated components make Adler’s overrelaxation work poorly.
We would like the new method to work well for positively correlated components as well.

The tests are done for Gaussian distributions for which the variance-covariance matrix
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has the form (3.3).

The experiments presented in the following sections consist of two parts. In the first

stage, using autocorrelation time, estimated as described in Section 2.1, we chose the best
values of « for Adler’s overrelaxation and for RSO, when the function to be estimated was
considered to be the square of the Euclidean norm. The values of « investigated were:
-0.999 -0.995 -0.99 -0.98 -0.97 -0.96 -0.95 -0.94 -0.93 -0.92 -0.91 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4
-0.3-0.2-0.100.10.20.30.40.50.6 0.7 0.8 0.9 0.99.
We considered four different values for the dimensionality, /V, and for each N we investi-
gated two positive correlations and two negative correlations. These results are presented
in Figure 3.5 through Figure 3.12. The length of Markov chains for this stage of the
simulations was such that a good estimate for the autocorrelation times could be obtained
for a close to the optimal for each method. For a close to —1 or 1, the autocorrelation
times may be poorly estimated in some cases.

In the second stage, we ran very long chains using the optimal values for o found in the
first stage. Based on these chains, we obtained accurate estimates for the autocorrelation
times, which were used to provide good estimates of the efficiency of RSO versus Adler’s
overrelaxation and versus Gibbs sampling. We estimated the autocorrelation time for
three functions of the state: the sum of the squares of the components, the first component
squared, and an indicator function that is 1 if the absolute value of the first component is
greater than 1.5 and 0 otherwise. The same chain was used to estimate the autocorrelations
for all three functions of the state, using the o that was optimal for the sum of the squares
of the components. The optimal « for the sum of the squares of the components is close to
the optimal values for « for the other two functions, so the autocorrelation times should
be quite close to the optimal values for all functions of the state.

We consider three positive correlations to demonstrate that the efficiency of RSO versus
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Adler’s overrelaxation, for a fixed N, remains constant as the correlations approach 1. As
the positive correlation becomes closer to its upper limit one needs to run very long chains
in order to obtain good estimates for the autocorrelation times for the Gibbs sampling.
Therefore it is computationally very intensive to investigate all values of a from —1 to
1 for the strongest positive correlation that is found under the double line in Tables 3.2
through 3.13. Therefore we have not found the optimal « for these cases and rather we
used either the same « as for the less strong correlation or an « closer to —1.

In Table 3.1 we summarized the lengths of the chain for all methods and the lags at
which the autocorrelations are close to zero. The last column in these tables represents
the number of iterations for which Gibbs sampling and Adler’s overrelaxation were run.
One iteration for Gibbs sampling and Adler’s overrelaxation consists of updating each
component once. For RSO an iteration consists of updating the components by using
once the random sequence of length Ns. The number of iterations for RSO is adjusted
such that each component will be updated the same number of times as for Gibbs sam-
pling and Adler’s overrelaxation. Therefore the number of iterations will be different for
the methods. For p < 0, for Gibbs sampling and Adler’s overrelaxation, we adjust the
length of chains by taking only the k™ state of the chain, where k is chosen such that the
chains will have the same length. For p > 0, taking every k' state is not always possible
because the lag at which the autocorrelations for Adler’s overrelaxation are close to zero
is very small and by taking every k* iteration the remaining states will become indepen-
dent and therefore not provide a good estimate for the autocorrelation time. When the
lengths of the chains are different, we adjust the autocorrelation time by multiplying the
autocorrelation time for the RSO with a factor determined by the ratio of the length for
Adler’s overrelaxation chain to the length of RSO chain.

For the strongest positive correlation for each N, the chains using Gibbs sampling and
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N=3 GS AO RSO - Seq=2 RSO - Seq=3 Total length
p length lag length lag length lag length | lag || for AO and GS
-0.49950 500000 250 500000 250 500000 80 500000 | 120 3000000
-0.49990 500000 | 1200 500000 1200 500000 120 500000 | 600 3000000
0.99750 166667 350 1000000 60 499998 250 333332 | 120 1000000
0.99950 166667 | 1500 1000000 150 499996 750 333333 | 300 1000000
0.99988 166667 | 8000 1000000 200 500006 | 1500 333342 | 600 1000000
N =4 GS AO RSO - Seq=2 RSO - Seq=3 Total length
p length lag length lag length lag length lag for AO and GS
-0.33300 166667 200 166667 200 166667 60 166666 60 1000000
-0.33325 250000 600 250000 500 250000 100 250002 100 1500000
0.99700 1000000 1500 1000000 60 500000 500 333333 200 1000000
0.99940 1000000 6000 1000000 | 200 500000 | 1800 333333 900 1000000
0.99985 1000000 | 50000 1000000 | 300 500000 | 3600 333340 | 1500 1000000
N =10 GS AO RSO - Seq=2 RSO - Seq=3 Total length
p length lag length lag length lag length lag for GS and AO
-0.11109 500000 800 500000 800 500000 120 500000 120 3000000
-0.11110 500000 1800 500000 | 1800 500001 280 500000 280 3000000
0.99850 250000 1800 250000 40 250000 5000 250001 550 1500000
0.99965 500000 8000 500000 60 500001 | 12000 500001 | 1500 3000000
0.99990 500000 | 20000 500000 150 500000 | 20000 500000 | 3000 3000000
N =11 GS AO RSO - Seq=2 RSO - Seq=3 Total Length
p length lag length lag length lag length lag for AO and GS
-0.099985 500000 900 500000 900 500000 120 500000 200 3000000
-0.099996 500000 | 4000 500000 | 2500 500000 300 500000 900 3000000
0.998650 250000 | 2500 250000 40 250000 4000 250001 600 1500000
0.999650 500000 | 9000 500000 60 500001 | 30000 500001 | 1800 3000000
0.999900 500000 | 9000 500000 200 499999 | 50000 500000 | 3000 3000000

27

Table 3.1: The length of the chains used for each method and the lags at which the

autocorrelations are close to zero.
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RSO have high autocorrelations up to a large lag comparable to the length of the chain.
There may therefore not be enough independent points to produce a reliable estimate for

the autocorrelation times.

3.4 Discussion of Simulation Results

The RSO method behaves differently for odd versus even dimensional multivariate Gaus-
sian distributions and for positive versus negative correlations. In the next sections we

present the performance of RSO for these situations.

3.4.1 Odd-dimensional Gaussian distribution with

negatively-correlated components

For Gaussian distributions of odd dimension, whether the length of the random sequence is
odd or even affects the efficiency of random sequence overrelaxation. Figure 3.3 shows the
slow movement of the chain using RSO for a Gaussian distribution of dimension N = 3,
with length of sequence, 3N. Note that the plot spans a range of only 0.08 on one axis
and 0.07 on the other, whereas the standard deviation is one. Compare this with Figure
3.2 where RSO with s = 2 was used, for which a range of 1.5 on one axis and 2.5 on the
other axis was spanned with a similar computational effort.

A variance-covariance matrix as in (3.3) with p close to the low extreme, —1/(N — 1),
has N — 1 large eigenvalues and one small eigenvalue. The distribution therefore has a
flat ellipsoidal shape. If we start with a point on one side of the flat ellipsoid, by updating
the components once using a random sequence of odd length, the chain ends up on the
other side of the ellipsoid. When we repeat the random sequence a second time, we almost

retrace our steps, rather than accomplishing the desired result of moving consistently in
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the same direction. An even length random sequence accomplishes the movement in the
same direction because after one repetition of the sequence, the state ends up on the same
side of the flat ellipsoid, so that by repeating the sequence we continue the movement in
the same direction.

We illustrate the performance of RSO on Gaussian distributions with N = 3 and
N =11. In Figure 3.5 and Figure 3.11 we compare the autocorrelation time for the RSO
applied with even length and odd length sequences to the autocorrelation time for Adler’s
overrelaxation for values of o ranging from —0.995 to 0.9. All three chains have a similar
autocorrelation time for o away from —1. The best performance for RSO is achieved for
values of a close to —1 and for random sequences of even length. The optimal values
of a for Adler’s overrelaxation when applied to Gaussian distributions with negatively-
correlated components are positive and around 0. This result is similar to Barone and
Frigessi’s (1990) results. They found that for positively-correlated components Adler’s
overrelaxation is best if performed with o < 0 and with o > 0 when applied to negatively-
correlated components case.

In Table 3.2 through Table 3.4 and Table 3.11 through 3.13 we presented the results for
two odd dimension distributions, N = 3 and N = 11. For each dimension we demonstrate
the efficiency on two variance-covariance matrices as in (3.3) with p < 0. For all three
functions of the components that we investigate, RSO with even length sequence is more
efficient than Adler’s overrelaxation and than Gibbs sampling. The efficiency of the RSO
method with s = 2 ranges from 3 to 8 times better than the Adler’s overrelaxation
and from 4 to 8 times better than Gibbs sampling. As the correlation gets close to its
limit, —1/(N — 1), the efficiency of the RSO compared to Adler’s overrelaxation and
Gibbs sampling increases. Since Gibbs sampling performs a random walk, a factor of two

increase in the square root of the ratio of the largest to smallest eigenvalue produces a
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factor of four increase in the autocorrelation time. Since RSO suppresses random walks,
a factor of two increase in the square root of the ratio of the largest to smallest eigenvalue
will produce a factor of two increase in the efficiency of RSO method compared to Gibbs
sampling. For N = 3, the efficiency of RSO versus Gibbs sampling increases from 4 to
about 11 when the square root of the eigenvalues increases by a factor of 2. For N =11,
for a factor of two increase in the square root of the eigenvalues there is a increase in the
RSO’s efficiency versus Gibbs sampling from around 6 to around 11 for the square norm.
Due to the round off errors we see an increase from around 4 to only around 6 for the

square of the first component function and for the indicator function.
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Figure 3.3: Random Sequence Overrelaxation method with N = 3, p = —.49999, s = 3
and 7 = 30. The plot shows the paths produced using three random sequences ([ 121 3
13232],[123213231]and 13232121 3]) projected on the space generated
by two eigenvectors of 3 corresponding to the two large eigenvalues. The paths show the

states after one full random sequence was applied.
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3.4.2 Even-dimensional Gaussian distribution with

negatively-correlated components

RSO is more efficient than Gibbs sampling and Adler’s overrelaxation for even dimensional
problems, and the efficiency of the method does not depend on whether the parameter s
is odd or even, as the length of the sequence, Ns, is even in both situations. As for odd
dimensional distributions, the efficiency of the method as compared to Gibbs sampling and
Adler’s overrelaxation increases as the correlation approaches its lower limit because RSO
moves efficiently in the different directions given by the random sequences. Tables 3.5
through 3.7 and Tables 3.8 through 3.10 and Figures 3.7 and 3.9 show the results for the
even dimensional case when N =4 and N = 10. RSO is 3 to 8 times more efficient than
Gibbs sampling. Since the optimal « for Adler’s overrelaxation is near 0, its performance

is similar to that of Gibbs sampling.

3.4.3 Gaussian Distribution with Positively

Correlated Components

For Gaussian distributions with positive correlations, Adler’s overrelaxation with a close
to —1 produces efficient estimators. The results for Gaussian distributions with variance-
covariance matrix as in (3.3) are shown in Figures 3.6, 3.8, 3.10 and 3.12. For p > 0 the
variance-covariance matrix has one large eigenvalue and N — 1 small eigenvalues. Adler’s
overrelaxation suppresses the random walk in the long direction corresponding to the large
eigenvalue. RSO is not as good as Adler’s overrelaxation, but the efficiency for RSO versus
Adler’s overrelaxation for a fixed N does not get worse as the correlation approaches one.
For N = 3, for example, RSO is 5 to 10 times more inefficient than Adler’s overrelaxation,

for different values of p > 0 and different functions of state. For N = 10 and N = 11, the
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0.35
0.8

s = 2, r = 27. The plot shows the paths using s = 3, r = 18. The plot shows the paths using
three random sequences: 123132,13231 2, three random sequences: 232313121,231
123231 232131,123123123.

Figure 3.4: RSO with N = 3, p = 0.999, a = —1. The paths show the states after one
full random sequence was applied. Illustrates the behaviour of the chains for s = 2 versus

s = 3. Note the different scales for the two plots.

inefficiency of RSO is greater, because the probability of generating a good sequence (e.g.
[1,2,...,N]) is low.

We notice that the method is slightly more efficient for s = 3 for low dimensional
problems, and the discrepancy in efficiency increases as the dimensionality increases. For
N =10 and N = 11, RSO with s = 3 is 10 times more efficient than RSO with s = 2.
Figure 3.4 illustrates the difference in the behaviour of RSO with s = 2 versus s = 3.
RSO with s = 2 moves a range of around 0.3 in each direction, whereas for s = 3 the
range spanned is around 2.8. However, for low dimensional problems the autocorrelation
times are not very different because of the high probability of generating a good sequence

such as [1,2,..., N].



