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Abstract

This paper studies the inuence of knowledge dif-
ference on the performance of a search agent |
{ a controllable camera that can pan, tilt and
zoom. The task of the agent is to search for a 3D
target within a 3D environment. The goal is to
maximize the probability of detecting the target
within a given period of time. The search agent
does this by autonomously controlling its state
parameters to bring the target into the �eld of
view of the camera and to make the image of the
target with quality such that it can be detected
by the available recognition algorithms. Before
the search process, the agent has some knowledge
of the position of the target. This knowledge is
used to guide the sensor planning process. Typi-
cally, this knowledge is di�erent more or less from
the real situation. This \knowledge di�erence"
(the discrepancy between the agent's knowledge
and reality) can inuence the performance of the
agent. In this paper, we study how to formu-
late quantitatively the knowledge di�erence and
how the performance of the agent is inuenced
by this di�erence. We also propose a method to
integrate knowledge from di�erent sources such
that the knowledge di�erence can be reduced.

Introduction

An agent is a computational system that inhabits dy-
namic, unpredictable environments. It interprets sen-
sor data that reect events in the environment, and
it executes motor commands that produce e�ects in
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the environment. One important property of an agent
is its awareness |{ it has knowledge about itself and
the world. This knowledge can be used to guide its
actions when exhibiting goal-directed behaviors. But
sometimes the agent's knowledge may not correctly
and completely represent the real world situation. This
incorrectness and incompleteness of knowledge can in-
uence the e�ectiveness of the agent's actions.

This paper studies the inuence of knowledge dif-
ference on the performance of an autonomous object
search agent. In general, the agent might not have
complete knowledge of the state of the environment,
and might not have a perfect process model of the
e�ects of its actions on this state. Under these as-
sumptions, the agent must use its limited knowledge
to generate a plan of actions so as to ful�ll the given
task |{ this means that the agent must be able to plan
under uncertainty. Once the fallibility of the agent's
predictive mechanisms is recognized, it becomes obvi-
ous that it is impossible in general to guarantee that
a particular plan will achieve a given goal. So, the
agent is expected to be able to determine a probability
that the goal will be achieved if the plan is executed.
Although the agent's initial knowledge about the en-
vironment is incomplete or invalid before the agent's
planning and action execution process, this knowledge
is typically used by the agent to guide its planning
strategy. Thus, the following important issues arise.
The �rst is how to represent the di�erence between
the agent's initial knowledge about the environment
and the inherent property of the environment. The
second is how the knowledge di�erence inuences the
performance of the agent's planning system. The third
is how to integrate knowledge from di�erent sources so
as to obtain a favorable initial knowledge. In this pa-
per, we try to answer these questions in the context of
3D object search by a camera agent.

Object search is the task of searching for a given 3D
object in a given 3D environment by a camera agent
that can pan, tilt and zoom. It is clear that exhaus-



tive, brute-force blind search will su�ce for its solu-
tion; however, the goal of the agent is to design e�-
cient strategies for search, because exhaustive search is
computationally and mechanically prohibitive for non-
trivial situations. The sensor planning task for the
agent refers to the task of selecting the sensing param-
eters (the camera's viewing direction and viewing angle
size) so as to bring the target into the �eld of view of
the sensor and to make the target in the image easily
detectable by the given recognition algorithm.
Although sensor planning for object search is very

important if a robot is to interact intelligently and ef-
fectively with its environment, it is interesting to note
that there is little research on this subject within the
computer vision community. Garvey (Garvey 1976)
proposes the idea of indirect search for the target. Wix-
son (Wixson 1994) presents a mathematical model of
search e�ciency and analyzes the e�ciency of indirect
search, concluding that indirect search can improve ef-
�ciency in many situations. Connell (Connell 1989)
constructed a robot that roams an area searching for
and collecting soda cans. Although these works involve
the task of object search, none of them give an explicit
algorithm to control the state parameters of the cam-
era by considering both the search agent's knowledge
about the target distribution and the ability of the
recognition algorithm.
In this paper, we �rst briey describe the formula-

tion of the agent's sensor planning task and the agent's
sensing strategy based on this formulation. Then we
study an important problem that has not been ad-
dressed before |{ the knowledge di�erence and its in-
uence on the performance of the agent's sensor plan-
ning strategy.

General Discussion

In its most general form, the state of an object search
system can be denoted as

V (� ) = (Econf ; S(� );Kworld(� ); Tpos; A)

Here Econf is the geometric con�guration of the en-
vironment. We assume Econf is static, which means
that the geometric con�guration will not change dur-
ing the search process. S(� ) = S(s1(� ); : : : ; sm(� )) is
the vector of state parameters of the sensor. This state
is a function of time, � , because the sensor parame-
ters are changing during the search process. Tpos is
the real position of the target in the world. Kworld(� )
is the agent's knowledge about the world at time � .
This knowledge includes two parts: one is the agent's
knowledge about the geometric con�guration of the en-
vironment EA

conf (� ); the other is the agent's knowl-

edge about the possible position of the target TA
pos(� ).

