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1 Introduction

Understanding protein interactions is one of the important problems of computational biology. It is widely

believed that studying networks of these interactions will provide valuable insight about the inner workings

of cells leading, for example, to important insights into disease. These protein-protein interaction (PPI)

networks are commonly represented in a graph format, with nodes corresponding to proteins and edges

corresponding to protein-protein interactions. An example of a PPI network constructed in this way is

presented in Figure 1. The volume of experimental data on protein-protein interactions is rapidly increasing

thanks to high-throughput techniques which are able to produce large batches of PPIs. For example, yeast

contains over 6,000 proteins, and currently over 78,000 PPIs have been identified between the yeast proteins,

with hundreds of labs around the world adding to this list constantly. The analogous networks for mammals

are expected to be much larger. For example, humans are expected to have around
�������������

proteins and

around
�	��


PPIs. The relationships between the structure of a PPI network and a cellular function are just

starting to be explored. Comparisons between PPI networks of different organisms may reveal a common

structure and offer an explanation of why natural selection favored it.

Figure 1: The PPI network constructed on
�����������

yeast interactions [158] involving
��������

proteins.

One of the goals of systems biology is to explain relationships between structure, function, and regu-

lation of molecular networks by combining theoretical and experimental approaches. To contribute to this
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goal, we focus our attention on analyzing structural properties of PPI networks and building predictive mod-

els for hypothesis generation. We give here an introduction to this multidisciplinary area of research. We

first describe graph theoretic and biological terminology used in the literature and throughout this article.

Then we survey three large research areas necessary for understanding the issues arising in studying PPI net-

works. We first give a survey of mathematical models of large networks and the most important properties

of these models. Then we describe issues more closely related to PPI networks: PPI identification meth-

ods, publicly available PPI data sets, some of the biological structures embedded in the PPI networks and

methods used for their detection, and the currently known mathematical properties of the currently available

PPI networks. Then we give a brief survey of recent graph theoretic algorithms which have successfully

been used in biological applications and which may be used to identify some of the biological structures in

PPI networks. In the end, we point out interesting open problems which, if solved, may contribute to our

understanding of cellular processes.

1.1 Graph Theoretic Terminology

We present here basic graph theoretic terminology used in this article, in agreement with West’s textbook

on graph theory [164].

A graph is a collection of points and lines connecting a subset of them; the points are called nodes or

vertices, and the lines are called edges. A graph is usually denoted by � , or by ����� ����� , where � is the set

of nodes and
�
	 �
��� is the set of edges of � . We often use  to represent ����� , and � to represent � � � .

We also use ����� � to represent the set of nodes of a graph � , and
� ��� � to represent the set of edges of a

graph � . A graph is undirected if its edges (node pairs) are undirected, and otherwise it is directed. Nodes

joined by an edge are said to be adjacent. A neighbor of a node � is a node adjacent to � . We denote by
� ��� � the set of neighbors of node � (called the neighborhood of � ), and by

��� ��� the closed neighborhood

of � , which is defined as
��� ����� � ��� ����� �! . The degree of a node is the number of edges incident with

the node. In directed graphs, an in-degree of a node is the number of edges ending at the node, and the

out-degree is the number of edges originating at the node. A graph is complete if it has an edge between

every pair of nodes. Such a graph is also called a clique. A complete graph on  nodes is commonly denoted

by "$# . A graph � is bipartite if its vertex set can be partitioned into two sets, say % and & , such that every

edge of � has one node in % and the other in & . A path in a graph is a sequence of nodes and edges such that

a node belongs to the edges before and after it and no nodes are repeated; a path with ' nodes is commonly

denoted by (�) . The path length is the number of edges in the path. The shortest path length between nodes
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� and � is commonly denoted by
� � � � � � . The diameter of a graph is the maximum of

� � � � � � over all nodes

� and � ; if a graph is disconnected, we assume that its diameter is equal to the maximum of the diameters of

its connected components. A subgraph of � is a graph whose nodes and edges all belong to � . An induced

subgraph � of � , denoted by ����� , is a subgraph of � on �$��� � nodes, such that
� ��� � consists of all

edges of � that connect nodes of ����� � . The minimum edge cut of a graph � is the set of edges � such that

��� � is of minimum size over all sets of edges that disconnect the graph upon removal. The minimum number

of edges whose deletion disconnects � is called edge connectivity. A graph is ' -edge-connected if its edge

connectivity is � ' . A graph is weighted if there is a weight function associated with its edges, or nodes. In

this sense, the minimum weight edge cut of a weighted graph can be defined.

1.2 Biological Terminology

We give here definitions of basic biological terms used in this article. We assume that the definitions of

DNA, RNA, protein, genome, and proteome are commonly known and do not include them here.

Proteins are important components of a cell. They are able of transferring signals, controlling the func-

tion of enzymes, regulating production and activities in the cell etc. To do this, they interact with other

proteins, DNA, and other molecules. Some of the PPIs are permanent, while others happen only during

certain cellular processes. Groups of proteins that together perform a certain cellular task are called protein

complexes. There is evidence that protein complexes correspond to complete or “nearly complete” sub-

graphs of PPI networks (see section 3.3.1 and [132]). A domain is a part of a protein (and the corresponding

segment of gene encoding the protein) that has its own function. The combination of domains in a protein

determines its overall function. Examples of protein function include cell growth and maintenance, signal

transduction, transcription, translation, metabolism, etc. [44]. Many domains mediate protein interactions

with other biomolecules. A protein may have several different domains and the same domain may be found

in different proteins.

A molecular pathway is a chain of cascading molecular reactions involved in cellular processes. Thus,

they are naturally directed. Shortest paths in PPI networks have been used to model pathways (see section

3.3.2 and [132]).

Homology is a relationship between two biological features (here we consider genes, or proteins) which

have a common ancestor. The two subclasses of homology are orthology and paralogy. Two genes are

orthologous if they have evolved from a common ancestor by speciation; they often have the same function,

taken over from the precursor gene in the species of origin. Orthologous gene products are believed to be re-
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sponsible for essential cellular activities. In contrast, paralogous proteins have evolved by gene duplication;

they either diverge functionally, or all but one of the versions is lost.

2 Large Network Models

A wide variety of systems can be described by complex networks. Such systems include: the cell, where we

model the chemicals by nodes and their interactions by edges; the Internet, which is a complex network of

routers and computers linked by various physical or wireless links; the World Wide Web, which is a virtual

network of Web pages connected by hyper-links; and the food chain webs, the networks by which human

diseases spread, the human collaboration networks etc. The emergence of the Internet, the World Wide Web,

and the cellular function data made a big impact on modeling of large networks, which became a huge area

of research on its own. Several articles give good surveys of large network models [122] [4] [121] [152].

We start with an overview of these survey articles and end the section with a presentation of more recent

results.

Since the 1950s large networks with no apparent design have been modeled by random graphs, which

represent the simplest model of a complex network. They were first studied by Erdos and Renyi [56], [57]

[58], and later became a huge research area, a good survey of which was done by Bollobas [31]. They are

based on the principle that the probability that there is an edge between any pair of nodes (denoted by � )

is the same, distributed uniformly at random; thus, a random graph on  nodes has approximately
#�� #������� �

edges, distributed uniformly at random. We describe random graphs in the next section.

There has been a growing interest in studying complex networks. As a result, it was shown that the

topology of real-world networks differs from the topology of random graphs in several fundamental ways.

Despite their large sizes, most real-world networks have relatively short paths between any two nodes. This

property is often referred to as the small-world property. We will later see that under certain conditions

random graphs satisfy this property. Clustering or network transitivity is the next characteristic of large

networks: a network is said to show clustering if the probability of a pair of vertices being adjacent is higher

when the two vertices have a common neighbor. Watts and Strogatz defined a clustering coefficient C as the

average probability that two neighbors of a given vertex are adjacent [163]. More formally, if a node � in the

network has
��	

neighbors, the ratio between the number of edges
� 	

between the neighbors of � , and the

largest possible number of edges between them,

�� � 
� ������ , is called the clustering coefficient of node � , and

is denoted by � 	
, where � 	 � ��� �
 � � 
 � ����� . The clustering coefficient � of the whole network is the average

of � 	
s for all vertices � in the network. Real world complex networks exhibit a large degree of clustering,
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i.e., their clustering coefficient is large. However, this is not true for random graphs, since the probability

that two of the neighbors of a vertex in a random graph are connected is equal to the probability that two

randomly selected nodes are connected, and thus, � � � for random graphs. The degree distribution is the

next characteristic of large networks. If we denote by ($� ' � the probability that a randomly selected vertex of

a network has degree ' , we can see that, since in a random graph edges are placed at random, the majority of

nodes have the same degree which is close to the average degree of the graph. Thus, the degree distribution

of a random graph is a Poisson distribution with a peak at the average degree of the graph. However, most

real world large networks have a non-Poisson degree distribution. For example, a large number of these

networks has the degree distribution with a power-law tail, (�� ' � � ' ��� . Such networks are called scale

free [18].

These observations led to intensive research of network models over the past few years. The random

graph model is still an active research area. The small-world model was motivated by clustering and it

interpolates between the highly clustered regular ring lattices (defined below) and random graphs. The

scale-free model was motivated by the discovery of the power-law degree distribution. We now review some

of the main properties of each of these models.

2.1 Random Graphs

As mentioned above, one of the earliest theoretical models of a network was introduced and studied by

Erdos and Renyi [56], [57] [58]. The model is called a random graph and it consists of  nodes joined by

edges that have been chosen and placed between pairs of nodes uniformly at random. Erdos and Renyi gave

several versions of their model, out of which the most commonly studied is the one denoted by ��#�� � , where

each possible edge in the graph on  nodes is present with probability � and absent with probability
��� � .

The properties of � #	� � are often expressed in terms of the average degree 
 of a vertex. The average number

of edges in the graph � #�� � is
# � # ������ � , each edge contains two vertices, and thus the average degree of a

vertex is 
 � #�� #��������# � �� � � � � , which is approximately equal to  � for large  .

These types of graphs have many properties that can be calculated exactly in the limit of large  , which

make them appealing as a model of a network. Thus, the following terminology is commonly used in the lit-

erature on random graphs: it is said that almost all random graphs (or almost every random graph) on  nodes

have a property
�

, if the probability (� � � � that a graph has the property
�

satisfies ����� #���� (� � � � � �
;

similarly, a graph on  nodes almost always, or almost surely, satisfies a property
�

, if ����� #���� (� � � � � �
.

Examples of properties that can be calculated exactly in the limit of large  include the following. Erdos and
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Renyi studied how the expected topology of a random graph changes as a function of the number of edges

� . When � is small the graph is likely to be fragmented into many small connected components having

vertex sets of size at most �$� �����  � . As � increases the components grow at first by linking to isolated

nodes, and later by fusing with other components. A transition happens at � � # � , when many clusters

cross-link spontaneously to form a unique largest component called the giant component, whose vertex set

size is much larger than the vertex set sizes of any other components; the giant component contains ���� �
nodes, while the second largest component contains ��� �����  � nodes. Furthermore, the shortest path length

between pairs of nodes in the giant component grows like �����  (more details given later), and thus these

graphs are small worlds. This result is typical for random-graph theory whose main goal usually is to de-

termine at what probability � a certain graph property is most likely to appear. Erdos and Renyi’s greatest

discovery was that many important properties, such as the emergence of the giant component, appear quite

suddenly, i.e., at a given probability either almost all graphs have some property, or almost no graphs have

it.