CHAPTER 3. RANDOM SEQUENCE OVERRELAXATION 33

RSO is 2 to 42 times more efficient than Gibbs sampling.
For variance-covariance matrices as in (3.3) with p > 0, RSO does better than Gibbs

sampling, but worse than Adler’s overrelaxation, especially for large V.
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Figure 3.5: N = 3, p < 0. Autocorrelation times of the square of the Euclidean norm of
the states for RSO with length of sequence odd, RSO with length of sequence even, and

standard overrelaxation, for different values of a.
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Figure 3.6: N = 3, p > 0. Autocorrelation times of the square of the Euclidean norm of
the states for RSO with length of sequence odd, RSO with length of sequence even, and

standard overrelaxation, for different values of a.
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N=3 §:«: GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
p Tt @ T2 @ rep T3 a rep Ta :—; :—1 :—; :—z
-0.49950 | 38.7 54 || -0.30 | 48 || -0.94 | 8 12 || -0.60 | 5 31 || 439 | 1.75 | 3.93 | 1.57
-0.49990 | 86.6 283 || -0.50 | 222 || -0.98 | 16 | 25 || -0.80 | 10 | 125 || 11.21 | 2.26 | 8.79 | 1.77
0.99750 34.6 447 || -0.95 | 18 || -0.95 | 6 | 128 || -0.91 | 4 92 || 3.49 | 4.86 | 0.14 | 0.20
0.99950 774 2257 || -0.97 | 45 | -0.96 | 14 | 436 || -0.97 | 9 | 221 || 5.17 | 10.21 | 0.10 | 0.20
‘ 0.99988 ‘ 158.1 H 14536 H -0.99 ‘ 84 H -0.98 ‘ 26 ‘ 741 H -0.98 ‘ 18 ‘ 417 H 19.62 ‘ 34.89 ‘ 0.11 ‘ 0.20 ‘
Table 3.2: Efficiency for the square of the Euclidean norm, N = 3.
N=3 jmas GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
14 T1 a T2 « rep T3 «a rep Ta % % % %
-0.49950 | 38.7 46 || -0.30 | 34 || -0.94 | 8 11 || -0.60 | 5 29 || 427 | 159 | 314 | 117
-0.49990 | 86.6 238 || -0.50 | 155 || -0.98 | 16 | 21 || -0.80 | 10 | 126 || 11.06 | 1.89 | 7.19 | 1.23
0.99750 34.6 446 || -0.95 | 18 || -0.95 | 6 | 128 || -0.91 | 4 92 | 3.50 | 4.86 | 0.14 | 0.20
0.99950 77.4 2255 || -0.97 | 45 || -0.96 | 14 | 436 || -0.97 | 9 | 221 || 5.17 | 10.20 | 0.10 | 0.20
‘ 0.99988 ‘ 158.1 H 14536 H -0.99 ‘ 84 H -0.98 ‘ 26 ‘ 741 H -0.98 ‘ 18 ‘ 417 H 19.62 ‘ 34.88 ‘ 0.11 ‘ 0.20 ‘
Table 3.3: Efficiency for the square of the first component, N = 3.
N=3 :\\:”nﬁ GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
p 1 @ T2 @ rep T3 o rep Ta :—; :—Z :—g :—z
-0.49950 | 38.7 32 || -0.30 | 24 || -0.94 | 8 8| -060| 5 20 | 3.90 | 1.57 | 2.94 | 1.18
-0.49990 | 86.6 171 || -0.50 | 112 || -0.98 | 16 | 18 || -0.80 | 10 | 90 || 9.60 | 1.90 | 6.32 | 1.25
0.99750 34.6 308 || -0.95 | 14 || -0.95 | 6 98 || -0.01 | 4 68 || 3.15 | 4.50 | 0.14 | 0.20
0.99950 77.4 1829 || -0.97 | 34 || -0.96 | 14 | 324 || -0.97 | 9 | 156 || 5.65 | 11.70 | 0.10 | 0.2
‘ 0.99988 ‘ 158.1 H 10539 H -0.99 ‘ 64 H -0.98 ‘ 26 ‘ 563 H -0.98 ‘ 18 ‘ 319 H 18.73 ‘ 33.00 ‘ 0.11 ‘ 0.20 ‘

Table 3.4: Efficiency for indicator function of the absolute value of the first component

being greater than 1.5, N = 3.
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Figure 3.7: N =4, p < 0. Autocorrelation times of the square of the Euclidean norm of
the state for RSO with length of sequence odd, RSO with length of sequence even, and

standard overrelaxation, for different values of a.
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Figure 3.8: N =4, p > 0. Autocorrelation times of the square of the Euclidean norm of
the state for RSO with length of sequence odd, RSO with length of sequence even, and

standard overrelaxation, for different values of a.
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N=4 ez GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
P it a T « rep T3 o rep Ta % % % %;
-0.33300 36.5 47 || 0.00 | 47 || -0.95 | 5 12 || -0.96 | 4 13 || 410 | 3.71 | 4.10 | 3.71
-0.33325 73.0 177 || -0.10 | 180 || -0.96 | 10 24 || -0.98 | 7 27 || 752 | 6.64 | 7.64 | 6.75
0.99700 36.5 529 || -0.96 | 20 || -0.80 | 5 329 || -0.97 | 3 154 || 1.61 | 3.44 | 0.06 | 0.13
0.99940 81.6 2487 || -0.99 | 52 || -0.98 | 10 | 966 || -0.99 | 7 539 || 2.58 | 4.62 | 0.05 | 0.10
‘ 0.99985 ‘ 163.3 H 16433 H -0.99 ‘ 90 H -0.99 ‘ 20 ‘ 1796 H -0.99 ‘ 14 ‘ 1119 H 9.15 ‘ 14.69 ‘ 0.05 ‘ 0.08 ‘
Table 3.5: Efficiency for the square of the Euclidean norm, N = 4.
N=4 §:;: GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
14 at [ T o rep T3 o rep Ta :—; % % %4,
-0.33300 36.5 35 || 0.00 | 35| -0.95| 5 9| -096 | 4 10 || 4.08 | 3.50 | 4.08 | 3.50
-0.33325 73.0 134 || -0.10 | 122 || -0.96 | 10 19 || -098 | 7 20 || 6.89 | 6.62 | 6.30 | 6.05
0.99700 36.5 526 || -0.96 | 20 || -0.80 | 5 328 || -0.97 | 3 153 || 1.61 | 3.44 | 0.06 | 0.13
0.99940 81.6 2484 || -0.99 | 52 || -0.98 | 10 | 965 || -0.99 | 7 538 || 2.57 | 4.61 | 0.05 | 0.10
‘ 0.99985 ‘ 163.3 H 16431 H -0.99 ‘ 90 H -0.99 ‘ 20 ‘ 1797 H -0.99 ‘ 14 ‘ 1119 H 9.15 ‘ 14.69 ‘ 0.05 ‘ 0.08 ‘
Table 3.6: Efficiency for the square of the first component, N = 4.
N=4 {mas GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
P s o T a rep T3 a rep T2 % % % :7:
-0.33300 36.5 24 || 0.00 | 24 || 095 | 5 71 -096 | 4 7| 3.66 | 3.24 | 3.66 | 3.24
-0.33325 73.0 91 || -0.10 | 82 || -0.96 | 10 15| -098 | 7 15 | 6.20 | 6.05 | 5.58 | 5.45
0.99700 36.5 374 || -0.96 | 15 || -0.80 | 5 229 || -0.97 | 3 | 116 || 1.63 | 3.22 | 0.07 | 0.13
0.99940 81.6 1721 || -0.99 | 38 || -0.98 | 10 | 676 || -0.99 | 7 | 395 | 2.55 | 4.36 | 0.06 | 0.10
‘ 0.99985 ‘ 163.3 H 10665 H -0.99 ‘ 69 H -0.99 ‘ 20 ‘ 1376 H -0.99 ‘ 14 ‘ 691 H 7.75 ‘ 15.42 ‘ 0.05 ‘ 0.10 ‘

Table 3.7: Efficiency for indicator function of the absolute value of the

being greater than 1.5, N = 4.

first component
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Figure 3.9: N =10, p < 0. Autocorrelation times of the square of the Euclidean norm of
the state for RSO with length of sequence odd, RSO with length of sequence even, and

standard overrelaxation, for different values of a.
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Figure 3.10: N =10, p > 0. Autocorrelation times of the square of the Euclidean norm
of the state for RSO with length of sequence odd, RSO with length of sequence even, and

standard overrelaxation, for different values of a.
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N =10 }A‘y"n‘% GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
p 1 o T2 o rep T3 o rep T2 :—; :—1 :—z :Z
-0.11109 76.5 181 0.20 169 -0.99 4 33 -0.98 3 34 5.51 5.34 | 5.151 | 4.99
-0.11110 142.1 481 -0.10 | 506 -0.98 7 61 -0.99 5 75 7.83 6.38 | 8.247 | 6.72
0.99850 81.6 3194 -0.99 8 -0.97 4 1367 -0.97 3 151 2.34 | 21.11 | 0.006 | 0.05
0.99965 169.0 14264 -0.99 16 -0.99 9 2993 -0.99 6 405 4.77 | 35.25 | 0.005 | 0.04
‘ 0.99990 | 316.2 H 61695 H -0.99 ‘ 44 H -0.99 ‘ 16 ‘ 11020 H -0.99 ‘ 11 ‘ 827 H 5.60 ‘ 74.58 ‘ 0.004 | 0.05
Table 3.8: Efficiency for the square of the Euclidean norm, N = 10.
N=10 m—a: GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
p T @ T2 e rep 3 @ rep T4 :—; :—; :—z :—Z
-0.11109 76.5 87 0.20 108 -0.99 4 17 -0.98 3 26 5.08 3.37 | 6.323 | 4.20
-0.11110 142.1 313 -0.10 | 288 -0.98 7 47 -0.99 5 45 6.70 6.95 | 6.180 | 6.41
0.99850 81.6 3185 -0.99 8 -0.97 4 1364 -0.97 3 151 2.34 | 21.12 | 0.006 | 0.05
0.99965 169.0 14257 -0.99 16 -0.99 9 2991 -0.99 6 404 4.77 | 35.27 | 0.005 | 0.04
‘ 0.99990 ‘ 316.2 H 61687 H -0.99 ‘ 44 H -0.99 ‘ 16 ‘ 11019 H -0.99 ‘ 11 ‘ 827 H 5.60 ‘ 74.60 ‘ 0.004 ‘ 0.05 ‘
Table 3.9: Efficiency for the square of the first component, N = 10.
N =10 ;":ﬁ GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
p 1 «a T a rep T3 «a rep Ta :—; :—1 :—: :—z
-0.11109 76.5 63 0.20 82 -0.99 4 13 -0.98 3 19 4.94 3.37 | 6.503 | 4.43
-0.11110 142.1 220 -0.10 | 203 -0.98 7 35 -0.99 5 32 6.27 6.79 | 5.789 | 6.27
0.99850 81.6 2137 -0.99 6 -0.97 4 1071 -0.97 3 110 1.99 | 19.46 | 0.006 | 0.06
0.99965 169.0 11710 -0.99 12 -0.99 9 1919 -0.99 6 292 6.10 | 40.15 | 0.006 | 0.04
‘ 0.99990 ‘ 316.2 H 53783 H -0.99 ‘ 33 H -0.99 ‘ 16

‘ 10110 H -0.99 ‘ 11 ‘ 600 H 5.32

‘ 89.66 ‘ 0.003 ‘ 0.06

Table 3.10: Efficiency for indicator function of the absolute value of the first component

being greater than 1.5, N = 10.
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Figure 3.11: N =11, p < 0.

Autocorrelation times of the square of the Euclidean norm

of the state for RSO with length of sequence odd, RSO with length of sequence even, and

standard overrelaxation, for different values of «.
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Figure 3.12: N =11, p > 0. Autocorrelation times of the square of the Euclidean norm
of the state for RSO with length of sequence odd, RSO with length of sequence even, and

standard overrelaxation, for different values of a.
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N=11 Jmes GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
P T1 a T a rep T3 a rep T4 ;’_'1—3 ;’_‘1_4 :_g :_Z
-0.099985 |  85.6 183 || 0.10 | 174 | -0.98 | 4 32 || -090 | 3 | 56| 577 | 3.30 | 5.469 | 3.13
-0.099996 | 165.8 832 || 0.20 | 659 || -0.98 | 8 78 || -0.90 | 5 | 225 || 10.66 | 3.69 | 8.441 | 2.93
0.998650 |  90.2 3644 || -0.99 | 9 || -0.99 | 4 | 1254 || -0.99 | 3 | 176 || 2.90 | 20.66 | 0.007 | 0.05
0.999650 | 177.3 || 16301 || -0.99 | 17 || -0.99 | 9 | 9084 || -0.99 | 6 | 475 || 1.79 | 34.34 | 0.002 | 0.04
‘ 0.999900 | 331.6 H 50272 H -0.99 ‘ 46 H -0.99 ‘ 17 ‘ 20838 H -0.99 ‘ 11 ‘ 787 H 2.41 ‘ 63.86 ‘ 0.002 ‘ 0.06 ‘
Table 3.11: Efficiency for the square of the Euclidean norm, N = 11.
N=11 e e AO RSO - Seq=2 RSO - Seq=3 Efficiency
p T «a T2 a rep T3 a rep Ta % % % %
-0.099985 |  85.6 103 || 0.10 | 113 | -0.98 | 4 25 || -0.90 | 3 | 50 | 4.21 | 2.07 | 4.604 | 2.27
-0.099996 | 165.8 349 || 0.20 | 471 || -0.98 | 8 58 || -0.90 | 5 | 217 | 6.03 | 1.61 | 8.144 | 2.18
0.998650 |  90.2 3631 || -0.99 | 9| 099 | 4 | 1252 || -0.99 | 3 | 176 | 2.90 | 20.62 | 0.007 | 0.05
0.999650 | 177.3 || 16294 || -0.99 | 17 || -0.99 | 9 | 9080 || -0.99 | 6 | 474 | 1.79 | 34.35 | 0.002 | 0.04
‘ 0.999900 ‘ 331.6 H 50269 H -0.99 ‘ 46 H -0.99 ‘ 17 ‘ 20833 H -0.99 ‘ 11 ‘ 787 H 2.41 ‘ 63.88 ‘ 0.002 | 0.06
Table 3.12: Efficiency for the square of the first component, N = 11.
N =11 QZ‘Z GS AO RSO - Seq=2 RSO - Seq=3 Efficiency
p 1 @ T2 @ rep T3 @ rep | Ta :—; :—; :—: :2—4
-0.099985 |  85.6 70 || 0.10 | 76 || -0.98 | 4 17(/-090 | 3 | 36| 4.07 | 1.94 | 4.440 | 2.12
-0.099996 | 165.8 253 || 0.20 | 340 || -0.98 | 8 43 || 090 | 5 | 154 || 5.86 | 1.65 | 7.865 | 2.21
0.998650 |  90.2 2262 || -0.99 | 7| -0.99 | 4 983 || -0.99 | 3 | 124 | 2.30 | 18.27 | 0.007 | 0.05
0.999650 | 177.3 || 13578 || -0.99 | 13 || -0.99 | 9 | 5545 || -0.99 | 6 | 317 | 2.45 | 42.86 | 0.002 | 0.04
‘ 0.999900 ‘ 331.6 H 43492 H -0.99 ‘ 34 H -0.99 ‘ 17 ‘ 16960 H -0.99 ‘ 11 ‘ 541 H 2.56 ‘ 80.40 ‘ 0.002 ‘ 0.06 ‘

Table 3.13: Efficiency for indicator function of the absolute value of the first component

being greater than 1.5, N = 11.



Chapter 4

Jacobian Overrelaxation for

Non-Gaussian Distributions

Adler’s overrelaxation suppresses random walks for Gaussian distributions with positively-
correlated components. However, Adler’s overrelaxation is applicable only to distributions
for which the full conditional densities are all Gaussian. We propose an algorithm effective
in suppressing random walks for distributions with positively-correlated components that
can be applied to any distribution as long as we can find the mean or mode or some other
approximation of location of the distribution of each component conditioned on all others.
We call this method Jacobian overrelazation (JO).

Section 4.1 presents the idea of the algorithm and shows how it works when applied on
a bivariate Gaussian distribution. Section 4.2 proves that the Markov chain constructed
by Jacobian overrelaxation leaves the desired distribution invariant. In this section the
ergodicity of the algorithm is investigated as well. In Section 4.3 we explore the choice
of the tuning parameters for simple Gaussian distributions and provide a guide for how

these parameters should be chosen for more general distributions. Section 4.4 examines

42
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the performance of Jacobian overrelaxation on a Bayesian logistic regression problem.

4.1 The Jacobian Overrelaxation Algorithm

One iteration of the Jacobian overrelaxation algorithm (JO) generates S candidate states
using overrelaxation type updates, as in (3.1), but without adding the Gaussian random
noise. It then chooses from among these S states, plus the current state, with probabilities
proportional to the densities of the states multiplied by Jacobian factors for each state.
At each iteration, the algorithm randomly chooses the overrelaxation parameter «, the
component, 7, to be updated first with «, and the number of updates, r, that will be
done using a. The remaining S — r steps will be overrelaxed with 1/«, updating the
components in reverse order, starting with the component (j —1) (mod N). To perform
an overrelaxation type step we need an approximation for the mean or the mode for each
conditional distribution for the component to be updated conditioned on all others. Note
that we do not need the exact mean or mode for the method to be valid. We will denote
by p,(2) this function of the components of z except the p'* component of z.

The procedure to generate the next state, y;.1, from the current state, y;, is:
1) Generate « uniformly at random on [a, b].

2) Generate j, the first component to update, uniformly from {0,1,..., N — 1}, where

N is the dimension of the state.
3) Generate r uniformly from {0,1,...,S}.

4) Let 20 = y, and zH) = (z(()k),...,z%c)_l) and let pr = (j + k) (mod N). The

algorithm generates the states 2(-(5-7) 201 20 20 a5 follows:
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Fork=0,...,7r—1

A = i () + o () (21) (4.1)
zz(k“) - zgk) for all i # py

For k=—1,...,—(S—r)
1
= L )
2z(k) = zgkﬂ) for all i # py

Note that either of these loops may be done zero times (when r =0 or r = 5).

5) Randomly select the next state y,,; from among z( (57 .. 20D 20 21 50

where each state, z*), has probability proportional to 7(z®)|a/".

The algorithm has two parameters: S, the number of new states from among which
we chose the next state, and the interval [a, b] in which « lies. The range for « controls
the degree of overrelaxation, and S controls the distance the chain moves. In Section 4.3,
we derive a relationship between good values for S and «. Therefore the algorithm will
require the choice of only one parameter.

To illustrate how the algorithm suppresses random walks we will consider a toy ex-
ample. Although the algorithm is intended mainly for non-Gaussian distributions, for
illustrative purposes we consider a bivariate Gaussian distribution. In Figure 4.1 (a) it is
shown how in one Jacobian overrelaxation step, the chain can move to a state in a distant
part of the distribution. Figure 4.1 shows the probability of choosing each of the S + 1

points on the trajectory.
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Figure 4.1: (a) The path shows the candidate states generated by Jacobian overrelaxation
applied to a bivariate Gaussian distribution with correlation 0.995. The parameters used
by the Jacobian Overrelaxation are S = 30 and o = —0.9. In this iteration, r = 26
updates were done with « and the first component updated with o was j = 1 (here z; is
on the vertical axis) The point chosen to be the next state, y¢11, is 14 steps away from
y¢- The ellipse represents the two standard deviation probability contour. (b) The plot
shows the density of the points on the trajectory in part (a) (dotted line), the powers of
|a| (dashed line) and the probabilities for each point obtained as a product of the density

and the corresponding power of || (solid line), with £ on the horizontal axis.

30
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4.2 Validity of the Method

The algorithm is valid if the Markov chain leaves the desired distribution invariant and
is ergodic. The invariance can be proved using Theorem 4.1 of Liu and Wu (1999) which

can be paraphrased as follows:

Theorem 4.1. Suppose (i) the random variable v ~ v(v); (ii) {¢, : r € A} is a set of one-
to-one differentiable transformations on v; (iii) a probability measure py(r) is defined on
A (iv) J,(w) = det{dt,(w)/0w}. Let ry be a random draw from py(r) and let w = t;! (v).
If

ry ~ v(rlw) oc vty (w)) | Jr (w)| po(r) (4.3)

then v' = t,, (w) follows the distribution v.

The above theorem holds in our case with the following choices of parameters: A =
{0,1,...,S}, po(r) is the uniform distribution on A, v = (y,,j), where y, is the state
of the chain at time ¢ and j is the component chosen to be first updated with a. The
distribution v is the joint distribution of y and j, where y is distributed according to 7 and
j is uniform on {0,1,..., N — 1}, independent of y, as it is established in step (2) of the
algorithm. The number of steps, r, the chain is updated with « is uniformly drawn from
{0,1,...,S}. Therefore the number of steps, ro = S — r, used to update the chain with
1/a is also uniformly distributed on {0,1,...,S}. The state w is obtained by applying
formula (4.2) S — r times, so that w = t5',(v) = (205, (j = (S—=7)) (mod N)).
Choosing r1, the number of steps to move forward starting from w and using an update

with « is equivalent to choosing among:

to(w) = (20D, (= (S=7)) (mod N)),

tg,,«,l(w) = (z(_l)a (.7 - 1) (mOd N)) )
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tSf'r(w) - (Z(O)a .7 (mOd N)) ;

tsri(w) = (2, (j+1) (mod N)),

ts(w) = (2, (j+r) (mod N))
with probabilities proportional to v(tz(w)) |Jx(w)| - (1/S) where Jx(w) = |af.

The state chosen is v' = (26574 (j— (S —r)+r;) (mod N)) =
(Yeg1, (j— (S—=r)+7r1) (mod N)) and follows the distribution v. Dropping the second
component of v’, we obtain that the marginal distribution of y, , is distributed according
to m, and therefore 7 is left invariant by the JO updates.

The algorithm chooses « at random at each step to ensure ergodicity. If « is fixed, there
are cases for which the chain produced by Jacobian overrelaxation will not be ergodic. For
a univariate distribution or a multivariate distribution with independent components the
conditional mean is the same for a particular component, so if « is kept constant, the chain
could move only through a countable number of states. We explore the ergodicity of the
Markov chain produced by the Jacobian overrelaxation algorithm for zero mean Gaussian
distributions with independent components, very low correlation between components,
and strong positive correlation between components.

For a bivariate distribution with independent components and a < 0, the chain never
reaches points on the main axes, because once it gets there, it will not move away. However,
since the chain gets close to the axes, the chain is ergodic as long as it is not started on
the main axes as we can see in Figure 4.2.

In Figures 4.2 through 4.4, we started with a bivariate independent Gaussian distri-
bution and increased the correlation between the components to 0.1, keeping the same
interval for . We can see that as we move away from the independent case, the chain

explores the space more efficiently. We have to note that the choice of the interval for «
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is not optimal for these correlations, but it was chosen only for illustration purposes.

We investigate the bivariate Gaussian with independent components with « closer to
—1 and S = 10. This situation is presented in Figure 4.6 (a)-(d). The chain explores the
state space very slowly and it is symmetric with respect to both main axes up to iterations
100,000 (see (a) and (b)). As the chain moves above 100,000 iterations, the chain gets
closer to the y—axis and it spends more time there before it moves towards the x—axis.

The case of strongly positively correlated components, for which this method is in-
tended, is presented in Figure 4.7. The chain explores the state space very efficiently.

For Gaussian distributions with independent components, performing Jacobian over-
relaxation with o > 0 will not produce an ergodic chain as the chain stays in the same
quadrant as the starting point. This can be easily seen as the conditional means are the
two main axes. If the first component of the vector that we are interested in updating is
negative, the first component of the next state will be the first component of the previous
state multiplied with o, which will also be negative. For p = 0.01 and a > 0, we can see
in Figure 4.5 that the chain is ergodic, although it does not sample efficiently, spending a
longer time around the main axes. However, we are not interested in using this algorithm

with o > 0.
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Figure 4.7: (a) 500 Jacobian overrelaxation iterations for a bivariate Gaussian distribu-
tion with correlation between the components of p = 0.99 (the square root of the ratio
of the largest to the smallest eigenvalue is approximately 14). The parameter used in
the Jacobian overrelaxation method are S = 40 and o € (—0.97,—0.95) (b) The first
component of the chain. The autocorrelations for the first component are close to 0 at lag

3. The autocorrelations for the square of the first component are close to 0 at lag 15.

The following theorem states the conditions under which we prove that for a bivariate
distribution it is possible to move from any state to any other state using Jacobian overre-
laxation updates. Note that in what follows we talk about approximate conditional mean
functions, but they can instead be the functions giving the conditional mode or any other

measure of location for the distribution of one component conditioned on the others.

Theorem 4.2. Suppose the bivariate distribution with non-independent components, T,
is such that w(x) > 0, the approrimate conditional mean functions are continuous every-

where except a set of measure 0, and the number of regions generated by the approximate
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conditional mean functions is finite within a bounded region. It is possible to move from
any state to any other state using Jacobian overrelazation type updates with o € (—a, —b)
or a € (b,a) with a,b > 0, except for a set of points of w probability 0. The set of points
of ™ probability 0 consists of the intersection points of the conditional mean functions.
For an independent bivariate distribution, Jacobian overrelazation with o > 0 does not
produce a chain that explores all states of the space. For independent bivariate distribution

Jacobian overrelaxation with o < 0, the conditional mean points cannot be reached.

Proof. For the special situation when the bivariate distributions has independent compo-
nents by performing Jacobian overrelaxation with o > 0 will not explore states from the
entire space since the chain can move anywhere in the region of the starting point, but it
cannot cross the conditional mean functions and move in another region.

For bivariate distributions with independent components, Jacobian overrelaxation with
a < 0, it is not possible to move to the points that lie on the approximate conditional
mean lines because if the chain reaches states on the approximate conditional mean lines
it cannot move away from there. For the same reason, for any distribution, it is not
possible to move to points found at the intersection of the approximate conditional mean
functions.

The proof is done for simplicity with S = 1, but it is valid for S > 1, since there is a
non-zero probability of moving to the same states as in the case S = 1.

The two approximate conditional mean functions divide up the space into regions. We
need to show that it is possible to move from any point in a region to any other point
in the same region and to prove that it is possible to move from a point in a region to a
point in any another region.

Note that we can move from X to any point since 7(z) > 0.

First we want to prove that we can get from any point X = X, = (Xél),Xéz)) to
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any point Y that are in the same region as determined by the approximate conditional
mean functions. We will show how to do this by performing two overrelaxation updates.
Assume the updates are done for the first component of the two dimensional vector and
that Xél) = p1 +d where d > 0 and p, is the approximate conditional mean or conditional
mode or some other measurement of location for the distribution of the first component
conditioned on the second. We prove that from X(gl) it is possible to move to any point
in (p1,00).

We show that it is possible to move from Xél) to any point in (u1+(b/a)d, u1+(a/b)d) in
two overrelaxation updates. We have to prove that for any point XQ(I) € (u1+ (b/a)d, ur +
(a/b)d), there exist a1, ag € (—a,—b) U (—=1/b,—1/a) or oy, as € (b,a) U (1/a,1/b) if

a > 0, such that:

X =y + an (XY = ) (4.4)
and
X = 4 op(XY — ) (4.5)
= U1+ oo (Hl + Oél(Xél) — /Ll) — ,U,1> (46)
= 1+ aas(X§) — ) (4.7)

This is equivalent to showing that there exist ay, s € (—a, —b)U(—1/b, —1/a) or a1, i €

(b,a) U (1/a,1/b) if @ > 0 such that

X(l)_
Qo = (X~ — ) (4.8)

(X5 = m)
We know that Xél) —p1 =d and X2(1) is such that XQ(I) — 1 € ((b/a)d, (a/b)d). Therefore
if @ < 0 we have to show that for any p € (b/a,a/b) there exist a;, s € (—a,—b) U

(—1/b,—1/a) such that ajae = p. We can choose any «; € (—a, —b) or ; € (—1/b,—1/a),
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and then let oy = p/ay, which will be in the desired range. To see this, assume a; €
(—a, —b), therefore 1/a; € (—1/b,—1/a) and combined with the fact that p € (b/a,a/b)
we obtain that ap = p(1/ay) € (—1/b,—1/a). Similarly if oy € (—=1/b,—1/a), ay =
p/ay € (—a, —b).

Similarly if @ > 0, we can choose «; € (b,a) and let ap = p/cy, which will be in the
desired range because p € (b/a,a/b).

Therefore we found an interval around Xél) such that there is a non-zero probability

) to any point in this interval. The distance from the lower

density of moving from Xél
end of the interval to the conditional mean after two overrelaxation updates is (b/a)d and
after 2n overrelaxation updates it is (b/a)"d. Therefore as the number of steps increases
we can move to any point arbitrarily close to the conditional mean. Similarly we can prove
that we can move to any point in (u; + d, 00), since after 2n overrelaxation type updates
we can move to a distance (a/b)"d ((a/b) > 1), which converges to co as n increases.

A similar proof is valid when the starting point is on the other side of the conditional
mean, i.e. Xél) =pu —d,d>0.

Therefore it is possible to move to any point on the same side of the approximate
conditional mean as our starting point, on the horizontal axis that passes through the
starting point. Similarly we can move to any point on the vertical axis that is on same
side of the conditional mean as the starting point. Therefore by performing successive
horizontal and vertical updates we can move from any point X in a region to any point
Y in the same region.