The probability ($� ' � of a given node in a random graph on  vertices having degree ' is given by the

binomial distribution:

($� ' � �
��
 � �

'

��
� ) � ��� � � #������ ) ,

which in the limit where 
	 ' 
 becomes the Poisson distribution ($� ' � � ��������)�� . Both of these dis-

tributions are strongly peaked around the mean 
 and have a tail that decays rapidly as
��� '�� . Minimum

and maximum degrees of random graphs are determined and finite for a large range of � . For instance,

if � �  ��������� ) , almost no random graph has nodes with degree higher than ' . On the other hand, if

� ����� #�� ) ��� � ��� # � �"!# , almost every random graph has a minimum degree of at least ' . If �! � �$# &%(' , the

maximum degree of almost all random graphs has the same order of magnitude as the average degree. Thus,

a typical random graph has rather homogeneous degrees.

As mentioned above, random graphs tend to have small diameters. The range of values of the diameters

of random graphs on  nodes and probability � is very narrow, usually concentrated around ��� #��� # � � ��� #��� �
[42]. Other important results are that for 
��  �*) �

, a typical random graph is composed of isolated trees

and its diameter equals the diameter of a tree; if 
*+ �
, the giant component emerges, and the diameter of

the graph is equal to the diameter of the giant component if 
,+.-0/21 , and is proportional to ��� #��� ) ; if 
 � �$#  ,

almost every random graph is totally connected and the diameters of these graphs on  nodes and with the

same 
 are concentrated on a few values around ��� #��� � . The average path length also scales with the number

of nodes as ��� #��� � and this is a reasonable first estimate for average path lengths of many real networks [121].
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Random graphs have been extensively studied and a good survey of the area can be found in Bollobas’s

book [31]. They have served as idealized models of gene networks [86], ecosystems [104], and the spread

of infectious diseases [85] and computer viruses [88]. We have seen above that even though some of their

properties reasonably approximate the corresponding properties of real-world networks, they still differ from

real-world networks in some fundamental ways. The first difference is in the degree distributions [6] [18].

As mentioned above, real networks appear to have power-law degree distributions [6] [60] [67] [5] [18], i.e.,

a small but not negligible faction of their vertices has a very large degree. These degree distributions differ

from the rapidly decaying Poisson degree distribution, and they have profound effects on the behavior of the

network. Examples of probability distributions of real-world networks are presented in Figure 2. The second

difference between random graphs and real-world networks is the fact that real-world networks have strong

clustering, while the Erdos and Renyi model does not [163] [162]. As mentioned above, in Erdos-Renyi

random graphs the probabilities of pairs of vertices being adjacent are by definition independent, so the

probability of two vertices being adjacent is the same regardless of whether they have a common neighbor,

i.e., the clustering coefficient for a random graph is � � � . Table 1 is taken from [121] as an illustration of

comparing clustering coefficients of real-world and random networks. It shows that random graphs do not

provide an adequate model for real-world networks with respect to the network clustering property. Thus,

we now turn to reviewing different network models which fit the real-world networks better.

network  
 � measured � for random graph

Internet (autonomous systems) [128] 6,374 3.8 0.24 0.00060
World Wide Web (sites) [2] 153,127 35.2 0.11 0.00023
power grid[163] 4,941 2.7 0.080 0.00054
biology collaborations [115] 1,520,251 15.5 0.081 0.000010
mathematics collaborations [116] 253,339 3.9 0.15 0.000015
film actor collaborations [124] 449,913 113.4 0.20 0.00025
company directors [124] 7,673 14.4 0.59 0.0019
word co-occurrence [75] 460,902 70.1 0.44 0.00015
neural network [163] 282 14.0 0.28 0.049
metabolic network [61] 315 28.3 0.59 0.090
food web [113] 134 8.7 0.22 0.065

Table 1: For a number of different networks,  is the number of vertices, 
 is the mean degree, � is the
clustering coefficient. Taken from [121].

2.2 Generalized Random Graphs

One approach to constructing a model with the degree distribution capturing the scale-free character of real

networks is to allow a power-law degree distribution in a graph while leaving all other aspects as in the
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Figure 2: Degree distributions for different networks. (a) Physical connections between autonomous sys-
tems on the Internet in 1997 [60], (b) a 200 million page subset of the World Wide Web in 1999 [37], (c)
collaborations between biomedical scientists and between mathematicians [115] [116], (d) collaborations of
film actors [11], (e) co-occurrence of words in English [75], (f) board membership of directors of Fortune
1000 companies for year 1999 [124]. Taken from [121].

random graph model. That is, the edges are randomly chosen with the constraint that the degree distribution

is restricted to a power law. These scale free random networks have been studied by systematically varying �

in the degree distribution ($� ' � � ' ��� and observing if there is a threshold value of � at which the properties

of networks suddenly change.

Generating a random graph with a non-Poisson degree distribution is relatively simple and has been

discussed a number of times in the literature. It appears that it has first been described by Bender and

Canfield [28]. Given a degree sequence (i.e., distribution), one can generate a random graph by assigning

to a vertex � a degree '�� from the given degree sequence, and then choosing pairs of vertices uniformly at

random to make edges so that the assigned degrees remain preserved. When all degrees have been used

9



up to make edges, the resulting graph is a random member of the set of graphs with the desired degree

distribution. Of course, the sum of degrees has to be even to successfully complete the above algorithm.

Note that this method does not allow the clustering coefficient to be specified, which is one of the crucial

properties of these graphs that makes it possible to solve exactly for many of their properties in the limit of

large  . For example, if we would like to find the mean number of second neighbors of a randomly chosen

vertex in a graph with clustering, we have to account for the fact that many of the second neighbors of a

vertex are also its first neighbors as well. However, in a random graph without clustering, the probability

that a second neighbor of a vertex is also its first neighbor behaves as �# regardless of the degree distribution,

and thus can be ignored in the limit of large  [121].

Recently, Luczak proved that almost all random graphs with a fixed degree distribution and no nodes of

degree smaller than
�

have a unique giant component [95]. Molloy and Read [111] [112] derived a simple

condition for the birth of the giant component, as well as an implicit formula for its size. More specifically,

for *	 �
and (�� ' � �


 �# they defined � ��� �)�� � ($� ' � ' � ' � ���
and showed that if �
) �

the graph almost

always consists of many small components, the average component size almost always diverges as � % � � ,

and a giant component almost surely emerges for �
+ �
under the condition that the maximum degree is less

than ��� . Aiello, Chung, and Lu [3] applied these results to a random graph model for scale-free networks.

They showed that for a power-law ($� ' � , the condition on � implies that a giant component exists if and

only if � )
-0/ 	��
�� 10/�/�/ � �� . When � + �� , the random graph is disconnected and made of independent

finite clusters, while when � ) �� there is almost surely a unique infinite cluster. Aiello, Chung, and Lu

studied the interval
� ) � ) �� , and showed that for

��� � ) �� , the second largest component almost

surely has a size of the order of �$#  . On the other hand, for
� ) � ) �

, every node with degree greater than

�$#  almost surely belongs to the infinite cluster and the size of second largest component does not increase

as the size of the graph goes to infinity; thus, the fraction of nodes in the infinite cluster approaches
�

as the

system size increases meaning that the graph becomes totally connected in the limit of infinite system size.

Finally, for
� ) � ) �

, the graph is almost surely connected.

Newman, Strogatz, and Watts [124] developed a new approach to random graphs with a given degree

distribution using a generating function formalism [165]. They have shown how, using the mathematics of

generating functions, one can calculate exactly many of the statistical properties of these graphs in the limit

of large  . They have given explicit formulas for the emergence of the giant component, the size of the giant

component, the average distribution of the sizes of the other components, the average numbers of vertices

at a certain distance from a given vertex, the clustering coefficient, the typical distance between a pair of

10



vertices in a graph, etc. They started by defining the generating function � �� � � � � �)��  ($� ' � � ) for the

probability distribution of vertex degrees ' , where the distribution ($� ' � is assumed to be normalized so that

���� � � � �
. They derived the condition for the emergence of the giant component � ) ' � ' � ��� ($� ' � � �

identical to the one derived by Molloy and Read [111] (a positive sum leads to the appearance of a giant

cluster), the size of the giant component, � � � � � �� � � , where � is the smallest non-negative real solution

of the equation � � � � � � � , also identical to Molloy and Reed’s [112], etc. They applied their theory to

the modeling of collaboration graphs, which are bipartite, and the World Wide Web, which is directed, and

showed that the theory gives good order of magnitude estimates of the properties of known collaboration

graphs of business people, scientists, and movie actors, although there are measurable differences between

theory and data that point to the presence of interesting effects, such as for example, sociological effects in

collaboration networks.

2.3 Small-world Networks

As mentioned above, graphs that occur in many biological, social, and artificial systems often have a small

world topology, i.e., a small-world character with unusually large clustering coefficients independent of

network size. Watts and Strogatz proposed this one-parameter model of networks in order to interpolate

between an ordered finite-dimensional lattice and a random graph [163]. They start from a ring lattice with

 vertices and � edges in which every node is adjacent to “its first ' neighbors” on the ring (an illustration is

presented in Figure 3), and “re-wire” each edge at random with probability � , not allowing for self-loops and

multiple edges. This process introduces
� # )� “long-range” edges. Thus, the graph can be “tuned” between

regularity (��� �
) and disorder (� � �

).

Figure 3: A regular ring lattice for '�� �
.

Watts and Strogatz quantified the structural properties of these graphs by their characteristic path length
� � � � (the shortest path length between two vertices averaged over all pairs of vertices) and the above men-

tioned clustering coefficient �$� � � (remember that if � 	 �
� � ��� � 	 � � �

��
� � � 	 � � � � � � 	 � � ����� , then � is the average of � 	
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over all vertices � ) as functions of re-wiring probability � . They established that the regular lattice at � � �

is a highly clustered “large world” in which
�

grows linearly with  , since
� � � � � #� ) 	 �

and ��� � � ���� .

On the other hand, as � % �
the model converges to a random graph, which is a poorly clustered “small

world” where
�

grows logarithmically with  , since
� � � � � ��� #��� ) , and ��� � � � )# . Note that these limiting

cases do not imply that large � is always associated with large
�

, and small � with small
�

. On the contrary,

they found that even the slightest amount of re-wiring transforms the network into a small world with short

paths between any two nodes, like in the giant component of a random graph, but at the same time such a

network is much more clustered than a random graph. This is in excellent agreement with the characteristics

of real-world networks. They have shown that the collaboration graph of actors in feature films, the neural

network of the nematode worm C. elegans, and the electrical power grid of the western United States all

have a small world topology, and they conjectured that this model is generic for many large, sparse networks

found in nature. Since then many empirical examples of small-world networks have been documented [18]

[82] [159] [11] [149] [146].

The pioneering paper of Watts and Strogatz started a large area of research. Walsh [161] showed that

graphs associated with many different search problems have a small-world topology, and that the cost of

solving them can have a heavy-tailed distribution. This is due to the fact that local decisions in a small-

world topology quickly propagate globally. He proposes randomization and restarts to eliminate these heavy

tails. Kleinberg [90] proved that the problem of how to find a short chain of acquaintances linking oneself

to a random person using only local information (this problem was originally posed by Milgram’s original

sociological experiment [109]) is easily solvable only for certain kinds of small worlds.

There has been a lot of research in small-world networks outside computer science as well. Epidemi-

ologists have wondered how local clustering and global contacts together influence the spread of infectious

disease, trying to make vaccination strategies and understand evolution of virulence [160] [17] [87] [33].

Neurobiologists have asked about possible evolutionary significance of small-world neural topology. They

have argued that small-world topology combines fast signal processing with coherent oscillations [94] and

thus was selected by adaptation to rich sensory environments and motor demands [24].

The most active research of small-world networks happened in statistical physics. A good review can be

found in Newman’s review article [119]. A variant of the Watts-Strogatz model was proposed by Newman

and Watts [117] [118] in which no edges are removed from the regular lattice and new edges are added

between randomly chosen pairs of nodes. This model is easier to analyze, since it does not lead to the

formation of isolated components, which could happen in the original model. Newman, Moore, and Watts
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derived the formula for a characteristic path length in these networks,
� � � � � # ) � �� ' � � , where

� � � � �
���� � � � ��������#	� ��� �� � � � ��� [123]. This solution is asymptotically exact in the limits of large  and when

either  ' � % ' , or  ' � % �
(large or small number of shortcuts). Barbour and Reinert [22] improved this

result by finding a rigorous distributional approximation for
� � � � together with a bound on the error.