The conditional mean functions are continuous than the requirement that the approx-
imate conditional mean functions of being continuous everywhere except a set of measure

0 will be met. Because the approximate conditional mean functions are continuous almost

everywhere, the approximate conditional mean function with respect to which we perform
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the horizontal updates is not parallel with the z-axis and similarly the approximate con-
ditional mean function with respect to which we do the vertical updates is not parallel to
the y-axis. Therefore for any state we can perform updates both on the horizontal and
vertical directions.

We can move from a region to another region if the two regions have a non-zero length
boundary. Then with o < 0 we can either flip on the other side of one of the approximate
conditional means or by using the other approximate conditional mean we move through
this conditional mean until we obtain a state in the new region. If the boundary between
the two region has non-zero length and the boundary consists of the two conditional mean
functions which coincide for the boundary, we can move in the adjacent region by flipping
on the other side of the conditional mean either vertically or horizontally. If the boundary
between the two regions, A and B has zero length (either they are not neighbouring
boundaries or they have only one point in common, the intersection of the conditional
mean functions) then as described before we have to move from A to an adjacent region,
R, with which it has non-zero length boundaries. We can move from R; to B if the two
regions are adjacent and have a boundary of non-zero length. If that is not the case the
chain has to pass through a series of regions Ry, ..., R, such that two consecutive regions
have a boundary of non-zero length and R, has a boundary of zero length with B. A
sequence of such region Ry, ... R, exists. Indeed, assume A and B are enclosed a bounded
section and we added all the regions that have a non-zero length boundaries with A and all
the regions that have non-zero length boundaries with the new regions and so on. Assume
there is no region that has a non-zero length boundary with B, after adding all the regions
enclosed in the bounded section. However this is not possible, as the last regions added
have to have a non-zero length boundary with some other region and therefore we did not

add all the possible regions. Once we moved in the region B, as proved at the previous
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step, it is possible to move to any state in the same region.

For a > 0 it is essential as mentioned before that the conditional means are not the
horizontal and the vertical lines. To move from a region A to a region B with a > 0, the
two region need to have a non-zero length boundary or the chain has to move through a
series of neighbouring regions with non-zero boundaries to move to a state in B. Therefore
it is sufficient to show that we can move between two region that have a non-zero length
boundary. Let us denote the boundary conditional mean with C'; and let us assume that
it corresponds to vertical updates, and the other conditional mean function with C5 for
horizontal updates. We cannot use C; directly to move in the other region as we cannot
flip on the other side of the conditional mean. We need instead to get to a point in region
A for which the horizontal line that passes through this point and it is on the same side
of the conditional mean, C5, contains also points in region B. Therefore, because it is
possible to move to any point on this line, it is possible to move to a point in region B. If
we obtain a point in region B from this point it is possible to move to the desired point

Y, as was previously shown. O
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4.3 How to choose the parameters for

Jacobian Overrelaxation

In this section we derive a relationship between good values of o and S, such that only one
parameter of the method need be chosen. The relationship between the parameters should
be such that the ratio of the probability of staying in the initial state to the probability
of moving k steps away by updating with o or 1/« is such that we are reasonably likely
to move k steps away.

The relationship between a: and S is first derived for a univariate Gaussian distribution.
Later in this section we will argue how a similar relationship between o and S holds for
a bivariate Gaussian distribution with strongly correlated components.

Consider the univariate Gaussian distribution N(u,0?) and assume the chain at time
t is in the state y, = 2(0). By performing k overrelaxation type updates with o we obtain
the following states:
2D = p+ (2 — p)

2 = pt oz —p) = p+ (20 - p)

Z(k) = M+ a(z(k_l) — ,u) = /'L+ ak(z(o) — ,LL)

The probabilities of choosing the states 2(%, 2, ... 2() are proportional to 7(z(®),
(2 |al,...,m(z®)|alk. The ratio between the probability of choosing state k and the

probability of staying in the same state, 2(0) is:

P(of moving to state z®))  7(2®))|aft (4.9)
P(of staying in state z©) —  7(2(®) '

= Ial’“{e—az’““(")—mz/%z} /{e—<z(°)—“>2/2"2} (4.10)
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— Jafte O -n (@ =1)207 (4.11)

If this ratio is too small the state k steps away will very rarely be accepted and we therefore
performed too many overrelaxation type steps. On the other hand, if the ratio is close to
1, we performed too few overrelaxation type steps. If in fact this was the right amount of
suppression of random walks we could have used an « further from —1, and moved to a
different contour line. An appropriate ratio might be around ¢ = 0.1. Therefore by setting

the ratio of the probabilities above to be equal to ¢ we obtain:

If we take the logarithm of equation (4.12) and let A = —(2(® — p)?/(202), we obtain the

following equation in « and k:
A(a®* — 1) + klog |a| — log(c) = 0 (4.13)

Let us write the relationship between o and k in the form o = —e~B/%. Plugging this in

(4.13), we obtain the following equation in B:
g(B) = A(e™*® —1) — B —1log(c) =0 (4.14)

which does not involve k. We studied the above function and found that it achieves its
maximum for B, = —1/2log(—1/2A) and that the function g is increasing for B in
(=00, Biaz) and decreasing for B in (Bjeq, 00). Also, the limit of g as B goes to o0 is
—o00. Therefore the function g has two zeros. If updates with 1/« are done and we denote
B = 1/a we obtain the same equation as (4.13) in 8. Therefore the positive zero of the
function g correspond to updates done with o and the negative zero to updates done with
1/c.

The solutions of equation (4.14) depend on A, which is a function of the starting

point, and on ¢, which is the ratio of the probability of staying in the initial state to the
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probability of moving to the state k steps away. To investigate the possible solutions for
equation (4.14), we consider the range of values A and c can take. If 2(?) is distributed as
N(p, o), then (20 — p)2/0? is x2. The 5% and 95% quantiles of x? are 0.0039 and 3.84.
The values of A corresponding to these quantiles are —0.00196 and —1.92. In the table
4.1 we present the solutions for the equation (4.14) for some combinations of A and c.
The values for |B| are important because B > 0 corresponds to updates done with « and
B < 0 corresponds to updates done with 1/, but once we choose a B we do updates both
with o and 1/a. The values for | B| are between 0.43 and 6.61. For starting points close to
the mode, corresponding to A = —0.002 in Table 4.1, the values of the two solutions are
close in magnitude; for those starting points the same relationship between o and & holds
for updates with o and 1/« For starting points far away from the mode, corresponding to
A = —2in the Table 4.1, for updates with «, the relationship between « and the number
of steps requires values of B that are similar to those when the starting points are close to
the mode. This is not the case for the updates done with 1/«, for which the relationship
between o and k is based on very different values of B. This is due to the fact that when
the starting point is far away from the mode, the chain has to move to states closer to
the mode and therefore we have values of B = —0.43 that corresponds to values for 1/a
closer to 1 that allow the chain to move closer to the mode or at least not go further away
from the mode.

In the bivariate Gaussian case with strongly-correlated components, if the components
have different variances, after rescaling them the probability contour lines are nearly par-
allel to the line at 45° angle and the two conditional mean lines nearly coincide with the

45° line. Assume we are in the state 2*) = (z(()k),zyc)) and the first component is to

be updated next. If z(()k) is at a distance d from the conditional mean, after an update

with «, 20" is on the other side of the conditional mean at a distance |a|d. The next
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A c B B, o1 Qo

—0.002 | 0.1 | 2.30 | —4.03 | —0.977 | —0.961

—0.002 | 0.01 | 4.61 | —4.19 | —0.955 | —0.959

-2 0.1 | 430 | —0.43 | —0.958 | —0.996

-2 0.01 | 6.61 | —0.64 | —0.936 | —0.994

Table 4.1: Values that B can take depending on the starting point (A = —(2(® —pu)/(20?))
and on ¢, the ratio of the probability of choosing 2(*), to the probability of choosing 2%

as the next state. The values of « are for S = 100.

component to be updated, zgkﬂ) = z§k) is at the same distance |a|d from its conditional

mean because the conditional mean is almost along the 45° line. Therefore z§k+2), ob-
tained by one update with «, is at a distance a?d from the conditional mean. Therefore
in two overrelaxation type steps we moved the same distance from the conditional mean,
we would have moved in two overrelaxation steps in the univariate Gaussian case. If we
take into consideration that o has magnitude around 1, than the distance we move along
the diagonal in one step is 2d/v/2. For a N dimensional problem the distance moved in
one step is 2d/ V/N along the long diagonal. The difficulty of the problem is measured
by the square root of the ratio of the largest to the smallest eigenvalue, \/)W
The distance, d, is approximately equal to \/Amin and therefore if we want to move from
minus two standard deviations away from the mean to two standard deviations away it is
equivalent with moving a distance 4v/Aas. The number of overrelaxation steps needed
to move this distance is proportional to QW\/N .

The value for B would ideally be chosen based on the performance of the estimator,
measured by the autocorrelation time, as described in Section 2.1. Therefore we will run

an experiment for a bivariate Gaussian distribution with correlation p = 0.999 for which
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we will estimate the autocorrelation time, 7, for different values of B. We will fix the
number of steps, S, to twice the square root of the ratio of the largest to the smallest
eigenvalue, and we vary B from 0.5 to 10 with step 0.5. For each value of B, a will be in
—e(

B+0.1)/8 B—O.l)/S)

the interval (—e_( . For each B we generate a chain of length 10000
and we calculate the autocorrelation time, 7, for the first component of the chain and
for the first component squared. The lag at which the autocorrelations are close to zero
for most values of B is 200 and the autocorrelation times are obtained by summing the
autocorrelations up to this lag. The autocorrelation times as a function of B for the two
functions of state are plotted in Figure 4.8. The best B for the first component of the state
based on our experiment is 1 or less. This is expected since for linear functions of state
the optimal B would correspond to an « close to —1, corresponding to B being close to
0. The best B for the square of the first component is around 3.5, but any value between
2 and 8, corresponding to o between —0.98 and —0.92, will give a close-to-optimal value
for the autocorrelation times.

The relationship between o and S is different for the Gaussian distribution case with
independent components than the relationship for Gaussian distribution with strong cor-
related components. Consider the bivariate Gaussian distribution with independent com-
ponents and assume the mean of each component is zero, and hence the conditional means

(0) _(0)

are always zero. If we start in the state z(0) = (29,21 ), and begin by updating the first

component, after k overrelaxation type updates we have:

k) — (O‘k/QZ(()O); Oék/22§0)) if k£ is even w1
(a(k+1)/22(()0)’ a(k—l)/2Z§0)) ks odd

As we need only an approximation for the relationship between a and £ we can consider
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451

—— 1 for the first component
— — 1 for the first component squared

40

Figure 4.8: The autocorrelation times versus B are plotted for two functions of the com-
ponents: the first component of the states (solid line) and for the square of the first
component of the states (dashed line). The number of steps, S is fixed to 90 (twice the
square root of the ratio of the largest to smallest eigenvalue) and the relationship between

a and S is given by a = —exp(—B/S).

that 2® = (Ja|F22{”, |a|¥/22{”). Therefore,

(k) ok [ (24,2 I RONIINON
(") _ ] () 12 e(<0>+<1))/2 (416)
7(2)

()6 @412

= e (4.17)
and
P(of moving to state z%)  7(z®)|alk (4.18)
P(of staying in state 2©0) —  7(2() '
2OV O (o
ol (" +60) )@ -vy2 (419

Taking the logarithm of the equation below

()4 @k -1
la*e ( 2 ) = c (4.20)
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2 2
and letting A = — ((z(()o)) + (21 ) /2, we obtain the following equation in « and &:
A(a® —1) + klog|a| —log(c) =0 (4.21)

Note that this equation is very similar to the equation (4.13). To investigate the rela-
tionship between « and k£ we will proceed as in the Gaussian univariate case by assuming
the relationship between o and k is of the form a = —e~#/k. Plugging this in (4.21) we

obtain the following equation in B:

g(B) = A((~1)*¢ ® —1) — B —log(c) = 0 (4.22)

2 2
Because (2”)" + ()" is distributed according to a x2, we choose the 5% and 95%

quantiles for x3, that correspond to values of A of —0.05 and —3 respectively. From Table
4.2 we can see that the range of values for |B| for the bivariate case with independent
components is between 0.69 and 7.6 and it is comparable to the range of |B| for the
univariate case that was from 0.43 to 6.61. For independent Gaussian distributions, as N
increases, the values for | B| increase. For example for N = 100, A = —62 corresponding
to the 95% quantile for the x2,, and ¢ = 0.1, the corresponding B's are 30.85 and —6.97.

In summary, for higher dimension distributions with strongly positive correlated com-
ponents, for which JO is meant to work well, we are expecting, as we discussed earlier,
that the relationship between o and S will be similar to the case for the univariate Gaus-
sian distribution. To assess the difficulty of the problem we scale the components of the
distribution such that the variances for all components are the same, obtaining a new
scaled variance-covariance matrix. A good value for S is about twice the square root
of the ratio of the largest eigenvalue to the smallest eigenvalue of the scaled variance-
covariance matrix times the square root of the dimension of the distribution. This will
ensure that the chain can move in one Jacobian overrelaxation to a distant state. This is

true for Gaussian distributions, but it probably works for other distributions that are close
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A C Bl BQ

—0.05 | 0.1 | 2.35 | —4.99

—0.05 | 0.01 | 4.65 | —5.29

-3 0.1 |5.29| —0.69

-3 10.01]7.60| —1.06

Table 4.2: Values that B can take depending on the starting point (A =
— ((z(()o))2 + (z§0))2) /2) and on ¢, the ratio of the probability of choosing z*), to the

probability of choosing 2(*) as the next state.

to Gaussian. This rule can probably not be used in practice as the variance-covariance
matrix is not available. The parameter « is then derived based on the relationship estab-
lished, @ = —e~P/%, where the value of B can be between 2 and 8. This rule of thumb
is valid for bivariate Gaussian distribution with highly positively-correlated components.
The validity of this recommendation is verified in the next section on a logistic regression

problem.

4.4 Logistic Regression Example

In this section we evaluate the performance of Jacobian overrelaxation on a logistic re-

gression example. We compare Jacobian overrelaxation with the Metropolis algorithm.

4.4.1 The Bayesian Logistic Regression Model

To illustrate the performance of Jacobian overrelaxation we will consider its use for a
logistic regression model. We are given (yi, Z11,..-Z1p)s-- - (Yis Ti1, - - - Tip),

ooy (Yn, Tp1,---Tpp). The response variable, y;, is assumed to be Bernoulli(p;) and the
14
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logistic regression model is:

log (1 Pi > = ﬂ() + ﬂl.l?ﬂ + ... +ﬁp.’13ip, for all 7+ = 1, () (423)
—Di
In a Bayesian context we are interested in the posterior distribution of 8 = (5o, 1, .. -, 5p)"-
If we denote x; = (1,1, ..., %) then
= P(y; = = 1 4.24
pi = (%—U@—m (4.24)
Denote by X the design matrix,
1 ZTi1 .- Typ
X=1": (4.25)
1 zp .0 oy

we consider the prior distribution for 8 to be N(ug,%g). The posterior distribution for
B can be written as:
n 1 Yi e~ TiB 1-yi R
P(Bly, X) o 1} (m) (m) o~ (B=1g) 5 (Bng) /2 (4.26)
The Jacobian method requires the calculation of the mode of the distribution or an
approximation to it for each component of 8 conditioned on all the other components.
It is more convenient to work with the energy function, F, that is defined as minus
the logarithm of the joint density. The Illinois method as described in Section 4.2.5 of
Thisted (1988) is used to find the minimum of the energy function by finding the zero of
the derivative of the energy. The Illinois method is a bracketing method that requires two
starting points @ < b such that E'(a)E'(b) < 0, implying that E’ has a zero in the interval
[a,b]. To locate the starting points a and b, we start by evaluating the first derivative of
the energy at the mode of the prior distribution. If the first derivative is positive, the

minimum is found at the left of this point; if it is negative the minimum is found at the
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right of this point. We step left or right using a step size, ¥, of magnitude 1, and doubling
the step size each time until we find two points a and b for which the signs of the first
derivative evaluated at these points are opposite. We stop the Illinois algorithm when two
consecutive points are within a distance less than 0.01. To reduce the computational effort
we have experimented by increasing this distance to 0.1, but then, due to the fact that the
mode is very inaccurately determined, the chain obtained by the Jacobian overrelaxation
explores the space less efficiently.

The energy function for the logistic problem considered above is:

E() x —logP(8ly,X) (4.27)
= log (H(l + e"""B)> — log (e_ Yin “”'B(l_yi)) (4.28)
i=1
(B — 1) 25" (B — pp)
+
2
i=1 i=1
(5 - ug)’EEI(ﬁ - Hﬂ)
* 2
- . ) B — )5 (B~
= (log(1l +e™*P)) + (e —y) XB + (B = g) 2ﬂ (B = 1) (4.30)
i=1
where e = (1,1,...,1) of dimension n. The first derivative of the energy function is:

OF _x < e T1B e~ TnB

0B 14+e =B’ 7] —{—6“””3) +X'(e—y) +251(,3 _ﬂ'ﬂ) (4.31)

_ oyt 1 , .
- X <1+ez13’---a1+emng +X'(e—y)+ 3, (B — pp) (4.32)

The Jacobian overrelaxation method requires repeated calculation of the first derivative
of the energy, both for finding the starting points a and b for the Illinois method, and for

finding the minimum using this method. Only one component of 8 changes during these
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operations. We can take advantage of this to reduce the computation time. Assume the
chain is in the state 8¢ with energy F(8°%) and the next state 3"““ is the same as 8¢
except for the [ component. The energy and the first derivative for 8"* can be obtained

from the energy and first derivative of 8%%. Using the following notation:

rB) = XB (4.33)

V(B) = (B— 1) (B — ps) (4.34)

UB) = 358 - mp) (4.35)

Q = %5 (4.36)

Q. = the I"® column of Q (4.37)

§ = prev— g (4.38)

X, = the " column of X (4.39)

we can rewrite

T(B"™") = T(B™)+ X .0 (4.40)
V(") = V(B") +5((B" — w)'Q.u+ (1/2)qu) (4.41)
u(pr) = U(ﬁ"ld)+5(iqu) (4.42)

Recalculating the energy function requires n(p + 2) multiplications when evaluating (e —
y) X 3. By writing the product X 8" as a function of X3°“ as in (4.40), we can reduce
the computational effort for computing (e — y) X 8" to n multiplications. Similarly
for (B — pg)’ Zgl(ﬁ — pg) the computational effort per evaluation of energy function can
be reduced from (p + 1)(p + 2) multiplications to just p + 1 multiplications by using
the expression (4.41). For the first derivative of the energy function, the evaluation of
Z/gl(ﬁ — pg) requires p + 1 multiplications, which can be reduced to one summation and

one multiplication by using (4.42).
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4.4.2 Description of the Experiment

The purpose of this experiment is to compare the Jacobian overrelaxation method with
the Metropolis algorithm, and to check how the formula relating S and «, derived in
Section 4.3 works for the logistic regression problem.

The data for the logistic regression model was generated as follows:
e The number of predictors p, is 15. There is also an intercept.

e The prior distribution for B is Gaussian with mean pg = 0 and X5 = 100014, (i.e.,

the standard deviation for each §; is approximately 30).

e The logistic regression coefficients are:

b=(1.1,1.2,1,1,1,0.9,1.1,1.1,1.4,1.3,1.2,1.2,1.5,0.7,0.9, 1.1)

e The columns 1 to p of matrix X were generated randomly from a Gaussian distri-

bution, with mean 0 and variance-covariance matrix of form:

/1 p ... p\

1 ...
s=|" P (4.43)

\pp...l/

Because we are trying to produce a posterior distribution for which the components
are positively correlated, we set the correlation between the predictors to be negative,

specifically p = —1/(p — 1) + 0.0001.
e Y is 1 with probability p; = 1/(1 + e ®#) and 0 with probability 1 — p;.

e There were n = 100 cases generated.
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Based on a sample drawn from the Bayesian logistic regression posterior distribution
using the Metropolis algorithm, we computed the sample variance-covariance matrix for
this problem. Although the posterior distribution is not Gaussian, and therefore might
not be of an ellipsoidal shape, the square root of the ratio of the largest to the smallest
eigenvalue of the scaled sample variance-covariance matrix is still a measure of the diffi-
culty of the problem. For this logistic regression problem the ratio is \/Amaz/Amin ~ 40.
In Section 4.3 we recommended to take the number of steps, S, to be approximately
%/)W\/N , where N is the dimension of the target distribution. For our logistic
regression problem, S according to this recommendation should be around 320, as the di-
mension of our problem is 16, 15 predictors plus the intercept. We consider values for S of
100, 200, 300, 400 and 600 to determine the best value of S empirically. For each value of
S, we investigate different values for «, set according to the formula oy = — exp(—B/S),
where we take B = 4. To check the validity of the formula we move oy closer to —1 by
dividing the distance from —1 to a; by 2 and for S = 100 and S = 200 even by 4, and
we move it further from —1 by doubling the distance, obtaining this way the “middle”
of the intervals. Because we do not have an idea of the width of the interval in which «
should lie, we consider different lengths of the interval for each “middle” of the interval.
Assume the “middle” of the interval is at a distance € from —1, then we chose the ends
of the intervals such that the lengths of the intervals on a logarithmic scale are 1.5, 2
and 3. Therefore the interval of “length” 1.5¢ interval is (=1 + ¢/v/1.5, —1 + €\/1.5), of
“length” 2¢ is (—1 + €/v/2, —1 + €V/2)), of “length” 3¢ is (—1 +¢/v/3, —1 + €/3), and for
S =400 and S = 600 we try even 4e “length” interval. Table 4.3 summarizes the values
of S and « that we use in our experiments. The first column in each table represents the
distance from the “middle” of the interval to —1, and the rest of the columns contain the

interval from which « is randomly chosen by the Jacobian algorithm. L is the logarithm
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of the ratio of the distances from the ends of the interval to —1. L should be the same
for intervals of the same “length”, no matter where the position of the “middle” of the
interval is with respect to —1. We can see that not all L’s in one column are the same;
this is due to the fact that the ends of intervals were rounded to 3 decimal places. We
rounded to 5 decimal places all ends of the intervals for S = 600 and the ones in the first
row of the table for S = 400, as for these cases oy, as derived by the formula, is closer to
—1 and 3 decimal places were not enough to give us accurate intervals.

For each set of the parameters we ran a chain a number of iterations, #¢, such that
S x it = 2,400,000. We then determined 7, the autocorrelation time (as described in
Section 2.1), for 42, and T the CPU time per iteration.

We chose the best combination of parameters as being the ones that achieve the small-
est value of 7 x T'. For this S and interval for o, we ran 5 more chains to assess the
variability of the estimator for 7.

We also assessed the performance of the estimators by finding the lag by which the
autocorrelation dropped to approximately 0.2, which was then multiplied by the CPU time
per iteration. This method has the advantage that it eliminates any bias introduced by
manually finding the lags at which the autocorrelations are close zero, but it comes at the
expense of having to assume that the shapes of the autocorrelation functions are the same
for all choices of parameters. For example the autocorrelation function for autoregressive
processes is exponentially decreasing. Based on a visual inspection of the autocorrelations
we concluded that a similar assumption can be made in our case too. For each set of
parameters, we found the lag at which the autocorrelation is just below 0.2 and the one
at which is just above 0.2 and we did a linear interpolation for these two points in order

to find the (fractional) lag at which the autocorrelation is 0.2.
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€ 1.5¢€ 2e 3 e
S =100 Interval L Interval L Interval L
0.010 (-0.992,-0.988) | -0.405 | (-0.993,-0.986) | -0.693 | (-0.994,-0.983) | -1.041
0.020 (-0.984,-0.976) | -0.405 | (-0.986,-0.972) | -0.693 | (-0.988,-0.965) | -1.070
0.039 (-0.968,-0.952) | -0.405 | (-0.972,-0.945) | -0.675 | (-0.977,-0.932) | -1.084
€ 1.5¢€ 2e 3 €
S =200 Interval L Interval L Interval L
0.005 (-0.996,-0.994) | -0.405 | (-0.996,-0.993) | -0.560 | (-0.997,-0.991) | -1.099
0.010 (-0.992,-0.988) | -0.405 | (-0.993,-0.986) | -0.693 | (-0.994,-0.983) | -1.041
0.020 (-0.984,-0.976) | -0.405 | (-0.986,-0.972) | -0.693 | (-0.988,-0.965) | -1.070
0.040 (-0.967,-0.951) | -0.395 | (-0.972,-0.943) | -0.711 | (-0.977,-0.931) | -1.099
€ 1.5¢€ 2e 3 €
S =300 Interval L Interval L Interval L
0.007 (-0.994,-0.991) | -0.405 | (-0.995,-0.990) | -0.693 | (-0.996,-0.988) | -1.099
0.013 (-0.989,-0.984) | -0.375 | (-0.991,-0.982) | -0.693 | (-0.992,-0.977) | -1.056
0.026 (-0.979,-0.968) | -0.421 | (-0.982,-0.963) | -0.721 | (-0.985,-0.955) | -1.099
€ 1.5 ¢ 2e 3 e 4e
S =400 Interval L Interval L Interval L Interval L
0.002 (-0.99797,-0.99695) -0.407 (-0.99824,-0.99648) -0.693 (-0.99856,-0.99569) -1.096 (-0.99876,-0.99502) -1.390
0.005 (-0.996,-0.994) -0.405 (-0.996,-0.993) -0.560 (-0.997,-0.991) -1.099 (-0.998,-0.99) -1.609
0.010 (-0.992,-0.988) -0.405 (-0.993,-0.986) -0.693 (-0.994,-0.983) -1.041 (-0.995,-0.98) -1.386
0.020 (-0.984,-0.976) -0.405 (-0.986,-0.972) -0.693 (-0.988,-0.965) -1.070 (-0.99,-0.96) -1.386
€ 1.5 € 2e 3 € 4e
S = 600 Interval L Interval L Interval L Interval L
0.002 (-0.99864,-0.99797) -0.401 (-0.99883,-0.99765) -0.697 (-0.99904,-0.99712) -1.099 (-0.99917,-0.99668) -1.386
0.003 (-0.99729,-0.99593) -0.407 (-0.99765,-0.99530) -0.693 (-0.99808,-0.99425) -1.097 (-0.99834,-0.99336) -1.386
0.007 (-0.99458,-0.99187) -0.405 (-0.99530,-0.99061) -0.692 (-0.99617,-0.98850) -1.099 (-0.99668,-0.98672) -1.386
0.013 (-0.98916,-0.98374) -0.405 (-0.99061,-0.98122) -0.693 (-0.99233,-0.97700) -1.098 (-0.99336,-0.97344) -1.386

Table 4.3: The intervals for «, for S = 100 to S = 600 and for various distances ¢ from

—1.
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4.4.3 Performance of Jacobian overrelaxation for the Logistic

Regression Problem

For all combinations of parameters as presented in Table 4.3 we simulated Markov chains
using Jacobian overrelaxation. In Table 4.4 we summarize for each combination of pa-
rameters the lags at which the autocorrelations are close to zero, the autocorrelation time
for 52, and the CPU time per iteration. In Table 4.5 we summarize the performance of
the method measured as the product of 7, the autocorrelation time, and 7', the CPU time
per iteration.

For the apparently best combination of S = 400, ¢ = 0.010 and an interval for a of
“length” 3¢, we assessed the variability of the estimator by running 5 chains with different
random seeds. From Table 4.7 we can see that there is variability in 7's from 7.0 to 9.6
as well as in the CPU time per iteration from 0.58 to 0.60 producing a variability in the
performance between 4.0 to 5.8 with an average of 4.9. The performance as measured
by lag needed to achieve an autocorrelation of approximately 0.2, multiplied by the CPU
time per iteration, ranges between 4.0 to 5.3, as seen in Table 4.7, with an average of 4.8.

The variability was also assessed for a large value of the product 7 x T, 11.7, achieved
for § = 200, e = 0.040, length of the interval 2¢, found in Table 4.5. The 5 extra chains
produce values of 7 x T between 8.9 to 10.5 as seen in Table 4.8.

There is a large variability in the estimates of the performance, that could raise the
question regarding the conclusion for best o and S for this problem. From the tables, one
can see that the estimates of the performance for S = 100 are all less than the estimates
of the performance for S = 200, therefore we can decided that S = 100 is not the optimal
parameter. The fact that the performance is not very different for different values of S is

good, as in practice one will not be able to choose the best S.
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For § = 200, the smallest value of 7 x T is 5.6, which is obtained for a “length” of
the interval 2¢ and the “middle”of the interval at half of the distance from —1 that the
formula would recommend. For S = 300 the minimum is attained at 5.7 for an interval
of “length” 2e¢ and the “middle” of the interval given by our formula.