Small-world networks have a relatively high clustering coefficient. In a regular lattice (� � �
), the

clustering coefficient does not depend on the lattice size, but only on its topology. It remains close to ��� � �

up to relatively large values of � as the network gets randomized. Using a slightly different, but equivalent

definition of � , Barrat and Weigt [23] have derived a formula for ��� � � . According to their definition, ��
 � � �

is the fraction between the mean number of edges between the neighbors of a node and the mean number of

possible edges between those neighbors. Starting with a regular lattice with a clustering coefficient ��� � � ,
and observing that for � + �

two neighbors of a node � that were connected at ��� �
are still neighbors of

� and connected by an edge with probability � � � � � � , since there are three edges that need to remain intact,

we conclude that � 
 � � � � �$� � � � ��� � � � . Barrat and Weigt [23] verified that the deviation of ��� � � from

this expression is small and goes to zero as  % ' . The corresponding expression for the Newman-Watts

model is ��
 � � � � � ) � ) ������ ) � � ) ����� �� � ) � ��� � � ) � [120].

The degree distribution of small-world networks is similar to that of a random graph. In the Watts-

Strogatz model for � � �
, each node has the same degree ' . A non-zero � introduces disorder in the

network and widens the degree distribution while still maintaining the average degree equal to ' . Since

only one end of an edge gets re-wired,
� # )� edges in total, each node has degree at least

) � after re-wiring.

Thus, for ' + �
there are no isolated nodes. For � + �

, the degree ' 	 of a vertex � can be expressed

as ' 	 � ) ����� 	 [23], where � 	 is divided into two parts, � 	 � � �	 ��� �	 , so that � �	 � ) � edges have been

left in place with probability
� � � , and � �	 edges have been re-wired towards � , each with probability

�# . For large  the probability distributions for � �	 and � �	 are ( � � � �	 � � � � �! �� � � ��� � ! �� � � � � � ! �� and ( � � � �	 � �
�
��� ��! �� � � �# � ! �� � � � �# �

��� �� � ! �� � � � ) � � ��� ��! �� ��� �	� ) � � . Combining these two factors, the degree distribution is ( � � � � �
��� � # � !�� ) � � � ) � � �# �  � ) � �# � � � � � � # � ) � � � # � � � ) � � � � ����� � � �� ! � ) � � � # � � � �	� ) � � , for � � ) � . As � grows, the distribution becomes

broader, but it stays strongly peaked at the average degree with an exponentially decaying tail.

2.4 Scale-free Networks

Many real networks have a property that some nodes are more highly connected than the others. For ex-

ample, the degree distributions of the Internet backbone [60], metabolic reaction networks [82], the tele-

phone call graph [1], and the World Wide Web [37] decay as a power law ($� ' � � ' ��� , with the exponent
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� � � / � � � /  for all of these cases. This form of heavy-tailed distribution would imply an infinite variance,

but in reality there are a few nodes with many links, such as, for example, search engines for the World Wide

Web.

The earliest work on the theory of scale-free networks was due to Simon [144] [34] in 1955, and it was

recently independently discovered by Barabasi, Albert, and Jeong [18] [19]. They showed that a heavy-tailed

degree distribution emerges automatically from a stochastic growth model in which new nodes are added

continuously and they preferentially attach to existing nodes with probability proportional to the degree of

the target node. That is, high-degree nodes become of even higher degree with time and the resulting degree

distribution is (�� ' � � ' � � . They also showed that if either the growth, or the preferential attachment

are eliminated, the resulting network does not exhibit scale-free properties. That is, both the growth and

preferential attachment are needed simultaneously to produce the power-law distribution observed in real

networks.

The average path length in the Barabasi-Albert network is smaller than in a random graph, indicating that

a heterogeneous scale-free topology is more efficient in bringing nodes close together than the homogeneous

random graph topology. Recent analytical results show that the average path length, � , satisfies � � ��� #��� ��� #
[32]. Another interesting phenomenon is that while in random graph models with arbitrary degree distribu-

tion the node degrees are uncorrelated [3] [124], non-trivial correlations develop spontaneously between the

degrees of connected nodes in the Barabasi-Albert model [91]. There has been no analytical prediction for

the clustering coefficient of the Barabasi-Albert model. It has been observed that the clustering coefficient

of a scale-free network is about five times higher than that of a random graph, and that this factor slowly

increases with the number of nodes [4]. However, the clustering coefficient of the Barabasi-Albert model

decreases with the network size approximately as � �  � �� ��� , which is a slower decay than the � ��� )	��

for random graphs, where ) ' + denotes the average degree, but is still different from the small-world

models in which � is independent of  .

The Barabasi-Albert model is a minimal model that captures the mechanisms responsible for the power-

law degree distributions observed in real networks. The discrepancies between this model and real networks,

such as the fixed exponent of the predicted power-law distribution for the model, while real networks have

measured exponents varying between 1 and 3, led to a lot of interest in addressing network evolution ques-

tions. The theory of evolving networks emerged offering insights into network evolution and topology. More

sophisticated models including the effects of adding or re-wiring edges, allowing nodes to age so that they

can no longer accept new edges, or varying the form of preferential attachment have been developed [5] [48]
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[92]. In addition to scale-free degree distributions, these generalized models also predict exponential and

truncated power-law degree distribution in some parameter regimes. Albert, Jeong, and Barabasi [7] suggest

that scale-free networks are resistant to random failures due to a few high-degree “hubs” dominating their

topology: any node that fails probably has a small degree, and thus does not severely affect the rest of the

network. However, such networks are vulnerable to deliberate attacks on the hubs. These intuitive ideas

have been confirmed numerically [37] [7] and analytically [43] [39] by examining how the average path

length and size of the giant component depend on the number and degree of the removed nodes. Implica-

tions have been made for the resilience of the Internet [34], the design of therapeutic drugs [82], and the

evolution of metabolic networks [82] [159].

To generate networks with scale-free topologies in a deterministic, rather than stochastic way, Barabasi,

Ravasz, and Vicsek [21] have introduced a simple model, which they solved exactly showing that the tail of

the degree distribution of the model follows a power law. The first steps of the construction are presented in

Figure 4. The construction can be viewed as follows. The starting point is a ( � . In the next iteration, add

two more copies of the ( � and connect the mid-point of the initial ( � with the outer nodes of the two new

( � s. In the next step, make two copies of the � -node module constructed in previous step, and connect “end”

nodes of the two new copies to the “middle” node of the old module (as presented in Figure 4). This process

can continue indefinitely. They showed that the degree probability distribution of such a graph behaves as

($� ' � � '
� ���� � � . An additional property that these networks have is the hierarchical combination of smaller

modules into larger ones. Thus, they called these networks “hierarchical”.

n=2n=1

n=3

Figure 4: Scheme of the growth of a scale-free deterministic hierarchical graph. Adapted from [21].

Recently, Dorogovtsev, Goltsev, and Mendes [47] have proposed another deterministic graph construc-

tion to model evolving scale-free networks, which they called “pseudofractal”. The scheme of the growth of

the scale-free pseudofractal graph is presented if Figure 5. They showed that the degree distribution of their

graph can be characterized by a power law with exponent � � � � � # - � �$# � � � /21 
 1 , which is close to the

distribution of real growing scale-free networks. They found, both exactly and numerically, all main charac-
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teristics of their graph, such as the shortest path length distribution following a Gaussian of width ��� �$# 
centered at � � �$#  (for �$#  	 �

), clustering coefficient of a degree ' vertex following �$� ' � � � � ' ,

and the eigenvalue spectrum of the adjacency matrix of the graph following a power-law with the exponent
� � � .

. . .

Figure 5: Scheme of the growth of the scale-free pseudofractal graph. The graph at time step � � �
can be

constructed by “connecting together” three graphs from step � . Adapted from [47].

3 Protein Interaction Networks

With vast amounts of DNA sequences becoming available in recent years, there is a growing interest in

correlating the genome with the proteome to explain biological function and to develop new effective protein

targeting drugs. One of the key questions in proteomics today is with which proteins does a certain protein

interact. The hope is to exploit this information for therapeutic purposes. Different methods have been used

to identify protein interactions, including biochemical as well as computational approaches. A survey of

biochemical methods used to identify proteins and PPIs can be found in Pandey and Man’s article [127].

Most of them are lab intensive and of low accuracy. Despite this low confidence in the identified PPIs,

maps of protein-protein interactions are being constructed and their analysis is attracting more and more

attention. Many laboratories throughout the world are contributing to one of the ultimate goals of the

biological sciences – the creation and understanding of a full molecular map of a cell. To contribute to

these efforts, we focus our attention to studying currently available networks of PPIs.

Despite many shortcomings of representing a PPI network using the standard mathematical represen-

tation of a network, with proteins being represented by nodes and interactions being represented by edges,

this has been the only mathematical model used so far to represent and analyze these networks. This model

does not address the following important properties of PPI data sets. First, there is a large percentage of

false-positive interactions in these data sets. For example, a common class of false-positive PPIs happens

when in reality proteins indirectly interact, i.e., through mediation of one or more other molecules, but an

experimental method detects this as a direct physical interaction. This may be a reason why very dense
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subnetworks are being detected inside PPI networks. False-negative interactions are also present in these

networks resulting from non-perfect experimental techniques used to identify interactions. Other drawbacks

of the model include the following PPI properties not being captured by this model: spatial and temporal

information, information about experimental conditions, strength of the interactions, number of experiments

confirming the interaction etc. The last point has been addressed by von Mering et al. [158] who classified

PPIs into groups depending on the number of experiments that detected a specific PPI; they call this a level

of confidence that a given PPI is a true interaction.

In this section we give an overview of recent PPI identification methods, currently available PPI data sets

and their repositories, biological structures contained in the PPI networks (such as protein complexes and

pathways), and computational methods used to identify them in PPI networks. Then we focus on surveying

the literature on PPI network properties and structure. We point to open problems and future research

directions in the area of PPI networks in section 5.

3.1 PPI Identification Methods

As mentioned above, the lists of genes and encoded proteins are becoming available for an increasing num-

ber of organisms. Databases such as Ensembl [72] and GenBank [29] (described in the next sub-section)

contain publicly available DNA sequences for more than 105,000 organisms, including whole genomes of

many organisms in all three domains of life, bacteria, archea, and eukaryota, as well as their protein data.

In parallel to the increasing number of genomes becoming available, high-throughput protein-protein in-

teraction detection methods have been introduced in the past couple of years producing a huge amount of

interaction data. Such methods include yeast two-hybrid systems [156] [77] [76], protein complex purifica-

tion methods using mass spectrometry [63] [71], correlated messenger RNA (m-RNA) expression profiles

[73], genetic interactions [108], and in silico interaction predictions derived from gene fusion [54], gene

neighborhood [46], and gene co-occurrences or phylogenetic profiles [74]. None of these PPI detection

methods is perfect and the rates of false positives and false negatives vary from method to method. A brief

summary describing these methods can be found in the article by von Mering et al. [158]. We outline here

the main characteristics of each of these methods following [158].

Yeast two-hybrid assay is an in vivo technique involving fusing one protein to a DNA-binding domain

and the other to a transcriptional activator domain. An interaction between them is detected by the for-

mation of a functional transcription factor. This technique detects even transient and unstable interactions.