Overall, the smallest value for 7 x 7" is 4.5, obtained for S = 400, an interval of “length”
3e and the “middle” of the interval as given by the formula derived in Section 4.3.

For S = 600, the values for 7 x T" are higher, so we can stop our experiment here, by
choosing as the best value S = 400.

The performance as assessed by multiplying the lag at which the autocorrelation is 0.2
with the CPU time per iteration is summarized in Table 4.6. The results are qualitatively
similar with the previous way of assessing performance, based on the autocorrelation time.
For S = 400 and the “middle” of the interval at a distance 0.010, the performance is similar

for any interval of “length” 1.5¢, 2¢ and 3e.
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€ 15¢ 2¢ 3e€
it=24000, S = 100 | lag T T lag T T lag T T
0.010 180 | 80.6 | 0.15 | 140 | 70.7 | 0.15 | 140 | 63.2 | 0.15
0.020 150 | 79.4 | 0.15 | 160 | 69.1 | 0.15 | 140 | 76.9 | 0.15
0.039 120 | 69.9 | 0.15 | 110 | 64.1 | 0.15 | 150 | 89.3 | 0.14
€ 1.5¢ 2e 3e€
it=12000, S = 200 | lag T T lag T T lag T T
0.005 40 | 19.7 | 029 | 60 | 32.7 | 0.29 | 60 | 24.5 | 0.31
0.010 90 30.5 | 0.29 40 18.3 | 0.31 70 274 | 0.29
0.020 60 | 26.9 | 0.30 | 60 | 27.9 | 0.28 | 40 | 20.5 | 0.30
0.040 60 | 35.2 | 0.29 | 80 | 40.0 | 0.29 | 80 | 36.3 | 0.31
€ 1.5¢€ 2e 3e€
it=8000, S = 300 | lag T T lag T T lag T T
0.007 35 | 13.7 | 0.46 | 40 | 14.4 | 045 | 35 | 13.9 | 0.43
0.013 30 14.7 | 0.43 25 13.1 | 0.44 60 25.1 | 0.44
0.026 50 | 20.8 | 0.44 | 40 | 149 | 0.44 | 40 | 19.3 | 0.43
€ 1.5¢€ 2¢ 3e€ 4e
it=6000, S =400 | lag T T lag T T lag T T lag T T
0.002 150 | 18.5 | 0.61 | 25 9.0 | 0.62 | 25 | 11.6 | 0.63 | 25 9.4 | 0.61
0.005 30 | 16.2 | 0.59 | 30 | 10.7 | 0.58 | 25 9.7 | 0.57 | 25 | 10.3 | 0.58
0.010 15 8.0 | 0.59 | 20 9.3 | 0.58 | 20 7.9 | 057 | 30 | 12.5 | 0.58
0.020 20 | 10.5 | 0.57 | 25 | 10.3 | 0.58 | 20 9.7 | 0.58 | 25 | 10.6 | 0.59
€ 1.5¢€ 2e 3e€ 4e
it=6000, S = 600 | lag T T lag T T lag T T lag T T
0.002 25 | 76 | 0.87 | 80 | 206 | 0.88 | 50 | 13.2 | 0.88 | 20 | 7.4 | 0.89
0.003 25 | 7.7 | 0.86 | 25 | 10.0 | 0.88 | 20 7.8 | 0.88 | 15 | 6.2 | 0.87
0.007 15 | 7.3 | 0.90 | 25 8.8 | 0.89 | 20 6.5 | 093 | 15 | 6.5 | 0.89
0.013 20 | 7.6 | 0.90 | 15 6.0 | 0.89 | 20 7.0 [ 089 | 15 | 7.5 | 0.91

Table 4.4: The lags at which the autocorrelations are close to zero, the autocorrelation
time, 7, and the time per iteration, 7', for each combination of S and length and positioning

of the interval around «.
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S=100,¢ | 1.5¢ 2€ 3¢
0.010 12.0 | 109 | 9.3
0.020 12.0 10.1 | 11.7
0.039 10.5 9.5 | 12.6

S=200,¢ | 1.5¢€ 2¢e 3¢
0.005 5.7 9.6 7.6
0.010 8.8 5.6 7.9
0.020 8.0 7.7 6.1
0.040 10.3 11.7 | 11.3

S=2300,¢ | 1.5€¢ | 2 3¢
0.007 6.3 6.4 | 6.0
0.013 6.4 | 5.7 | 11.0
0.026 9.1 6.6 | 8.4

S =400,¢ | 1.5€ | 2¢ | 3 € | 4e

0.002 11.3 | 56 | 7.3 | 5.8

0.005 9.5 6.2 | 56 | 6.0

0.010 4.7 54 | 45 | 7.3

0.020 6.0 6.0 | 56 | 6.3

S=600,¢ | 1.5¢€ 2¢ 3¢ 4de

0.002 6.6 18.0 | 11.6 | 6.6

0.003 6.6 8.8 6.9 | 5.4

0.007 6.6 7.8 6.1 5.8

0.013 6.8 5.4 6.2 | 6.8

76

Table 4.5: The performance of Jacobian overrelaxation as assessed by the product of 7,

the autocorrelation time, and 7', the CPU time per iteration. The results above are for

all combinations of S and length of interval and position of a with respect to —1.
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7

S=100,¢ | 1.5€ | 2¢ 3¢
0.010 9.6 79 | 83
0.020 10.2 | 7.3 | 10.9
0.039 9.7 | 85 | 11.3

S=200,¢ | 1.5¢ 2€ 3¢
0.005 5.3 10.5 | 6.2
0.010 7.0 52 | 6.9
0.020 7.7 7.0 | 5.5
0.040 9.5 8.9 | 9.8

S=2300,¢ | 1.5¢ | 2 3¢
0.007 5.4 4.6 | 5.1
0.013 6.1 5.4 | 10.0
0.026 7.6 6.5 | 7.0

S =400,¢ | 1.5€ | 2¢ | 3 € | 4e

0.002 6.0 | 46 | 6.5 | 4.9

0.005 9.1 51| 49 | 5.3

0.010 4.3 50 | 45| 6.5

0.020 5.6 5.7 | 5.2 | 5.7

S=600,¢ | 1.5€e | 2¢ | 3¢ | 4e

0.002 5.5 74| 76| 5.6

0.003 5.4 84 | 6.4 | 5.1

0.007 6.4 6.9 | 6.2 | 5.1

0.013 6.1 53 | 6.7 | 6.7

Table 4.6: The performance as assessed by the lag at which autocorrelations are 0.2

multiplied by the CPU time per iteration, 7.
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Run | lag | T T | 7xXT |lagga x T
1 15 | 771059 | 4.6 4.4
2 20 | 88058 | 5.1 5.1
3 15 | 7.0]0.58 | 4.0 4.0
4 |20 88059 5.2 5.2
5 20 1 9.6 060 | 5.8 5.3

Table 4.7: Variability for the performance of JO for S = 400, ¢ = 6,000 and
a € (—0.994,-0.983). The 5 extra runs are summarized by lag, lag at which the au-
tocorrelations appear to be zero, 7, the autocorrelation time, 7', time per iteration, 7 X T',
performance, lagyo X T, performance as assessed by multiplying the (fractional) lag at

which the autocorrelation is 0.2.

Run | lag | 7 T |7xT|lagys xT

1 70 | 34.0 | 0.31 | 10.5 10.1

2 70 | 34.5|0.30 | 10.4 8.6
3 60 | 30.8 | 0.31 | 9.5 9.0
4 60 | 34.4 | 0.30 | 10.5 9.5
3 60 | 29.5]0.30 | 8.9 7.8

Table 4.8: Variability for the performance of JO for § = 200, it = 12,000 and
a € (—0.972,—-0.943). The 5 extra runs are summarized by lag, lag at which the au-
tocorrelations appear to be zero, 7, the autocorrelation time, 7', time per iteration, 7 X T,
performance, lagyo x T, performance as assessed by multiplying the (fractional) lag at

which the autocorrelation is 0.2.
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4.4.4 Performance of the Metropolis Algorithm for the Bayesian

Logistic Regression Problem

We chose for comparison the Metropolis algorithm, because it is easy to implement, it is
widely applicable, and it is widely used as well. Simple Gibbs sampling is not easy to
implement as we cannot obtain an analytical form for the full conditional distributions.
One could use adaptive rejection sampling as presented Gilks and Wild (1992), but this
is applicable only to problems (such as this one) for which the full-conditional densities
are log-concave. We aim here to evaluate JO for a wider class of problems.

The global Metropolis algorithm updates all components at once. For our logistic
regression problem, we used a Gaussian distribution proposal, centered at the current
point and with standard deviation of 0.17. This proposal produced a rejection rate of
75%, which is close to the value of 76.6% that Roberts et al. (1997) proved that produces
an optimal chain as the dimensionality of the problem increases. We ran a chain 6, 000, 000
iterations long, where an iteration corresponds to updating all components once (i.e., one
global Metropolis update), and we kept every 100¢h iteration. For this thinned chain,
the autocorrelations are close to zero at lag 600, the autocorrelation time for the second
component squared is 259.6, and the CPU time per 100 iterations is 0.022. Therefore
the performance as given by the product of the autocorrelation time and the time per
100 iteration is 5.6. We assessed the variability of this estimator by running five more
chains with the same parameters, but with different random seeds. The autocorrelation
times multiplied by the CPU times per 100 iterations are presented in Table 4.9, and they
vary from 7.3 to 9.4 with an average of 8.1. The other performance measure, based on
the product of the (fractional) lag at which the autocorrelations are 0.2 and the time per

iteration, gives us an estimate of 4.7 for the first chain and the variability of this estimate
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is presented in Table 4.9, with an average of 7.1.

If we consider that Jacobian overrelaxation can take advantage of the fact that the
energy of a state can be written as a function of the energy of the previous state when
only one component is changed, then Metropolis should take advantage of this as well, by
using Metropolis in which one component is updated after which the new state is accepted
or rejected. In this case the rejection rate cannot be justified as in the global Metropolis
algorithm as the result used there was based on an asymptotic result. The increase in the
dimensionality of the problem doesn’t have an impact on the local Metropolis algorithm
which updates one component at a time. The rejection rate in this case should be lowered
and as a rule of thumb a optimal rejection rate is around 50%. A standard deviation of 0.57
for the Gaussian proposal centered at the current state achieves a rejection rate of about
50%. A chain 1,600,000 iterations long, where each iteration consists of updating all the
components once, was simulated and every 100th iterations was kept. For this chain the lag
at which the autocorrelation for 37 is close to zero is 80, the autocorrelation time is 36.7,
and the time per 100 iteration is 0.32, giving a performance of 11.8. The performance for
local Metropolis seems to be worse than the performance for the global Metropolis because
the time per iteration was calculated without taking advantage of the fact that the energy
when you update one component at a time can be written as the energy of the previous
state as discussed in Section 4.4.1. The MATLAB program used for all our simulations
was not able to take advantage of this property because the overhead operations seem to
take longer than multiplications of matrices. By using another programming language,
for example C, and taking advantage of this property, for our logistic regression problem
of dimension 16, we could probably improve the performance of local Metropolis and
Jacobian overrelaxation 10 times. Local Metropolis would then be more desirable to use

than global Metropolis and it is therefore the appropriate algorithm to compare with JO.
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Five additional local Metropolis chains of the same length are simulated and their
variability in performance ranges from 10.0 to 14.3 as measured by the product of 7 and
CPU time per 100 iterations with an average of 12.2 and between 8.5 to 11.1 as measured
by the product between the number of iterations needed to achieve a autocorrelation of
about 0.2 and CPU time per 100 iterations with an average of 9.8. These results can be

found in Table 4.10.
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Run | lag T T 7XT | lagyo xT
1 | 600 | 324.6 | 0.022 | 7.3 6.4
2 | 800 | 366.8 | 0.023 | 8.3 7.3
3 | 600 |343.5|0.023 | 7.9 6.4
4 1650 | 336.0 | 0.023 | 7.7 6.7
5 |850|419.4|0.023 | 9.4 8.9

82

Table 4.9: Five extra chains’ performance of global Metropolis to assess the variability

of the performance. Performance is measured by 7 x T, the product between the au-

tocorrelation time and the time per iteration, and by the (fractional) lag at which the

autocorrelation is 0.2 multiplied by the time per iteration.

Run | lag T T | 7XxT | lagyo xT
1 90 | 38.5]0.33 | 12.6 10.5
2 | 100 |43.1)0.33 | 14.3 11.1
3 70 | 31.2 ] 0.32 | 10.0 8.5
4 80 | 33.6 | 0.33 | 11.1 9.1
5 | 100 | 40.8 | 0.32 | 13.0 9.7

Table 4.10: Five extra chains’ performance of local Metropolis to assess the variability

of the performance. Performance is measured by 7 x T, the product between the au-

tocorrelation time and the time per iteration, and by the (fractional) lag at which the

autocorrelation is 0.2 multiplied by the time per iteration.
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4.4.5 Efficiency of Jacobian Overrelaxation versus

Metropolis

The best performance for Jacobian overrelaxation was accomplished for S = 400, 3¢
“length” interval, where ¢ = 0.01. The average value of 7 x 7', based on five chains
simulated using the same parameters, but different random seeds, is 4.9. Jacobian overre-
laxation performance is therefore slightly superior to global Metropolis performance. The
ratio of the average performance, measured as the autocorrelation times multiplied by the
CPU time, for global Metropolis versus Jacobian overrelaxation, is 8.1 : 4.9, that makes
Jacobian overrelaxation 1.7 times more efficient. We calculated the standard error for the
ratio estimators as in Murthy (1967). The standard error for the above estimator is 0.1.
The other measure of performance gives us a ratio of efficiency of 1.5 + 0.1. However we
can take advantage of the fact that we can improve the computational time by writing
the energy of one state as a function of the energy for the previous state as described
in Section 4.4.1. Both Jacobian overrelaxation and Metropolis for which we update one
component at a time can take advantage of this property.

For local Metropolis the average value of 7 x 7', based also on five chains is 12.2.
Therefore Jacobian overrelaxation is 2.5 & 0.2 times more efficient than Metropolis in
which you update one component at a time.