However, it is not related to the physiological setting. Mass spectrometry of purified complexes involves
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tagging individual proteins which are used as hooks to biochemically purify whole protein complexes. The

complexes are separated and their components identified by mass spectrometry. There exist two protocols,

tandem affinity purification (TAP) [135] [63], and high-throughput mass-spectrometric protein complex

identification (HMS-PCI) [97] [71]. This technique detects real complexes in their physiological settings

and enables a consistency check by tagging several members of a complex at the same time. However its

drawbacks are that it might miss some complexes that are not present under the given conditions, tagging

can disturb complex formation, and loosely associated components can be washed off during purification.

Correlated m-RNA expression (synexpression) involves measuring m-RNA levels under many different cel-

lular conditions and grouping genes which show a similar transcriptional response to these conditions. The

groups that encode physically interacting proteins were shown to frequently exhibit this behavior [64]. This

is an indirect in vivo technique which has a much broader coverage of cellular conditions than other tech-

niques. However, it is very sensitive to parameter choices and clustering methods used during the analysis,

and thus is not very accurate for predicting direct physical interactions. Genetic interactions is an indirect in

vivo technique which involves detecting interactions by observing the phenotypic results of gene mutations.

An example of a genetic interaction is synthetic lethality which involves detecting pairs of genes that cause

lethality when mutated at the same time. These genes are frequently functionally associated and thus their

encoded proteins may physically interact. In silico predictions through genome analysis involve screening

whole genomes for the following types of interaction evidence: (a) finding conserved operons in prokaryotic

genomes which often encode interacting proteins [46]; (b) finding similar phylogenetic profiles, since inter-

acting proteins often have similar phylogenetic profile, i.e., they are either both present, or both absent from

a fully sequenced genome [74]; (c) finding proteins that are found fused into one polypeptide chain [54];

(d) finding structural and sequence motifs within the protein-protein interfaces of known interactions that

allow the construction of general rules for protein interaction interfaces [83] [84]. In silico methods are fast

and inexpensive techniques whose coverage expands with more and more organisms being fully sequenced.

However, they require orthology between proteins and fail when orthology relationships are not clear.

3.2 Public Data Sets

Vast amounts of biological data that are constantly being generated around the world are being deposited

in numerous databases. There are still no standards for accumulation of PPI data into databases. Thus,

different PPI databases contain PPIs from different single experiments, high-throughput experiments, and

literature sources. PPIs resulting from the most recent studies are usually only available on the journal
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web sites where the corresponding papers appeared. Here we briefly mention the main databases, including

nucleotide sequence, protein sequence, and PPI databases. Nucleotide and protein sequence databases do

not stuffer from the lack of standardization that is present in PPI databases. A recent comprehensive list of

major molecular biology databases can be found in recent Baxevanis’s article [26].

The largest nucleotide sequence databases are EMBL 1 [151], GenBank 2 [29], and DDBJ 3 [153]. They

contain sequences from the literature as well as those submitted directly by individual laboratories. These

databases store information in a general manner for all organisms. Organism specific databases exist for

many organisms. For example, the complete genome of bakers yeast and related yeast strains can be found

in Saccharomyces Genome Database (SGD) 4 [50]. FlyBase 5 [12] contains the complete genome of the fruit

fly Drosophila melanogaster. It is one of the earliest model organism databases. Ensembl 6 [72] contains

the draft human genome sequence along with its gene prediction and large scale annotation. It currently

contains over 4,300 megabases and 29,000 predicted genes, as well as information about predicted genes

and proteins, protein families, domains etc. Ensembl is not only free, but is also open source.

SwissProt 7 [16] and Protein Information Resource (PIR) 8 [105] are two major protein sequence

databases. They are both manually curated and contain literature links. They exhibit a large degree of over-

lap, but still contain many sequences that can be found in only one of them. SwissProt maintains a high level

of annotations for each protein including its function, domain structure, and post-translational modification

information. It contains over 101,000 curated protein sequences. Computationally derived translations of

EMBL nucleotide coding sequences that have not yet been integrated into the SwissProt resource can be

found in Trembl 9. The Non-Redundant Database (NRDB) 10 merges two sequences into a representative

sequence if they exhibit a large degree of similarity. This is useful when a large scale computational analysis

needs to be performed.

Some of the main databases containing protein interaction data are the following. The Munich Infor-

mation Center for Protein Sequences (MIPS) 11 [108] provides high quality curated genome related in-

formation, such as protein-protein interactions, protein complexes, pathways etc., spanning over several

1http://www.ebi.ac.uk/embl/
2http://www.ncbi.nlm.nih.gov/Genbank/
3http://www.ddbj.nig.ac.jp/
4http://genome-www.stanford.edu/Saccharomyces/
5http://flybase.bio.indiana.edu/
6http://www.ensembl.org/
7http://www.ebi.ac.uk/swissprot/
8http://pir.georgetown.edu/
9http://www.ebi.ac.uk/trembl/

10http://www.ebi.ac.uk/ holm/nrdb90
11http://mips.gsf.de
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organisms. Yeast Proteomics Database (YPD) 12 [45] is another curated database. It contains bakers yeast,

S. cerevisiae, protein information, including their sequence and genetic information, related proteins, PPIs,

complexes, literature links, etc. The Database of Interacting Proteins (DIP) 13 [168] is a curated database

containing information about experimentally determined PPIs. It catalogues around
�����������

unique interac-

tions between 1 � � ��� proteins from over

��

organisms [168] including yeast and human. The Biomolecular

Interaction Network Database (BIND) 14 [13] archives biomolecular interaction, complex, and pathway in-

formation. In this database, the biological objects interacting could be: a protein, RNA, DNA, molecular

complex, small molecule, photon, or gene. This database includes Pajek [25] as a network visualization tool.

It includes a network clustering tool as well, called the Molecular Complex Detection (MCODE) algorithm

[15] (described in section 3.3), and a functional alignment search tool (FAST) [13] (details of FAST are

not yet available in the literature) which displays the domain annotation for a group of functionally related

proteins. The General Repository for Interaction Datasets (GRID) 15 [35] is a database of genetic and phys-

ical interactions which contains interactions from several genome and proteome wide studies, as well as the

interactions from MIPS and BIND databases. It also provides a powerful network visualization tool called

Osprey [36].

A recent study of the quality of yeast PPIs was done by von Mering et al. [158]. They have performed

a systematic synthesis and evaluation of PPIs detected by major high-throughput PPI identification methods

for yeast S. Cerevisiae, a model organism relevant to human biology [137]. They integrated
��
�� - � � interac-

tions between 1 � - ��� yeast proteins, out of which only
���� 1�1 are supported by more than one method. This

low overlap between the methods may be due to a high rate of false positives (rates of false positives and

false negatives differ from method to method), or to difficulties in detecting certain types of interactions by

specific methods. Also, certain research groups are interested in finding interactions between certain types

of proteins which contributes to the lack of overlap between different PPI data sets. Von Mering et al. have

found that each PPI identification technique produces a unique distribution of interactions with respect to

functional categories of interacting proteins. They assessed the quality of interaction data and produced a

list of
��
�� - � � yeast PPIs ordered by the level of confidence (high, medium, and low) with the highest confi-

dence being assigned to interactions confirmed by multiple methods. Their list of PPIs currently represents

the largest publicly available collection of PPIs for S. Cerevisiae, and also the largest PPI collection for any

organism.

12http://www.incyte.com/sequence/proteome/databases/YPD.shtml
13http://dip.doe-mbi.ucla.edu/
14http://www.binddb.org/
15http://biodata.mshri.on.ca/grid/
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3.3 Biological Structures Within PPI Networks and Their Extraction

We focus here only on protein complexes and pathways. We first briefly describe the most recent bio-

chemical studies that have been used to identify these biological structures. These studies are expensive,

time consuming, and of low accuracy. Computational detection of biological structures from PPI networks

may supplement these approaches to reduce their time and cost, and increase their accuracy. The hope is

that with the emergence of high confidence PPI networks, such as, for example, the one constructed on

high-confidence PPIs from the study of von Mering et al. [158], computational approaches will become

inexpensive and reliable tools for extraction of known and prediction of still unknown members of these

structures. Despite a large body of literature involving purely theoretical aspects of networks, such as, for

example finding clusters in graphs (see section 4), very few of such methods have been developed specifi-

cally for biological applications and applied to PPI networks. We outline the more successful ones below.

3.3.1 Protein Complexes

As mentioned earlier, cellular processes are usually carried out by groups of proteins acting together to

perform a certain function. These groups of proteins are commonly called protein complexes. They are

not necessarily of invariable composition, i.e., a complex may have several core proteins which are always

present in the complex, as well as more dynamic, perhaps regulatory proteins, which are only present in a

complex from time to time. Also, the same protein may participate in several different complexes during

different cellular activities. One of the most challenging aspects of PPI data analysis is determining which

of the myriad of interactions in a PPI network comprise true protein complexes [71] [52] [154].

Recently, mass spectrometry studies have been conducted to identify protein complexes in yeast S.

cerevisiae. Ho et al. used HMS-PCI to extract complexes from S. cerevisiae proteome [71]. They reported

approximately threefold higher success rate in detection of known complexes when compared to the large-

scale two-hybrid studies by Uetz et al. [156] and Ito et al. [76]. Gavin et al. have performed an analysis

of the S. cerevisiae proteome as a network of protein complexes [63]. They used the mass spectrometry

approach to identify protein complexes which yielded about
� ���

probability of detecting the same protein

in two different purifications. Amongst 1,739 yeast genes, including 1,143 human orthologues, they purified

589 protein assemblies, out of which 98 corresponded to protein complexes in the Yeast Protein Database

(YPD), 134 were new complexes, and the remaining ones showed no detectable association with other

proteins. This led to proposing a new cellular function for 344 proteins including 231 proteins with no

previous functional annotation. They attempted investigating relationships between complexes in order to
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understand the integration and coordination of cellular functions by representing each complex as a node

and having an edge between two nodes if the corresponding complexes share proteins. Then they color-

coded complexes according to their cellular roles and noticed grouping of the same colored complexes,

suggesting that sharing of components reflects functional relationships. No graph theoretic analysis of this

protein complex network has been done so far. They also compared human and yeast complexes and found

that orthologous proteins preferentially interact with complexes enriched with other orthologues, supporting

the existence of “orthologous proteome” which may represent core functions for all eukaryotic cells.

There have been a couple of attempts to computationally extract protein complexes out of a PPI network.

They involved measurements of connectedness (e.g., k-core concept [14]), Watts-Strogatz’s vertex neighbor-

hood “cliquishness” [163] (e.g., MCODE method [15]), or the reliance on reciprocal bait-hit interactions as

a measure of complex involvement. Bader and Hogue [15] designed a simple algorithm that they termed the

“Molecular Complex Detection” (MCODE) algorithm. The algorithm exploits Watts and Strogatz’s notion

of the clustering coefficient described in Section 2. They used the notion of a k-core, a graph of minimum

degree ' , and a notion of the ”highest ' -core of a graph”, the most densely connected ' -core of a graph,

to weight a PPI network vertices in the following way. They define a core-clustering coefficient of a vertex

� to be the density of the highest ' -core of
��� ��� , where density is the number of edges of a graph divided

by the maximum possible number of edges of the graph. The weight a vertex � is the product of the vertex

core-clustering coefficient and the highest ' -core level, ' ���
� , of the

� ��� � . Then they seed a complex in

the weighted graph with the highest weighted vertex and recursively move outward from the seed vertex

including in the complex vertices with weights above a given threshold. They repeat this for the next highest

weighted unexplored vertex. After this they do post-processing by discarding complexes that do not contain

a ' -core with ' � �
. They also include the following two options: an option to “fluff” the complexes by

adding to them their neighbors unexplored by the algorithm of weight bigger than the “fluff” parameter, and

an option to “haircut” the complex by removing vertices of degree
�

from the complex. The resulting com-

plexes are scored according to the product of the complex vertex set size and the complex density, and they

are ranked according to the scoring function. Their algorithm also offers an option to specify a seed vertex.

They evaluated their algorithm against Gavin’s and MIPS complexes data sets. They tried all combinations

of their parameters (true/false for haircut and fluff, and vertex weight percentage in
� / � 1 increments) to find

the combination of parameters that yields the largest overlap with known protein complexes. They used 221

Gavin’s complexes to evaluate MCODE and found that MCODE complexes matched only 88 out of the 221

Gavin’s complexes. They obtained a similar discouraging result for MIPS, where MCODE predicted 166
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complexes out of which only 52 matched MIPS complexes. Their complexes of high density were highly

likely to match real complexes. This points out that a different approach of finding efficient graph clustering

algorithms that would identify highly connected subgraphs should be taken to identify protein complexes

in PPI networks. We explored this approach and used Hartuv and Shamir’s Highly Connected Subgraph

(HCS) algorithm [70] [69] (described in section 4) to identify protein complexes from yeast PPI network

with 11,000 interactions amongst 2,401 proteins [132]. The algorithm detected a number of known protein

complexes (an illustration is presented in Figure 6). Also, 27 out of 31 clusters identified in this way had

high overlaps with protein complexes documented in MIPS database. The remaining 4 clusters that did not

overlap MIPS contained a functionally homogeneous 6-protein cluster Rib 1-5 and a cluster Vps20, 25, 36,

which are likely to correspond to protein complexes. In addition, the clusters identified in this way had a

statistically significant functional homogeneity.

Figure 6: A subnetwork of a yeast PPI network [132] showing some of the identified complexes (green).
Violet lines represent PPIs to proteins not identified as biological complex members due to stringent criteria
about their connectivity in the algorithm, or due to absence of protein interactions that would connect them
to the identified complex (from more details see [132]).

An approach similar to ours has been taken by Spirin, Zhao, and Mirny [145]. They explored several

techniques for identification of highly connected subgraphs in a PPI network [145]. Their results are consis-

tent with our analysis [132]. They used three different methods to identify protein complexes from the PPI

network constructed on MIPS database PPIs. Their first method involves identifying complete subgraphs of

the PPI graph. The second method they used is the Super-Paramagnetic Clustering algorithm developed by
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Blatt, Wiseman, and Domany [30] to cluster objects in a non-metric space of an arbitrary dimension. As the

third method, they developed their own novel Monte-Carlo optimization technique to identify highly con-

nected subgraphs in a network (the details of this algorithm have not been published yet). They reported that

most of the dense subnetworks that they identified in this way had consistent functional annotation reveal-

ing the function of the whole complex. Also, their dense subgraphs had a good agreement with the known

protein complexes from MIPS, BIND, and the study of Ho et al. [71]. They claim to have also predicted

several novel complexes and pathways, but they do not give any further details on these.

Bu et al. [38] used a similar approach to predict functions of uncharacterized proteins. They applied

spectral graph theory methods, that have previously been used for analyzing the World Wide Web [65] [89],

to the yeast PPI network constructed on high and medium confidence interactions from von Mering’s paper

[158]. They identified “quasi-cliques” and “quasi-bipartites” in the PPI network and noticed that proteins

participating in quasi-cliques usually share common functions. They subsequently assigned functions to 76

uncharacterized proteins.

3.3.2 Molecular Pathways

Molecular pathways are chains of cascading molecular reactions involved in maintaining life. Different

processes involve different pathways. Some examples include metabolic pathways, apoptosis pathways, or

signaling pathways for cellular responses. An example of a signaling pathway transmitting information from

the cell surface to the nucleus where it causes transcriptional changes, is presented in Figure 7. Disruption

in a pathway function may cause severe diseases, such as cancer. Thus, understanding molecular pathways

is an important step in understanding cellular processes and the effects of drugs on cellular processes. As

a consequence, modeling and extraction of pathways from a network of protein interactions has become

a very active research area. The Biopathways Consortium 16 was founded to catalyze the emergence and

development of computational pathways biology. One of their main goals is to coordinate development

and use of open technologies, standards, and resources for representing, handling, accessing, and analyz-

ing pathways information. Numerous papers addressing these topics have been presented at the recent 4th

and 5th Biopathways Consortium Meeting. Many of them used classical graph algorithms in order to in-

tegrate genome-wide data on regulatory proteins and their targets with protein-protein interaction data in

yeast [169], reconstruct microbial metabolic pathways [106], determine parts of structure and evolution of

metabolic networks [96] etc.

16http://www.biopathways.org/
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Figure 7: Examples of MAPK (mitogen-activated protein kinases) signal transduction pathways in yeast.
Gray nodes represent membrane proteins, black nodes represent transcription factors, and white nodes rep-
resent intermediate proteins.

Recently, Steffen et al. constructed a model of S. cerevisiae signal transduction networks using simple

graph theory [147]. They used yeast two-hybrid PPI data [156] [76] [139] to form a PPI network in which

they deleted the most highly connected nodes, and then identified shortest paths of length at most eight

between every membrane protein and every DNA-binding protein in the modified network. They deleted

the most highly connected nodes in order to reduce the number of candidate signaling pathways from around

17 million to around 4.4 million. They compared these pathways with the ones obtained in the same way

in three randomized PPI networks, and tuned the parameters (the number of clusters in which genes were

grouped, the microarray expression datasets used in clustering, the maximum path length of their pathways,

and the scoring metric) to maximize high-scoring pathways in the real PPI network and minimized those in

the randomized networks. They chose to search for paths of length at most



because the average shortest

path length between any two proteins in their PPI graph was
� /  , and because a fraction of pathways with

high microarray clustering ratios over various shortest path lengths peaked at


. Their method reproduced

many of the essential elements of the pheromone response, cell wall integrity, and filamentation MAPK

pathways, but it failed to model the High Osmolarity (HOG) MAPK pathway due to missing interactions

(false-negatives) in the PPI network.

We addressed the issue of identifying linear pathways in a yeast PPI network [132]. We focused on

finding and exploiting the basic structure these pathways exhibit in PPI networks. We used MAPK as our

model pathways, because they are among the most thoroughly studied networks in yeast and because they

exhibit linearity in structure [136]. These pathways had source and sink nodes of low degree and internal
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nodes of high degree in the yeast PPI network. Thus, we used the following model to extract linear pathways

from a PPI network: we constructed a shortest path from a transmembrane or sensing protein of low degree

to a transcription factor protein of low degree, such that the internal nodes on the shortest path are of high

degree; we also included high degree first and second neighbors of internal nodes of such a shortest path

into these predicted pathways (for more details see [132]). In this way we extracted 399 predicted pathways

(an example of a predicted pathway is presented in Figure 8).

Figure 8: An example of a predicted pathway [132]. Note that this predicted pathway is presented as a
subgraph of the PPI graph, and thus some of its internal vertices appear to be of low degree, even though
they have many more interactions with proteins outside of this predicted pathway in the PPI graph.

Other theoretical approaches have been taken to model pathways. They involve system stoichiome-

try, thermodynamics etc. (for example, see [138]). Also, methods for extraction of pathway information

from on-line literature are being developed [125] [62] [93]. Such approaches are beyond the scope of our

attention, and thus are not presented here.

3.4 Properties of PPI Networks

Jeong, Tombor, Mason, Albert, Oltvai, and Barabasi have studied properties of PPI networks [82] [80].

They first studied metabolic pathway networks of different organisms from the WIT database [126]. This

database contains predicted pathways based on the annotated genome of an organism and data established

from the biochemical literature. They have shown that metabolic networks of 43 organisms from the WIT

database, containing 6 archaea, 32 bacteria, and 5 eukaryota, all have scale-free topology with ($� ' � �
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' � � � � for both in- and out-degrees [82]. The diameter of the metabolic networks was the same for all 43

organisms, indicating that with increasing organism complexity, nodes are increasingly connected. A few

hubs dominated these networks, and upon the sequential removal of the most connected nodes, the diameter

of the network rose sharply. Only around
 �

of the nodes were present in all species, and these were the ones

that were most highly connected in any individual organism; species-specific differences among organisms

emerged for less connected nodes. A potential bias introduced by a high interest and research being done

on some and a lack of interest and research being done on other proteins may also have contributed to this

effect. In addition, when they randomly removed nodes from these networks, the average shortest path

lengths did not change indicating insensitivity to random errors in these networks.

In their later study, Jeong, Mason, Barabasi, and Oltvai [80] analyzed the S. cerevisiae PPI network

constructed on
��� 
�� �

proteins and
��� � ��

interactions derived from the yeast two-hybrid study of Uetz et al.

[156] and DIP database [167]. They determined that the yeast PPI network and the PPI network of the human

gastric pathogen Helicobacter pylori [133] also have heterogeneous scale-free network topology with a few

highly connected proteins and numerous less connected proteins. They ordered all proteins in the yeast

PPI graph according to their degree and examined the correlation between removal of a protein of a certain

degree and the lethality of the organism. They demonstrated the same tolerance to random errors, coupled

with fragility against the removal of high-degree nodes as in the metabolic networks: even though about

��- � of proteins had degree at most 1 , only about
��� �

of them were essential; on the other hand, only
� / � �

of the yeast proteins with known phenotypic profiles had degree at least
� 1 , but

��� �
of them were essential.

They concluded that there has been evolutionary selection of a common large-scale structure of biological

networks and hypothesized that future systematic PPI network studies in other organisms will uncover an

identical PPI network topology. Our results on a larger yeast PPI network confirm their hypothesis [132].

Maslov and Sneppen [98] studied two networks, the protein interaction network derived from two-hybrid

screens of Ito et al. [76], and the genetic regulatory network from YPD. A genetic regulatory network

of a cell is formed by all pairs of proteins in which one protein directly regulates the abundance of the

other. In most of these networks regulation happens at the transcription level, where a transcription factor

regulates the RNA transcription of the controlled protein. These networks are naturally directed. Maslov

and Sneppen established that the degree distribution of the PPI network on
��� - ��
 yeast proteins and

�� 1  �
interactions followed power law �) ��� ������� � , where ' was between

�
and about

�	���
. Their genetic regulatory

network consisted of
� 
��

proteins and
��� � 
 � edges. Both networks had a small number of high-degree nodes

(hubs). The main contribution of this paper is the demonstration that both the interaction and the regulatory
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network had edges between hubs systematically suppressed, while those between a hub and a low-connected

protein were favored. Furthermore, they demonstrated that hubs tend to share few of their neighbors with

other hubs. They hypothesized that these effects decrease the likelihood of “cross talk” between different

functional modules of the cell and increase the overall robustness of a network by localizing effects of

harmful perturbations. They offer this as an explanation of why the correlation between the connectivity of

a given protein and the lethality of the mutant cell lacking this protein was not very strong [80]. We offer an

alternative explanation to this phenomenon [132]. We showed that hubs whose removal disconnects the PPI

graph are likely to cause lethality (see below).

The PPI network we analyzed consisted of the top
�����������

interactions among
��������

proteins from the

study of von Mering et al. [158], which utilizes high confidence interactions detected by diverse experimen-

tal methods [132]. We confirmed previously noted result on smaller networks [80] demonstrating that viable

proteins, whose disruption is non-lethal, have a degree that is half that of lethal proteins, whose mutation

causes lethality (see Figure 9); proteins participating in genetic interaction pairs in the PPI network, i.e.,

combinations of non-lethal mutations which together lead to lethality or dosage lethality, appeared to have

degree closer to that of viable proteins [132]. In this PPI network, lethal proteins were more frequent in the

top - � of high degree nodes compared to viable ones, while viable mutations were more frequent amongst

the nodes of degree
�
. Interestingly, lethal mutations were not only highly connected nodes within the net-

work, but were nodes whose removal caused a disruption in network structure – it disconnected one part of

the network from the other. The obvious interpretation of these observations in the context of cellular wiring

is that lethality can be conceptualized as a point of disconnection in the PPI network. A contrasting property

to hubs which are points of disconnection is the existence of alternative connections, called siblings, which

covers nodes in a graph with the same neighborhood. We have observed that viable mutations have an in-

creased frequency in the group of proteins that could be described as siblings within the network compared

to lethal mutations or genetic interactions. This suggests the existence of alternate paths bypassing viable

nodes in PPI networks, and offers an explanation why null mutation of these proteins is not lethal.