A similar result is obtained if you compare the performances as given by the number
of iterations needed by the autocorrelations to reach 0.2 multiplied by the CPU time
per iteration. The best performance for Jacobian overrelaxation obtained by averaging 5
different values is 4.8 and for Metropolis one component at a time is 9.8, making Jacobian
overrelaxation 2.0 £ 0.1 times more efficient.

As the correlation between the components increases, Jacobian overrelaxation performs

better and better as compared to Metropolis algorithm. This is due to the fact that
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Jacobian overrelaxation suppresses random walks. As the ratio of the square root of the
largest to the smallest eigenvalue increases k times, Jacobian overrelaxation becomes only
k times worse, but the Metropolis algorithm, which performs a random walk, becomes k?

times worse.



Chapter 5

Coupled Markov Chain Monte Carlo

Estimators

In this chapter, we show how large improvements in the accuracy of MCMC estimates
for posterior expectations can sometimes be obtained by coupling a Markov chain that
samples from the posterior distribution with a chain that samples from a Gaussian ap-
proximation to the posterior. Use of this method requires a coupling scheme that produces
high correlation between the two chains. An efficient estimator can then be constructed
that exploits this correlation, provided an accurate value for the expectation under the
Gaussian approximation can be found, which for simple functions can be done analyti-
cally. Good coupling schemes are available for many Markov chain samplers, including
Gibbs sampling with standard conditional distributions. For many moderate-dimensional
problems, the improvement in accuracy using this method will be much greater than the

overhead from simulating a second chain.

85
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5.1 Introduction

One of the early solutions for drawing samples from a complicated posterior distribution
f, was to find a Gaussian approximation, g, and use E,(a(y)) as an approximation to
E¢(a(y)). This reduces the problem to calculating the expected value of the function a
with respect to a Gaussian distribution, which, depending on the function a, may be doable
analytically, or by Gaussian quadrature (Thisted 1988, Section 5.3), or by efficient Monte
Carlo techniques. Another possible solution is importance sampling (Tanner 1993, Section
3.3.3), perhaps using the Gaussian approximation to the posterior distribution. A sample
from the Gaussian distribution is drawn and the points of the sample are reweighted to
account for the fact that the sample is not from the correct distribution.

In many problems, the Gaussian approximation will be close to the posterior distri-
bution, but not close enough to provide sufficiently accurate estimates. If the posterior
distribution has heavier tails than the Gaussian approximation, even importance sam-
pling will not provide good estimates, as in this case the importance sampling weights
will be highly variable, and only a few points from the sample drawn from the Gaussian
approximation will contribute to the estimate. For this reason, Markov chain Monte Carlo
techniques are now commonly used to estimate expected values with respect to complex
or high or even moderate-dimensional posterior distributions.

In this chapter, we will use the Gaussian approximation to the posterior distribution to
improve the accuracy of Markov chain Monte Carlo estimates. The mean of the Gaussian
approximation is taken to be the mode of the posterior distribution. The mode can
be found using the Newton-Raphson algorithm, for example, perhaps using as an initial
value the sample mean, § = (1/n) > ., yi, where yi,...,y, is a sample generated by

simulating a Markov chain that converges to f. The variance-covariance matrix for the
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Gaussian approximation is chosen to be minus the inverse of the Hessian (matrix of second
derivatives) of the logarithm of the posterior density, evaluated at the mode of the posterior
distribution.

The Markov chain used to generate the sample y1, ..., y, from f will be coupled with
a chain that converges to the Gaussian approximation, g, producing a sample x4, ..., x,.
We hope that these two samples will be highly correlated. To take advantage of this
correlation, we construct new estimators for E(a(y)) that depend on both the y’s and
the z’s and which make use of Eg(a(z)), which is assumed to be accurately known.

One such estimator is

ay — (@, — Ey(a(z))), (5.1)

where @, = (1/n) Y., a(z;). For o = Cov (ay,a,)/Var (a,), this is the best unbiased
linear estimator. In practice, o will have to be determined from the data, introducing
some small bias. This new estimator is sometimes much more accurate than a@,, due to
the information provided by the sample drawn from the Gaussian approximation, which
for problems of moderate dimensionality can be found with little computational effort.

In the context of simple Monte Carlo estimation from simulation data, a similar tech-
nique has been used to reduce variance using control variates (Ripley 1987; Kelijnen 1974,
Section II1.4). Cheng (1978) investigates the properties of estimators of type (5.1) when
the joint distribution for x and y is Gaussian, an assumption that seems to be reasonable
in their queuing system context, but perhaps not for our application. Lavenberg, Moeller
and Welch (1982) discuss the loss of variance reduction due to estimating a from the
data. Another use of coupling to improve estimation is due to Frigessi, Gasemyr and Rue
(2000), who use antithetic coupling of two chains sampling from the same distribution.

Schmeiser and Chen (1991) introduced the basic idea of coupling a Markov chain

that samples from the desired distribution with an approximating chain. The same idea
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is mentioned in Chen, Shao and Ibrahim (2000), Section 3.4, as well. They proposed
an estimator of type (5.1) and proved that it is consistent. They did not demonstrate
the efficiency of this estimator on any example. They did not introduced the coupled
estimators based on regression models that we present in Section 5.4.

In Section 5.2, we show how the coupling procedure can produce correlation between
chains. Section 5.3 presents the estimator (5.1) and discusses its properties and efficiency.
In Section 5.4, this estimator is seen as the simplest of a larger class of estimators that
can also model more complex relationships between the two chains. Section 5.5 presents
an example based on the data on pump failures from Gelfand and Smith (1990). We

conclude, in Section 5.6, by discussing possible further extensions and applications.

5.2 Coupling to an Approximating Chain - Toy Ex-
ample

We couple two chains, as described in Section 2.4, using different transition functions,
sampling from similar but different distributions. We start both chains from the same
initial state and hope the chains will stay close together for the whole run, producing high
correlation between the states of the two chains. The success of coupling in producing
chains that move together depends on the Markov chain Monte Carlo methods used to
sample from the distributions, and on the way they are expressed in terms of ¢ functions.

To illustrate how coupling works, and later the properties of the estimators we intro-
duce, we consider a toy example in which a gamma distribution is approximated with a
Gaussian distribution. In Figure 5.1, we can see the effect of coupling a chain sampling
from the Gamma(10,5) distribution, denoted by f, with a chain sampling from a Gaussian

approximation to it, denoted by g, whose mean is the mode of f, and whose variance is



CHAPTER 5. COUPLED MARKOV CHAINS 89

— [d21og f(z)/dz?]”" evaluated at the mode. We used the Metropolis algorithm to sample
from these distributions, with a proposal that was a Gaussian distribution centered at the
current point and with standard deviation three. The coupling for this example is done by
using the same Gaussian random numbers for the proposals and the same uniform random
numbers for the accept-reject decisions. The random noise, v; = (ny, u;), therefore has two
components, n; ~ N(0,3%) and u; ~ Uniform(0,1), and the two deterministic functions
¢s and ¢, are defined by

_ if _ _
by, (roug) = { e Tues St/ ) (5:2)

Y1 otherwise

and similarly

b (o, () = i1 +ny ifug < g(ap—y +m4)/g(x-1) (5:3)

Ti_1 otherwise

where f is the gamma density f(z|a, 8) = (z* 'e~*/8)/(I'(a)B%) with parameters o =
10 and § = 5, and ¢ is the Gaussian density with mean (o — 1) = 45 and variance
B%(a — 1) = 225. Note that the mean used for the Gaussian approximation is the mode
of Gamma distribution and the variance used is based on the curvature at the mode, and
is not the same as the actual variance of the gamma distribution.

How high the correlation between chains will be depends on the coupling technique and
on how close the Gaussian approximation is to the target distribution. In this example,
the coupling is good because the step size is small — smaller than would be optimal if
only one chain were used for estimation. For realistic problems, methods that produce

good coupling at less cost are needed, as illustrated in the example of Section 5.5.
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Figure 5.1: Coupling of chains sampling from Gamma(c, 3) and the Gaussian approx-
imation with mean S(« — 1) and variance 3%(a — 1). Here o = 10 and 8 = 5. Every
hundredth point of a long run of the Metropolis chains is plotted for each distribution. The
solid line is the sample from the Gamma distribution and the dotted line is the Gaussian

approximation.

5.3 A Simple Estimator Exploiting Coupling between
Two Chains

Assume we have samples from two coupled chains, (yi, - .., y,) from the distribution f, and
(®1,...,2,) from g, the Gaussian approximation to f. The usual estimator for Et(a(y))
would be @, = (1/n) >, a(y;). To exploit the correlation of the two chains, we can

construct a new estimator for Ef(a(y)) of the form:

ay — a(a; — Ey(a(z))), (5.4)
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where @, = (1/n) Y _;_, a(z;). This estimator is unbiased for any fixed o. It has minimum

variance (Ripley 1987, Section 5.3), when

o %&? (5.5)
= Corr(ay,a,) giggii : (5.6)

If the pairs of points from the two chains were independent, the appropriate estimate for

o would be

& — Z?:l (a(y:) — ay)(a(_xi)Q_ Ex). (5.7)
i (a(z:) — )

For samples of dependent pairs obtained using Markov chains, we will still use estimator
(5.7), since it is close to optimal.
For notational simplicity, assume we are interested in p; = Ef(y) and we know p, =

E,(z). The first estimate for 1 we will look at is:

Ay = g-a@— ) (5.8)

where, applying (5.7),

~ Z?:l (yi — ) (@ — T)
a = ST -7 (5.9)

The estimation of « can introduce bias, but we can still show that estimator (5.8) is

consistent. If the two chains are ergodic, the ergodic theorem helps us establish the

following:
T —p (5.10)
T —p [l (5.11)
i (2 — T)* 5y By((z = pg)?) (5.12)

—p  Epg(zy) (5.13)
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The last statement is justified if the joint coupled chain (z,y) is ergodic. However, for
the purpose of this proof, all that is required is that the joint coupled chain converges to
some distribution, such that (5.13) converges to some constant. From (5.10) to (5.13) it

follows that o converges to a constant and that

~(1
Ngf) —p My (5.14)

In Schmeiser and Chen (1991), it is shown that &(Z — i) — 0 as long as the variances of
x and y are finite.

The asymptotic efficiency of this estimator can be investigated by considering a to be
constant. If we write the estimator (5.8) as ﬁgcl) = (1/n) > | z, where z; = y;—a(z;— ),
we can estimate its variance by using (2.23) as described in Section 2.1:

Z?:l (Zz - /7501)) : T
) - ;

n—7T

Var (ﬁﬁf) (5.15)

where 7 is the estimated autocorrelation time, which is obtained by summing the estimated
autocorrelations of (z1,..., z,) at all positive and negative lags up to the lag past which
the autocorrelations seem to be nearly zero.

For the example presented in Section 5.2, we ran two coupled chains 100,000 iterations
long and found that the autocorrelations were close to 0 past lag 350. The correlation
between the two chains is 0.9466 and @ = 0.9926. The parameter estimated here is the
mean of Gamma(10,5), which is 50. The estimate using (5.8) is 50.21 with standard
error of 0.22, whereas the traditional estimate is 49.34 with standard error of 0.63. These
results show that exploiting the correlations between chains improves the efficiency of the

estimator by a factor of (0.63/0.22)? ~ 8, if we ignore the increase in computation time.
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5.4 Coupled estimators based on regression models

The relationship between yi,...,y, and z,...,x, could be modeled by a simple linear

regression:

i = Bo+Bu(wi— ) + € (5.16)

The estimator (5.8) is exactly the least square estimator for the intercept in this simple
linear regression model. This observation leads us to consider new estimators for p
based on higher-order regression models. The samples based on the two coupled chains in
Section 5.2 will not be linearly related because the upper tail of the Gamma distribution is
heavier than that of the Gaussian distribution. In Figure 5.2 we can see that a third-order
regression model fits better than the linear model.

Suppose we fit the following model for how (yi,...,y,) relates to (z1,...,z,):

yi = Bo+ Bilwi — py) + Balmi — pg)® + Ba(xi — pg)® + € (5.17)

It BO, Bl, 32, 33 are the least square estimates for the regression coefficients, we propose

the following estimator for fi;:

Ay = g Bila — pg) + Baoy — Balw — 1g)? — Balw — 1g)? (5.18)

where we denote by o2 = E ((z — )?), 7= i) = (1/n) s (51 — ), (@ g)? =
(1/n) Y0 (wi—pg)?, and (z — pg)® = (1/n) d-r, (xi—pg)®. By using the ergodic theorem,

we can establish that the coefficients, B;, converge to some constants, and that

(@ —pg) —p O (5.19)
(@ — pg)® = U; (5.20)
(T —pg)® —p 0 (5.21)

TR (5.22)
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Figure 5.2: Every 350th point of the chains from Gamma(10,5) and the Gaussian approx-
imation with mean 45 and standard deviation 15, along with the regression lines for first

and third order models.

It follows that ﬁgc?’) —p Uf-

Letting 2z = y; — Bi(z; — pg) + 5202 — Balwi — 1g)? = Ba(wi — pg)?, we can write

/’2503) =(1/n) 2?21 z;, and estimate its variance by:
2
— D it (Zi - ﬁ(?’)) T
o (/7;3)) _ )T (5.23)
n—7 n

where T is the estimated autocorrelation time for the z;.

We expect this estimator to be better than /’IS}) because the z;’s are the residuals of

the model plus the constant Bo + 3203. The better the model we fit, the smaller the
variance of the residuals and hence the smaller the variance of /'1503). Note, however, that

the regression-based estimators are valid even when the regression model is not correct.
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For the gamma example presented in Section 5.2, this third-order regression estimator,

ﬁ§c3), gives an estimate for py of 50.20 with standard error 0.18. This estimator is about

1.5 times better than the linear regression estimate, /'Igcl), and about 12 times more efficient

than the standard estimator based on one chain.

5.5 Pumps Data Example

To illustrate the performance of the new coupled estimators we will consider the model

for data on pump failures from Gelfand and Smith (1990). The data consists of p counts,

S1,- .., Sp, that represent the number of failures for p pumps over known periods of time,
t1,...,tp. It is assumed that conditional on unknown failure rates, A;,..., A,, the counts
51,---.,5p are independent and Poisson distributed with means \;t;. The distribution of

the unknown \;’s is gamma with a known shape parameter o and unknown scale factor
B and the );’s are independent given 3. The prior for the hyperparameter [ is inverse
gamma with a known shape parameter v and a known scale parameter §.