Ravasz, Somera, Mongru, Oltvai, and Barabasi have explored modular organization of metabolic net-

works [134]. They showed that metabolic networks of
 - organisms from the WIT database [82] [126]

are all organized into many small, highly connected modules, which are combined in a hierarchical man-

ner into larger units. Their motivation was the observed dichotomy between the two phenomena present in

metabolic networks: on one hand are scale-free models of these networks with the observed power law de-

gree distribution [18] [82] [159] and the existence of hubs which integrate all nodes into a single, integrated
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network, while on the other hand, these networks have high clustering coefficients [159] implying modular

topologies. To examine this in detail they first determined the average clustering coefficients of metabolic

networks of
 - different organisms, and established that all of them were an order of magnitude larger than

expected for a scale-free network of similar size. This suggested high modularity of these networks. Also,

the clustering coefficients of metabolic networks were independent of their sizes, contrasting the scale-free

model, for which the clustering coefficient decreases as  � �� ��� . To integrate these two seemingly contradict-

ing phenomena, they proposed a heuristic model of metabolic organization which they call a “hierarchical”

network. The construction is similar to the one described by Barabasi, Ravasz, and Vicsek [21] (presented

in section 2), but a starting point in this network is a " � as a hypothetical module (rather than a ( � [21]).

They connect nodes of this starting module with nodes of three additional copies of " � so that the “central

node” of the initial " � is connected to the three “external nodes” of new " � s, as presented in Figure 10

(b). In this way they obtain a 16-node module. They repeat this process by making three additional copies

of this 16-node module and connecting the “peripheral nodes” of the three new 16-node modules with the

“central node” of the initial 16-node module (Figure 10 (c)). This process can be repeated indefinitely. They

have shown that the architecture of this network integrates a scale-free topology with a modular structure;

its power law degree distribution is ($� ' � � ' � � � � 
 , which is in agreement with the observed (�� ' � � ' � � � �

[82], its clustering coefficient � � � / � is also comparable to the ones observed for metabolic networks,

and most importantly, its clustering coefficient is independent of the network size. The hierarchical struc-

ture of this model is a feature that is not shared by the scale-free, or modular network models. They also

demonstrated that for each of the 43 organisms, the clustering coefficient �$� ' � of a degree ' node is well ap-

proximated by �$� ' � � ' ��� , which is in agreement with the Dorogovtsev, Goltsev, and Mendes theoretical
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result presented in section 2.4 establishing that the clustering coefficient of a degree ' node of a scale-free

network follows the scaling law ��� ' � � ' ��� [47]. Thus, their hierarchical network model includes all

the observed properties of metabolic networks: the scale-free topology, the high, system size independent

clustering coefficient, and the power law scaling of �$� ' � . To inspect whether their model reflects the true

functional organization of cellular metabolism, they focused on the extensively studied metabolic network

of E. coli, and established that their model closely overlaps with E. coli’s known metabolic network. They

hypothesized that this network architecture may be generic to cellular organization networks. The existence

of small, highly frequent subgraphs in these networks, called “network motifs” (described below) [143]

[110] makes this hypothesis even more plausible.

Figure 10: Three steps in the construction of a hierarchical model network. Taken from [134].

Jeong, Barabasi, Tombor, and Oltvai [79] have further extended these results by applying the same

analysis on the complete biochemical reaction network of the 43 organisms from the WIT database. They

obtained these networks by combining all pathways deposited in the WIT database for each organism into

a single network. These networks are again naturally directed, so they examined their in- and out-degree

distributions. All of the 43 networks obtained in this way exhibited a power-law distribution for both in-

and out-degrees, from which they concluded that scale-free topology is a generic structural organization of

the total biochemical reaction networks in all organisms in all three domains of life. However, the largest

portion of the WIT database consists of the data on core metabolism pathways, followed by the data on infor-

mation transfer pathways, so their results may have largely been influenced by the domination of metabolic

pathways. To resolve this issue, they performed the same analysis on the information transfer pathways

alone, since apart from the metabolic pathways, these were the only ones present in high enough quantities

for doing statistical analyses. The analysis of the information transfer pathways of 39 organisms (four of
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the 43 organisms had their information pathways of too small size for doing statistics) revealed the same

power-law degree distribution both for in- and out-degree as seen for metabolic and complete biochemical

reaction networks. Similarly, they confirmed that the network diameter (which they defined as the average of

shortest path lengths between each pair of nodes) remained constant and around 3 for biochemical reaction

networks, metabolic networks, and information transfer networks of all 43 organisms, irrespective of the

network sizes. Thus, in these networks, the average degree of a node increases with the network size. This

is contrary to the results on real non-biological networks, in which the average degree of a node is fixed, so

the diameter of the network increases logarithmically with the network size [18] [163] [24]. They also found

that only about 1 � of all nodes were common to the biochemical reaction networks of all 43 species, and

that these were the highest degree nodes. They obtained the same result when they repeated this analysis for

metabolic and information transfer networks alone.

Barabasi, Dezso, Ravasz, Yook, and Oltvai [20] also described a minor variation of their hierarchical

network model (presented in Figure 11), and showed that four independent yeast PPI networks derived from

the DIP database [168], the study of Ito et al. [76], the MIPS database [108], and the study of Uetz et al.

[156], all had hierarchical structures with �$� ' � scaling as ' ��� .

Figure 11: Three steps in the construction of a hierarchical model network. Taken from [20].

Shen-Orr, Milo, Mangan, and Alon analyzed the transcriptional regulation network of Escherichia coli

and defined “network motifs” as patterns of interconnections that recur in many different parts of a net-

work at frequencies much higher than those found in randomized networks [143]. They represented the
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transcriptional network as a directed graph in which each node represents an operon, a group of contiguous

genes that are transcribed into a single m-RNA molecule, and each edge is directed from an operon that

encodes a transcription factor to an operon that is regulated by that transcription factor. They discovered

that much of the network is composed of repeated appearances of three highly significant motifs each of

which has a specific function in determining gene expression. These three motifs they called “feedforward

loop”, “single-input module” (SIM), and “dense overlapping regulons” (DOR) (a regulon stands for a group

of coordinately regulated operons). An illustration of these three motifs is presented in Figure 12. They used

straightforward adjacency matrix manipulation algorithms to detect motifs on - and


nodes and to detect

SIMs; they defined a non-metric distance measure between operons and used a standard average-linkage

clustering algorithm [49] to identify DORs. They further described how feedforward loops can act as cir-

cuits that reject transient activation signals and respond only to persistent signals, while allowing a rapid

system shutdown: X and Y act in an AND-gate-like manner to control operon Z. On the other hand, SIMs

allow temporal ordering of activation of different genes with different activation thresholds, which is useful

for processes that require several stages to complete, such as, for example, amino-acid biosynthesis pro-

cesses. In addition to giving an explanation of how different processes work, the introduction of the above

three motifs enabled Shen-Orr et al. to represent the E.coli transcriptional network in a compact, modular

form. We hope that by performing analysis similar to the one described by Shen-Orr et al. we will be able

to identify different motifs describing different functional protein groups in large, undirected PPI networks,

which would mathematically describe cell processes, predict new processes, and aid in determining function

of uncharacterized proteins (see section 5).
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Figure 12: Motifs from [143]: (a) feedforward loop, (b) single input module (SIM), (c) dense overlapping
regulons (DOR).

Milo, Shen-Orr, Itzkovitz, Kashtan, Chklovskii, and Alon further extended network motif analysis to

different types of large networks and determined that different networks have different motifs [110]. They

analyzed E. coli and S. cerevisiae gene regulation networks (transcription), the neuron connectivity network

of C. elegans, seven food web networks, the ISCAS89 benchmark set of sequential logic electronic cir-

cuits, and a network of directed hyper-links between World Wide Web pages within a single domain. They
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searched for all possible - - and

-node directed subnetworks in these real large networks and compared the

frequencies of occurrences of each of these small subnetworks in a real network with the frequencies of

their occurrences in randomized networks that have the same connectivity properties and the same number

of �� � � �
-node subgraphs as the real networks, where  is the size of the motif they were trying to detect.

They designed their random networks in this way in order to account for patterns that appear only because

of the single-node characteristics of the network, such as the presence of nodes with a large degree, and

also to ensure that a high significance was not assigned to a pattern only because it has a highly significant

sub-pattern. They defined “network motifs” to be those patterns for which the probability of appearing in a

randomized network an equal of greater number of times than in the real network is lower than
� / ��� . Thus,

there may exist functionally important but not statistically significant patterns that their approach would

miss. They further indicated that the number of appearances of each motif in the real networks appears to

grow linearly with the system size, while it drops in their random networks; this drop is in accordance with

an exact result on Erdos-Renyi random graphs in which the concentration � of a subgraph with  nodes and

� edges (i.e., the fraction of times a given  -node subgraph occurs among the total number of occurrences

of all possible  -node subgraphs) scales with network size � , as � � � # � � ��� [31], which in the study

of Milo et al. is equal to �� , since all but one of their motifs have  � � . In addition, they established

that the identified motifs are insensitive to data errors, since they do not change after addition, deletion, or

rearrangement of
�����

of the edges at random. They also tested their approach on an undirected yeast PPI

network on
��� 
  - nodes and

��� ��� - edges [80] and identified one - -node and one

-node motif. They iden-

tified two

-node “anti-motifs”, the patterns whose probability of appearing in randomized networks fewer

times than in the real network is less than
� / ��� , and

���
�
# 
 � ��� � � � + � / � ���

�
# 
 , where

���
�
# 
 and

��� � � � are

the number or subgraph appearances in a real and in randomized networks respectively.

We investigated if distinct functional classes of proteins have differing network properties [132]. Our

results support the findings that complex networks comprise simple building blocks [143] [110]. Since

different building blocks and modules have different properties, it can be expected that they serve different

functions. To examine this, we used the functional classifications in the MIPS database [108] to statistically

determine graph properties for each group. We observed that proteins involved in translation appear to have

the highest average degree, while transport and sensing proteins have the lowest average degree. Figures

13 A and 13 B support this result as half of the nodes with degrees in the top - � of all node degrees are

translation proteins, while none belong to amino-acid metabolism, energy production, stress and defense,

transcriptional control, or transport and sensing proteins. This is further supported by the observation that
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metabolic networks across 43 organisms tested have an average degree of ) 
[82]. By intersecting each

of the lethal, genetic interaction, and viable protein sets with each of the functional groups, we observed

that amino-acid metabolism, energy production, stress and defense, transport and sensing proteins are less

likely to be lethal mutations (see Figure 13 C). Of all functional groups, transcription proteins have the

largest presence in the set of lethal nodes on the PPI graph; approximately
��� �

of lethals on the PPI graph

are transcription proteins, as illustrated in Figure 13 C. Notably, amongst all functional groups, cellular

organization proteins have the largest presence in hub nodes whose removal disconnects the network (the

nodes whose removal disconnects the network we called articulation points; see Figure 13 D).

We also constructed a simple model for predicting new genetic interaction pairs in the yeast PPI network

[132]. This model is based on the distribution of shortest path lengths between known genetic interaction

pairs in the PPI network. In addition, we suggested a way to extract “bottle neck” proteins form PPI networks

which are likely to be important proteins in these networks:
�

out of the top
�	�

bottle neck proteins were

inviable and structural proteins in the yeast PPI network.

New approaches integrating different high-throughput methods in order to describe known and to predict

new biological phenomena have started to appear. Since most high-throughput techniques contain noise,

they may complement each other yielding less noisy data. One approach in this direction is integrating graph

theoretic PPI analysis with the results of microarray experiments (for example, see [81]). Even though they

are very interesting, these approaches are currently out of the scope of our attention, and thus we do not

survey them in this article. However, in the Future Research section (section 5), we propose an integrated

approach for the construction and analysis of putative PPI networks for different organisms.

4 Detection of Dense Subnetworks

From the above we can see that even though currently available PPI networks contain high degree of false

positives and false negatives, they do have structure. One of our goals is to discover more PPI network

structure and ultimately exploit it for designing efficient, robust, and reliable algorithms for extracting graph

substructures embedded in these networks that have biological meaning and describe biological processes.

Our previous discussion suggests that one example of such substructures may be dense subgraphs of these

networks representing core proteins of protein complexes. Thus, we present here some of the recent graph

theoretic techniques that could be used as a first step towards addressing extraction of these dense subgraphs

in PPI graphs. It is possible, however, that protein complexes (as well as pathways) have distinct graph

theoretic structures requiring novel graph theoretic approaches for their detection in PPI networks.
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Figure 13: Pie charts for functional groups in the PPI graph: G – amino acid metabolism, C – cellu-
lar fate/organization, O – cellular organization, E – energy production, D – genome maintenance,
M – other metabolism, F – protein fate, R – stress and defense, T – transcription, B – transcrip-
tional control, P – translation, A – transport and sensing, U – uncharacterized. A. Division of the
group of nodes with degrees in the top - � of all node degrees. B. Division of nodes of degree
1. Compared with Figure 13 A, translation proteins are about 12 times less frequent, transcription
about 2 times, while cellular fate/organization are 5 times more frequent, and genome mainte-
nance, protein fate, and other metabolism are about 3 times more frequent; also, there are twice
as many uncharacterized proteins. C. Division of lethal nodes. D. Division of articulation points
which are hubs.
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Clustering is an important problem in many disciplines including computational biology. Its goal is to

partition a set of elements into subsets called clusters so that the elements of the same cluster are similar to

each other (this property is called homogeneity) and elements from different clusters are not similar to each

other (this property is called separation). Homogeneity and separation can be defined in many different ways

leading to different optimization problems. Elements belonging to the same cluster are usually called mates

and the elements belonging to different clusters are called non-mates. Clustering problems and algorithms

can often be expressed in graph-theoretic terms. For example, a similarity graph can be constructed so that

nodes represent elements and edge weights represent similarity values of the corresponding elements. In

the analysis of PPI networks, weights on edges have not yet been incorporated in the model, but it may be

useful to incorporate them to represent the confidence (in the von Mering sense [158]) that the two proteins

really interact, or the strength of the interaction.

Several graph theoretic techniques have been developed recently to cluster microarray gene expression

profiles. Shamir and Sharan gave a good overview of these and other gene expression clustering methods

[141]. Enright has addressed clustering of protein sequences [53]. We describe here those graph theoretic

methods that may be used for identifying protein complexes, that is, “dense” subgraphs, of PPI networks.

We do not attempt to give an exhaustive survey of this large research area, but rather, point to some of the

techniques as illustrations of the mathematical arsenal available for attacking the problem of protein complex

identification in PPI networks. Several of the dense subgraph identification methods that we survey were first

developed as “exact” algorithms with proven properties in terms of solution quality and time complexity,

and later were modified to include heuristics which make them more efficient [70] [142]. Several of them

have a probabilistic nature [27] [157] [53].

To give a brief historical overview, we mention some of the important early works in the area of graph

theoretic clustering. To narrow the scope, we only present the results relevant to the recent graph clustering

algorithms used in computational biology that we describe below. We follow the background sections of

Hartuv and Shamir [70] and van Dongen [157], whose results we describe in more detail later in this section.

Matula addressed the problem of graph theoretic clustering in a series of papers [99] [100] [101] [102].

He observed that highly connected regions of similarity graphs are useful in cluster analysis. He defined

the cohesiveness function for every vertex and edge in a graph to be the maximum edge-connectivity of

any subgraph containing that vertex/edge. By deleting all elements of a graph of cohesiveness less than

' , he obtained maximal ' -edge-connected subgraphs of the graph. He first identified clusters by using a

constant ' [100], and later modified the technique to obtain, for any ' , clusters which are maximal ' -edge-

36



connected subgraphs that do not contain a subgraph with higher connectivity [101]. He presented several

graph cluster concepts [102] using the subgraph notions of: ' -bond – a maximal subgraph � such that

every node in � has degree at least ' in � ; ' -component – a maximal subgraph � such that every pair of

nodes in � is joined by ' edge-disjoint paths in � ; ' -block – a maximal subgraph � such that every pair

of nodes in � is joined by ' vertex-disjoint paths in � . These notions imply cluster methods which are

successive refinements going from bond to component to block. These algorithms require solving minimum

cut network flow problem and their time complexities are at least cubic in the input graph vertex set size for

connected graphs. Hartuv, Shamir, and Sharan [69] [70] [142] [140] have built on Matula’s work producing

faster exact graph clustering algorithms and also introducing heuristics to further speed up their algorithms

(see below). Alpert and Kahng give a good survey of other graph theoretic clustering techniques, including

the probabilistic ones [8]. We now turn to describing some of the recent graph theoretic clustering techniques

that have successfully been used in biological applications.

The Highly Connected Subgraph (HCS) [69] [70] and CLuster Identification via Connectivity Kernels

(CLICK) [142] [140] algorithms operate on a similar principle. The input is a similarity graph, and the

algorithm first considers if the graph satisfies a stopping criterion, in which case it is declared a “kernel”.

Otherwise, the graph is partitioned into two subgraphs, separated by a minimum weight edge cut, and the

algorithm recursively proceeds on the two subgraphs, outputting in the end a list of kernels that represent a

basis for the possible clusters. The overview of this general algorithm scheme is presented in Algorithm 1

(adapted from [141]). HCS and CLICK construct similarity graphs differently and have different stopping

criteria. We now describe their distinguishing basic properties.
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Algorithm 1: FORM-KERNELS( � )
if ����� � � � �  then

move � to the singleton set

end

else

if � is a kernel then

output �$��� �
end

end

else

��� � � ����� ���� � ���	� � � � � � � � � ��� � ;
Form-Kernels( � );

Form-Kernels( � );
end

The input into the HCS is an unweighted similarity graph � . A highly connected subgraph (HCS) is

defined to be an induced subgraph � of � such that the number of edges in a minimum edge cut of � is

bigger than
� 
 ��� � �� . That is, if any 

� 
 ��� � �� � of edges of � are removed, � remains connected. The algorithm

uses these highly connected subgraphs as kernels. Hartuv and Shamir proved that this algorithm produces

homogeneous and well separated clusters [69]. Clusters are homogeneous, since the diameter of each cluster

is at most
�

and each cluster is at least half as dense as a clique. They are well separated, since any non-

trivial split by the algorithm happens on subgraphs that are likely to be of diameter at least - . The running

time of the HCS algorithm is bounded by
� � � � �� � � � , where

�
is the number of clusters found (often

���  ) and
� �� � � � is the time complexity of computing a minimum edge cut of a graph with  nodes

and � edges. Currently the fastest deterministic minimum edge cut algorithms for unweighted graphs are of

time complexity ���� � � and are due to Matula [103] and Nagamochi and Ibaraki [114]. The fastest simple

deterministic minimum edge cut algorithm for weighted graphs is of time complexity �$�� � �  � �����  �
and is due to Stoer and Wagner [150]; it is implemented by Mehlhorn and is part of the Leda library [107].

Several heuristics are used to speed up the HCS algorithm in practice. The first one is called Iterated HCS

and is based on the fact that HCS arbitrarily chooses a minimum edge cut when the same minimum cut value

is obtained by several different cuts. This process will often break small clusters into singletons. To avoid

this, several iterations of HCS could be performed until no new cluster is found. This would theoretically

add another �$�� � factor to the running time, but in practice only between
�

and 1 iterations are usually
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needed. Another heuristic is called Singletons Adoption and is based on the principle that singleton vertices

get “adopted” by clusters based on their similarity to the clusters. For each singleton node � , the number

of neighbors of � in each cluster as well as in the set of all singletons � is computed, and � is added to a

cluster (never to � ) with the maximum number of neighbors � , if � is sufficiently large. This process is

repeated a specified number of times to account for changes in clusters resulting from previous adoptions.

The last HCS algorithm heuristic described by Hartuv and Shamir is based on removing low degree vertices.

This is done to speed up the algorithm, since if the input graph contains many low degree vertices, one

iteration of the minimum edge cut algorithm may only separate a low degree vertex from the rest of the

graph contributing to increased computational cost at a low informative value in terms of clustering. This

is especially expensive for large graphs with many low degree vertices. For example, around
� 
 �

of the

vertices of the PPI graph constructed on the top
�����������

interactions (and
��������

proteins) from the study

of von Mering et al. [158], and around
� - � of the vertices of the PPI graph constructed on all � ��


K

of the yeast protein-protein interactions (and 1 � - ��� proteins) [158] are of degree
�
, so this heuristic may

significantly speed up the HCS algorithm applied to these data sets. We implemented the HCS algorithm

without any heuristics and applied it to several PPI graphs constructed on the data set of von Mering et al.

[158], as described in section 3.3.1. Our results show that clusters identified this way have high overlap

with known MIPS protein complexes and a much higher functional group homogeneity than expected at

random [132] (also see section 3.3.1). Thus, high precision is favored by this method of protein complex

identification; in contrast, Bader and Hogue’s approach [15] improves recall at the expense of precision.

The CLICK algorithm [140] builds on Hartuv and Shamir’s HCS algorithm [69] by incorporating sta-

tistical techniques to identify kernels. Similar to HCS, a weighted similarity input graph is recursively

partitioned into components using minimum weight edge cut computations. The edge weights and the stop-

ping criterion of the recursion have probabilistic meaning. Pairwise similarity values between mates are

assumed to be normally distributed with mean ��� and variance ��� , and pairwise similarity values between

non-mates are assumed to be normally distributed with mean ��� and variance �	� , where �
� +���� (this

is observed on real data and can also be theoretically justified [142]). Also, the probability � � �� ��� of two

randomly chosen elements being mates is taken into account when computing edge weights. If the input

similarity matrix between elements is denoted by � � � � ��� � , the weight of an edge � � ��� � in the similar-

ity graph is computed as � ��� � �$# �
����� � � � � are mates � ��� � �

�
����� � � � � are non-mates � ��� � � � �$# � �	!�"$#&%�' � ��� � � � � � are mates �� ���	� �(!�"$#&% �)' � � � � � � � � are non-mates � , where

� � � ��� � � ��� are mates
� � �� ��*�+-, �

�/. % � � �10 ,32 ��54 �,
and

� � � ��� � � ��� are non-mates
� � �� ��*6+87 �

�/. % � � �10 7�2 ��54 �7
, and thus

� ����� � # � �(!�"$#5% +87� ���	�8�(!�"$#5%�� + , � � � � � ��9 7 � ���+ �7 � � ��� � ��9 , � ���+ �, . To increase efficiency, they omit from the graph edges
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whose weight is below a predefined non-negative threshold. They determine kernels in the following way.

They call a connected subgraph � pure, if ����� � contains only elements of some cluster. For each cut � of

a connected graph, they test the following hypotheses:

����� � contains only edges between non-mates.

���� � � contains only edges between mates.

� is pure if and only if ���� is accepted for every cut � of the graph � ; in this case they say that � is a

kernel. If � is not a kernel, they partition it along a cut � for which the ratio (� ������ � � � � (� ����� � � � is

minimum. They expand kernels obtained in this way to obtain clusters, first by singleton adoptions, then

by merging “similar” clusters, and finally, by performing another round of singleton adoptions. For more

details, see Algorithm 2 and [142].