The densities for this hierarchical Bayesian model are given by:

Aiti)”
P(SZ‘AZ) = e_AitiQ, 1= 1,...,p (524)
Si.
1
P(\ila, B) = AeleNB =1 p 5.25
(MowB) = v (525)
07 1

P(Blv,6) = —e /8 5.26
(8], 6) T e (5.26)
The joint conditional distribution of the parameters of interest, 3, A1,..., A, given the

observed si,...,s, and t1,...,t, is:
P(By M,y AplS1, ooy 8p) X P(B, A1y .oy Apy Sty -2y Sp) (5.27)

X P(Sla---asp‘)‘la---)\p)P()\la---a)\p‘ﬁ)P(ﬁ) (528)
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p
R () e o

It is more convenient to work in terms of § = 1/5. The joint conditional density for

0,A1,. .., Ap, which we will denote by f, is:

F(O, A1, ..., Ap|s1, -0, 8p) X

P (et (Nty)*) T, (09N~ ei0) gr=Le=0 (5.30)

We will use Gibbs sampling to sample from the posterior distribution of 8, A, ..., Ap.
The conditional distribution for # given the \;’s is
Gamma(pa + 7,1/ (6 +>°F_ Ai)). The conditional distribution for each \; given 6 and
all {\;},2 is Gamma(s; + «, 1/ (t; +0)). One step of Gibbs sampling at time ¢ is done
by generating u(()t), ey ug) from the Uniform(0,1) distribution and applying the following

deterministic transition functions:

1
0" = p1 (u((f)' pa+ 7y ) (5.31)
) ’ t—1
EDYEP
1
/\Et) = F- < Z(t), s; + «, m>, i=1,...,p, (5.32)

where F'~! is the inverse cumulative distribution function for the gamma distribution with
shape and scale parameters as specified. This method of generating gamma variates is
not the fastest; it is used because it produces good coupling.

The Gaussian approximation, g, for the joint posterior distribution (5.30) has mean p
equal to the mode of the posterior distribution and variance-covariance matrix 3 equal to
minus the inverse of the Hessian of the logarithm of the posterior density evaluated at .
To do Gibbs sampling for the Gaussian approximation, consider = (g, 1,...,,%,), a

p + 1 dimensional Gaussian random vector with mean g and variance-covariance matrix
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Y. Denote by € the inverse of the variance-covariance matrix X, with elements w;,
i,j =0,1,...,p. The conditional distribution of z; given the other components {z,},; is
Gaussian with mean p; — (1/wii) >, ; wij(z; — p;) and variance 1/w;;. The coupling of the
two chains in this example is done by using at each step the same Uniform(0,1) random
numbers. One Gibbs sampling step at time ¢ for the Gaussian approximation is

) = g (uz@; i = — (sz‘j(xg‘t) — ) + D wii(ag ™V ~ Mj)) ’ E)

7<t >t
i=0,....p (5.33)

where G™! is the inverse cumulative distribution function for the Gaussian distribution
with mean and variance as specified.

Following Gelfand and Smith (1990), we set the known parameters to p = 10, § =
1, v =01, and oo = p*/(s2 — p~'p >, t;"), where p; = s;/t;, p = (1/p) Y5, pi, and
55 = (1/p) >2(pi — p)*>. We drew a sample from the posterior distribution using 1000
iterations of Gibbs sampling, starting with #® = 1 and /\Z(O) = s;/t;. Based on this
sample we found Monte Carlo estimates for means of the parameters and used them
as starting values for the Newton-Raphson method to find the mode, which we used
as the mean of the Gaussian approximation. Estimating the parameters of the Gaussian
approximation is computationally inexpensive in this example; Newton-Raphson converges
to the mode of the posterior distribution in 11 steps using the starting value mentioned.
Once the Gaussian approximation was found, we simulated the coupled Gibbs sampling
chain sampling from it for the same 1000 iterations as the chain sampling from the posterior
distribution.

We are interested in estimating the expected value of each of the parameters 8, A1,..., A,

with respect to the posterior distribution. We discarded the first 100 states of each chain
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as burn-in, which is more than adequate for this problem, for which the autocorrelations
are close to zero by lag 5. The results for three estimators and their standard errors are
presented in Table 5.1. The estimators evaluated are 7, the traditional Markov chain
estimator based on only one chain, estimator i) presented in Section 5.3, and estimator
7 introduced in Section 5.4. The last three columns of Table 5.1 present the relative
efficiencies of the estimators as ratios of their estimated variances. For this problem the
estimates based on third-order regression are all much more efficient than the estimates
based on one chain, or even those based on simple linear regression. Particularly striking
is the estimate for A; based on third-order regression, which is approximately 24000 times
more efficient than the estimate based on one chain. This is because the relationship
between the two chains is very tight, with little variation unexplained in the third-order
model, as seen in Figure 5.3. From Table 5.2 we can see that the correlations between
A1 and all 10 other components in the Gaussian approximation are close to zero, which
explains why the relationship of A; in the two chains is so close to being deterministic.
For the parameter 6, the third-order model still provides the most efficient estimate, but
as we can see in Figure 5.4, the relationship between the coupled chains is not as tight as
for Aq.

Table 5.1 shows one more estimate labeled “Precise Estimate”, which was obtained
by running 200 pairs of coupled chains for 1000 iterations and discarding the first 100
states of each. We fit a third order model for the first pair of chains and with these fixed
coefficients we found 199 estimates based on the other chains using (5.18). Due to the
fact that the coefficients are fixed, these 199 estimates are unbiased. The precise estimate
is taken to be the average of these 199 unbiased estimates, and the standard error for this
estimate is found using their sample variance. The result is much more accurate than any

of the three estimates, and hence can be used to evaluate their accuracy. We illustrate in
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Figure 5.3: Plot showing the relationship between \; values for the two coupled chains

Figure 5.5 the performance of the regression-based estimates for four of the parameters
0, A1, A2, Ag. As previously noted, the estimates based on the third order regression provide
much tighter confidence intervals than the other two estimates. All intervals contain the
precise estimate which is evidence that the standard errors for the estimates are correct.

For the 200 pairs of coupled chains we also calculated the estimates and standard errors
for all the parameters based on simple linear regression and on third-order regression. For
each parameter, we constructed 95% and 90% confidence intervals around these estimates
by taking as margin of error the estimated standard error multiplied by the corresponding
quantile for the standard Gaussian distribution. We then found the coverage probabilities
for these confidence intervals, as the proportion of intervals that contain the precise esti-
mate. As seen in Figure 5.6, these coverage probabilities are close to the desired values
of 95% and 90% and mostly within the 95% confidence intervals based on a binomial
distribution. This confirms that the estimators are close to being unbiased and that their

standard errors are close to being correct.
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100

Estimate Based on

Relative Efficiency

Parameter Precise One Chain | First-order | Third-Order |7 vs. | gvs. | gV vs.

Estimate () Model (&(V) | Model (z®) | o™ | a® s

0 2.4895321 | 2.4674625 | 2.4874835 2.4884441
0.0002776 | 0.0303696 | 0.0064195 0.0042179 22 52 2.3

A1 0.0702695 | 0.0708782 | 0.0701613 0.0702695
0.0000003 | 0.0008800 | 0.0001644 0.0000056 29 | 24000 850

Ao 0.1541290 | 0.1573713 | 0.1545877 0.1542453
0.0000057 | 0.0028258 | 0.0007910 0.0000655 13 1900 150

A3 0.1040727 | 0.1052354 | 0.1039408 0.1040741
0.0000007 | 0.0013133 | 0.0002370 0.0000120 31 12000 390

A4 0.1232198 | 0.1233812 | 0.1232257 0.1232186
0.0000005 | 0.0010237 | 0.0001227 0.0000071 70 | 21000 300

As 0.6264700 | 0.6309189 | 0.6243196 0.6260541
0.0000333 | 0.0098097 | 0.0021989 0.0004975 20 390 20

A6 0.6133804 | 0.6089641 | 0.6134456 0.6133659
0.0000084 | 0.0042671 | 0.0004532 0.0001238 89 1200 13

A7 0.8240495 | 0.8280188 | 0.8229350 0.8264169
0.0001540 | 0.0191607 | 0.0054209 0.0019331 12 98 7.9

A8 0.8242431 | 0.8505378 | 0.8292412 0.8247778
0.0001599 | 0.0193552 | 0.0071622 0.0021677 7.3 80 11

Ag 1.2951942 | 1.3148071 | 1.2966271 1.2939680
0.0000974 | 0.0224054 | 0.0046176 0.0014573 24 240 10

A1o 1.8407347 | 1.8321169 | 1.8416890 1.8401319
0.0000594 | 0.0143102 | 0.0017195 0.0008827 69 260 3.8

Table 5.1: The estimates based on 900 states of the coupled chains and their standard
errors, along with the relative efficiencies rounded to two significant digits.

Zo
1.0000

T
-0.0205

)
-0.0596

x3
-0.0302

Tq
-0.0247
0.0005

Ts
-0.1952

Te
-0.1065

X7
-0.2737
0.0056

xg
-0.2737
0.0056

To9
-0.3437
0.0070

Z10
-0.2836

Zo
X1

-0.0205 | 1.0000 0.0012 0.0006 0.0040 0.0022 0.0058

Table 5.2: Correlations between z, (f) and z; (A1) and all the other components of the
Gaussian approximation.
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Figure 5.4: Plot showing the relationship between the 6 values for the two coupled chains.

As we reduce the length of the chains, we would expect that bias may be present.
Also, since the procedure for estimating the standard errors doesn’t take into account
the variability of the regression coefficients, the standard errors will be underestimated
for short chains. Since these problems are expected to be worse when there are many
regression coefficients, we recommend using the estimates based on simple linear regression

when the chains are short.

5.6 Discussion

We have shown that estimators based on coupling to a chain that samples from a Gaussian
approximation can be much more precise than the traditional Markov chain Monte Carlo
estimators based on one chain. This method is applicable to those Bayesian problems for
which the posterior distribution can be approximated reasonably well with a Gaussian

distribution. The success of this method is dependent on use of a good coupling tech-
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Figure 5.5: Estimates for the posterior means with 95% C.I. obtained by the MCMC

methods.
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Figure 5.6: Estimates of the coverage probabilities for the 95% and 90% confidence inter-
vals obtained as the fraction of the two hundred 95% and 90% confidence intervals that
contain the precise estimate. Each confidence interval was determined from an estimate
based on a pair of chains 900 iterations long. The dotted line represents the limits of a
95% confidence interval based on the binomial distribution.
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nique. The two coupled sampling techniques used in this chapter, Gibbs sampling and
the Metropolis algorithm, both have computational drawbacks. Gibbs sampling seems
to produce samples that are highly correlated, but at the expense of having to compute
inverse cumulative distribution functions, which for some conditional distributions might
be expensive. Moreover, for more difficult problems, the conditional distributions will not
be available, and therefore Gibbs sampling will not be applicable. For the Metropolis
algorithm, the inefficiency is introduced by the small step size needed to keep the rejec-
tion rate small and therefore the correlation between chains high. These inefficiencies can
be avoided by using other sampling techniques, such as higher-order Langevin methods,
which can produce very low rejection rates using reasonable step sizes.

Finding the mean and the variance-covariance matrix for the Gaussian approximation
requires time of order m?®, where m is the number of parameters, and one full Gibbs
sampler scan for the Gaussian approximation requires time of order m?. The methods of

this chapter are therefore probably not useful when m is more than a few hundred.
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Conclusions

The methods developed in this thesis have been shown to provide significant improvements
in MCMC estimators. Further research could lead to additional improvements.

The random sequence overrelaxation technique and Jacobian overrelaxation could
potentially be combined, such that non-Gaussian distributions with highly negatively-
correlated components could benefit from it. The parameter S in Jacobian overrelaxation
and the product of parameters rs/N in random sequence overrelaxation have the same
role of updating the chain such that we will move a large distance in the long direction.
Therefore one way of choosing S for JO is to take it equal to rsN.

One method for coupling JO that we have tried has not achieved high correlations
between the two samples. If Jacobian overrelaxation proposes different states in the two
chains, the chains will not move together from that point on. There is also the chance
that the two chains will move in different directions due to the fact that the initial states
of the one step JO for the two chains although close to each other, maybe on the opposite
side of the conditional mean.

We have tried coupling by starting two chains in two states far apart and using the

105
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Metropolis algorithm for some steps followed by one Jacobian overrelaxation step. We
assess the coupling performance of this procedure by running a few chains using different
starting points and calculating the correlation between the end points produced by each
pair of chains. Metropolis updates were used in order to bring the states together locally.
We have test this on a Gaussian distribution with highly positively-correlated components,
but the correlation between the two samples was not high and it becomes smaller as we
increase the dimensionality of the problem. We also tried to couple the chains better by
projecting the points on the Jacobian trajectory on the long axis and ordering and then
select the next point. This approach was also not very successful because if the starting
points in the Jacobian step are on the different side of the conditional mean the chains
move in different directions. Future work could be carried out to fine tune the way the
next state is chosen in the Jacobian overrelaxation that will help the two chains to move
to states closer together.

Methods similar to those we have presented in Chapter 5, can be applied to problems
where samples from several similar distributions are needed. These problems arise when
assessing the effect on the posterior distribution of deleting observations (Peruggia 1997)
or changing the prior or likelihood (Gelman, Carlin, Stern and Rubin 1995a, Chapter
12). These authors use importance sampling to obtain estimates for expected values with
respect to all distributions by drawing a sample from one of the distributions, and then
reweighting these sample points to reflect the other distributions. Unfortunately, the
importance weights can vary wildly when the distributions are too different. We propose
the following strategy for estimating expectations with respect to many different, but
similar, distributions. Simulate a long Markov chain converging to one of the distributions,
from which a precise estimate for the expected values of the parameters with respect to

this distribution can be found. For the other distributions, run short chains coupled with
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the first part of the long chain, and then use the methods presented in Sections 5.3 and
5.4 to find accurate estimates of the expected values of the parameters with respect to

these other distributions, taking advantage of the precise estimates from the long chain.
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