Algorithm 2: CLICK( � )
Singletons � � complete set of elements

�
;

while some change occurs do

Execute FORM-KERNELS( � �5� � );
Let
�

be the list of produced kernels;

Let � be the set of singletons produced;

Adoption(
� � � )

end

Merge(
�

);

Adoption(
� � � )

To speed up the algorithm, they used the following heuristics. Similar to removing low degree nodes for

HCS, they screen for low weight nodes (the weight of a node � is the sum of weights of the edges incident

on � ) from large components in the following way. They first compute the average node weight � of

the component and multiply � by a factor proportional to the logarithm of the component size; the result

is denoted by ��� . Nodes with weight less than �	� are removed repeatedly, updating the weight of the

remaining nodes each time a node is removed, until the updated weight of all remaining nodes is greater

than � � . The removed nodes are added to the singleton set and handled later. The second heuristic they

used is the following. Instead of finding computationally expensive minimum weight edge cuts (they used

Hao and Orlin’s [68] ���� � � � � algorithm that has been shown to outperform other minimum weight edge

cut algorithms in practice [40]), they computed a minimum 
 � � cut of the underlying unweighted graph

using Dinic’s �$�� � � � � � time algorithm [59], with 
 and � chosen to be nodes that achieve the diameter
�

of
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the graph, when
� � 

(they used the �$�� � � � time breadth first search algorithm to find the diameter of

the graph).

Ben-Dor, Shamir, and Yakhini [27] developed a polynomial time algorithm for finding the clustering

with high probability under the following stochastic model of the data. They assume that the correct structure

of the input graph is a disjoint union of cliques (cliques represent clusters), but that errors were introduced

to it by independently adding or removing edges with probability � ) �� . Their heuristic Cluster Affinity

Search Technique (CAST) algorithm is built on their theoretical Parallel Classification with Cores (PCC)

algorithm which solves the problem to a desired accuracy with high probability in time ���� � � �����  � ! � (for

more details see [27]). The input to CAST is the similarity matrix � . CAST uses the notion of the affinity

of an element � to a putative cluster � , � ��� � � � ��� � � � �
� � � , and the affinity threshold parameter � . It

generates clusters sequentially by starting with a single element and adding or removing elements from a

cluster if their affinity is larger or lower than � , respectively. This process is repeated until it stabilizes.

The details are shown in Algorithm 3. In the end, an additional heuristic tries to ensure that each element

has the affinity to its assigned cluster higher than to any other cluster by moving elements until the process

converges, or some maximum number of iterations is completed.

Algorithm 3: CAST( � )
while there are unclustered elements do

Pick an unclustered element to start a new cluster � ;

repeat

add an unclustered element � with maximum affinity to � , if � ��� � + � � �$� ;
remove an element � from � with minimum affinity, if � � � � � � � �$� ;

until no changes occur;

Add � to the list of final clusters;
end

Recently, van Dongen [157] developed a new clustering algorithm which was later used to cluster protein

sequences into families [53] [55]. The algorithm is called the Markov Cluster (MCL) algorithm and it was

designed to cluster undirected unweighted and weighted graphs. The algorithm simulates flow within a

graph, promoting flow where the current is strong and demoting flow where the current is weak until the

current across borders between different groups of nodes withers away revealing a cluster structure of the

graph (an illustration is presented in Figure 14).

More formally, the MCL algorithm deterministically computes the probabilities of random walks through
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Figure 14: Stages of flow simulation by the MCL process. Taken from [157].

the graph and uses two operators, expansion and inflation, to transform one set of probabilities into another.

It uses stochastic matrices (also called Markov matrices) that capture the mathematical concept of random

walks on a graph. Following the notation of van Dongen [157], for a weighted directed graph � � ��� ��� � ,
with �������  , its associated matrix

���
is an ��  matrix with entries � ��� � ��� � � � � ��� �  � being equal

to weights of edges between vertices � and
�

(clearly, weights of all edges of an unweighted graph are equal

to
�
). Similarly, every square matrix

�
can be assigned an associated graph ��� . For a graph � on  nodes

and its associated matrix
� � � �

, the Markov matrix associated with � , denoted by 	 � , is obtained by

normalizing each column of
�

so that it sums to
�
, i.e., if 
 is a diagonal matrix with 
 ) )�� � �

� � )
and 
 ��� � �

for ���� �
, then 	 � is defined as 	 � � �� 
 ��� . A column

�
of 	 � corresponds with node

�
of the stochastic graph associated with 	 � , and the matrix entry ��	 ��� ��� corresponds to the probability

of going from node
�

to node � . Given such a matrix 	 ����� #�� # � 	 � � �
, and a real number .+ �

,

let � � � � ) � ) % � ) � ) be defined as ��� � 	 � � ��� � � ��	 � � ��� �
� � � #

� � � � ��	 ��� ��� �
�
. � � is called the inflation

operator with power coefficient  and the Markov matrix resulting from inflating each of the columns of 	 �

with power coefficient  is written as � � 	 � . For  + �
, inflation changes the probabilities associated with

the collection of random walks departing from a node (corresponding to a matrix column) by favoring more

probable walks over less probable ones. Inflation can be altered by changing  : larger  makes inflation

stronger and produces “tighter” clusters. Expansion corresponds with computing “longer” random walks. It
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associates new probabilities with all pairs of nodes with one node being the point of departure and the other

being the destination. It relies on the observation that longer paths are more common within clusters than

between different clusters, and thus the probabilities associated with node pairs which are within the same

cluster will, in general, be relatively large, since there are many ways of going from one node to the other.

Expansion is achieved via matrix multiplication. The MCL algorithm iterates the process of expanding in-

formation flow via matrix multiplication and contracting it via inflation. The basics of the MCL algorithm

are presented in Algorithm 4.

Algorithm 4: MCL( � ��� � � � � � �  � � � )
� � is a graph with every node of degree � �

;
�
� � � � is a sequence of � � ��� � � � + ��� ��� ��� / / / ;

�  � � � is a sequence of  � � � �  � + ��� ��� ��� / / / ;
� � � � �

;
�

Possibly add (weighted) self-loops;
� � � 	 � ;

'$� �
;

repeat

'�� ' � �
;

� � ) � � � � ) ��� � � � ;
�

Expansion;
� � ) � � � � � � � � � ) � ; � Inflation;

until
� � ) � � is (near-) idempotent;

Interpret
� � ) � � as a clustering.

Iterating expansion and inflation results in the matrix that is idempotent under both matrix multiplication

and the inflation (such a matrix is called doubly idempotent), that is, an equilibrium state is reached when

a matrix does not change with further expansion and inflation. The graph associated with such a matrix

consists of different directed connected star-like components with an attractor in the centre (see bottom

right picture in Figure 14). Each of these components is interpreted as a cluster. Theoretically, there may

exist nodes connected to different stars, which is interpreted as cluster overlap [157]. The algorithm iterants

converge nearly always to the doubly idempotent matrix. In practice they start noticeably converging after

- to
�	�

iterations. Van Dongen proved quadratic convergence of the MCL process in the neighborhood of

doubly idempotent matrices [157]. The row of expansion powers, � � � � , and the row of inflation powers,  � � � ,
in Algorithm 4 influence the granularity of the resulting clustering.

As mentioned above, Enright, van Dongen, and Ouzounis [55] used the MCL algorithm to cluster pro-
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tein sequences into families. For this purpose, nodes of the graph represented proteins, edges represented

sequence similarities between the corresponding proteins, and edge weights corresponded to sequence sim-

ilarity scores obtained from an algorithm such as BLAST [9] [10]. The overview of their algorithm, called

Tribe-MCL, is presented in Algorithm 5. Tribe-MCL allowed hundreds of thousands of sequences to be

accurately classified in a matter of minutes [53].

Algorithm 5: TRIBE-MCL(SET OF PROTEIN SEQUENCES � )
All versus all BLAST( � );

Parse results and symmetrify similarity scores;

Produce similarity matrix
�

;

Transform
�

to normalize similarity scores (
� �$��� � E-value

�
) and generate transition probabilities;

MCL( � � );

Post process and correct domains of resulting protein clusters (families).

5 Future Research

From the above we can see that the analysis of PPI networks is a young, multidisciplinary research area with

many open problems. We emphasize here those open problems that we consider the most interesting.

Understanding interactions between proteins in a cell may benefit from a better model of a PPI network.

A full description of protein interaction networks requires a model that would encompass the undirected

physical protein-protein interactions, other types of interactions, interaction confidence level, source (or

method) and multiplicity of an interaction, directional pathway information, temporal information on the

presence or absence of a PPI, information on the strength of the interactions, and possibly protein complex

information. This may be achieved by designing a weighting function and assigning weights to nodes and

edges of a PPI network to incorporate temporal and other interaction specific information, adding direction-

ality to the network subgraphs, and building a hypergraph structure on the top of the network to incorporate

information about complexes, or pathways in which proteins take part.

Another interesting research topic is finding an efficient and robust graph clustering algorithm that would

reliably identify protein complexes, separate stable from transient complexes [78], or detect pathways in PPI

networks, despite the noise present in PPI networks. Identifying graph theoretic structural properties that are

common to protein complexes or certain pathway types in PPI networks may be crucial to designing such an

algorithm. Similarly, modeling signaling pathways and finding efficient algorithms for their identification

in PPI networks is another interesting topic. These algorithms would likely have to be stochastic, massively
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parallel, and use local search techniques, due to the presence of noise and large network sizes.

The existence of a “core proteome” has been hypothesized. It has been proposed that approximately
����

of yeast proteins are conserved through eukaryotic evolution [41]. We are approaching the moment

when enough information would be available to verify the existence of such a proteome and discover its

structural properties within PPI networks. It is already possible to take the first steps towards this goal with

the currently available data. We propose to construct putative PPI networks for a number of eukaryotic

organisms with mapped genomes by combining protein sequence similarities between different organisms

with the known PPI networks of model organisms. With the set of putative PPI networks constructed in this

way, it may be possible to do PPI network structural comparisons over different organisms. Preferential at-

tachment to high degree nodes in real world networks has been suggested, implying that the core proteome

would consist of high-degree nodes in PPI networks (described in previous sections). It is interesting to

notice the discrepancy between the high degree of supposed “core proteome” proteins (hubs) and the sepa-

ration of hubs by low-degree nodes noticed by Maslov and Sneppen [98]. Exploring the structural properties

of this discrepancy may give an insight not only in the processes of evolution, but also in the properties that a

better PPI network model should have. Research in this direction may result in construction of a stochastic,

or deterministic large network model (similar to the model of Ravasz et al. [134] and the model of Jeong et

al. [79] described above) which would provide a better framework for understanding PPI networks.

Other interesting topics for future research include distinguishing different graph theoretic properties of

proteins belonging to different functional groups. Our results [132] suggest that such differences exist. One

way to approach this problem would be to identify different network motifs (in the Shen-Orr [143], or some

other sense) in the neighborhood of proteins belonging to the same functional group, and to compare the

enrichment of these motifs over the functionally different sets of proteins. Along the same lines, it may be

interesting to compare graph structures of the “same-function modules” over putative (or real, when they

become available) PPI networks of different species and possibly infer common and differing elements in

the structures of these modules. This could lead to construction of new models which could be used for

identification of false positives and false negatives in PPI networks.

Integration of microarray data with PPI data may be beneficial for finding solutions to many of the above

mentioned open problems.

Complex biological and artificial networks show graph-theoretic properties that reflect the function these

networks carry [110] [170] [155] [166] [51] [66] [148]. A similar analysis could be applied to call graphs

of large software [130] [131] [129]. A comparison between PPI networks, software call graphs, and other
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biological artificial networks may give further insight into the properties of large, evolving networks.
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