Thus, Kworld(� ) = EA
conf (� )

S
TA
pos(� ). To simplify

the problem, we assume that the agent knows ex-
actly the geometric con�guration of the world; thus,
EA
conf (� ) = Econf . The agent, however, does not

know the exact position of the target; thus, in gen-
eral TA

pos(� ) 6= Tpos. The agent's knowledge about the

possible position of the target TA
pos(� ) is updated after

each search action because the agent acts to acquire
knowledge of the location of the target. The purpose
of object search task is to make this knowledge coin-
cide with the real situation at a certain time ��, that
is, to make TA

pos(�
�) = Tpos. A = (a1; : : : ; an) is the

set of available recognition algorithms used to detect
the target from the image. To simplify the discussion,
we assume that there is only one recognition algorithm
available, thus, A = (a1).
For the given Econf and Tpos, there exists a group of

possible sensor parameters Sdesire = fS�1 ; : : : ; S
�
r g. If

we take an image with the sensor state parameters set
to S�i (i can be 1; : : : ; r) and analyze the image using
the existing recognition algorithm, then the target can
be detected. We call any of the above possible sensor
parameters S�1 ; : : : ; S

�
r the \desired sensor state". The

goal of object search becomes to adjust the sensor state
to one of the desired states, take an image under this
state and analyze the picture using the given recogni-
tion algorithm. The purpose of sensor planning is to
try to realize this goal in a short time. When the tar-
get is detected, its real position Tpos can be calculated,
at which time �� we can make Tpos = TA

pos(�
�).

Suppose that all the possible states for the sensor
are S1; : : : ; SN . Then the sensor planning task is to se-
lect a state S from S1; : : : ; SN , such that S 2 Sdesire.
This task is very di�cult because normally the num-
ber of possible states N is huge, and the number of
desired sensor states r is relatively small. It is almost
impossible to use brute force strategy (to try each pos-
sible state one by one) to solve this problem. In order
to search this huge space for a desired sensor state,
the agent must use the available knowledge TA

pos(� ) to
guide the search process. It must also incorporate the
new knowledge from each sensing operations into its
knowledge body Kworld(� ).
This paper studies the inuence of the initial knowl-

edge di�erence jj TA
pos(�0)� Tpos jj on the performance

of the sensor planning strategy, where �0 is the time
before the search process.

Sensor Planning Strategy

Formulation

We need to formulate the agent's sensor planning task
in a way that incorporates the available knowledge of
the agent and the detection ability of the recognition



algorithm.
The search region 
 can be in any form, such as

a room with many tables, etc. In practice, 
 is tes-
sellated into a series of elements ci, 
 =

Sn

i=1 ci and
ci
T
cj = 0 for i 6= j. In the rest of the paper, it is

assumed that the search region is an o�ce-like envi-
ronment and it is tessellated into little cubes of the
same size.
An operation f = f (xc; yc; zc; p; t; w; h; a) is an action

of the searcher within the region 
. Here (xc; yc; zc)
is the position of the camera center (the origin of the
camera viewing axis); (p; t) is the direction of the cam-
era viewing axis (p is the amount of pan 0 � p < 2�, t
is the amount of tilt 0 � t < �); (w; h) are the width
and height of the solid viewing angle of the camera;
and a is the recognition algorithm used to detect the
target.
The agent's knowledge about the possible target po-

sition can be speci�ed by a probability distribution
function p, so that p(ci; �f ) gives the agent's knowl-
edge about the probability that the center of the tar-
get is within cube ci before an action f (where �f is the
time just before f is applied). Note, we use p(co; �f ) to
represent the probability that the target is outside the
search region at time �f .
The detection function on 
 is a function b, such

that b(ci; f ) gives the conditional probability of de-
tecting the target given that the center of the target
is located within ci and the operation is f . For any
operation, if the projection of the center of the cube
ci is outside the image, we assume b(ci; f ) = 0. If the
cube is occluded or it is too far from the camera or
too near to the camera, we also have b(ci; f ) = 0. It is
obvious that the probability of detecting the target by
applying action f is given by

P (f ) =
nX
i=1

p(ci; �f )b(ci; f )

Let 	 be the set of all the cubes that are within the
�eld of view of f and that are not occluded, then we
have

P (f ) =
X
c2	

p(c; �f)b(c; f )

The reason that the term �f is introduced in the
calculation of P (f ) is that the probability distribution
needs to be updated whenever an action fails. Here
we use Bayes' formula. Let �i be the event that the
center of the target is in cube ci, and �o be the event
that the center of the target is outside the search re-
gion. Let � be the event that after applying a recog-
nition action, the recognizer successfully detects the
target. Then P (:� j �i) = 1 � b(ci; f ). It is obvious

that the updated probability distribution value after
an action f failed should be P (�i j :�), thus we have
p(ci; �f+) = P (�i j :�). Where �f+ is the time af-
ter f is applied. Since the above events �1; : : : ; �n; �o
are mutually complementary and exclusive, fromBayes
formula we get

P (�i j :�) =
P (�i)P (:� j �i)Pn;o

j=1P (�j)P (:� j �j)

So, the probability updating rule is

p(ci; �f+) 
p(ci; �f )(1� b(ci; f ))Pn;o

j=1 p(cj; �f )(1� b(cj; f ))

where i = 1; : : : ; n; o.
The cost to(f ) gives the total time needed to perform

the operation f .
Let O
 be the set of all the possible operations that

can be applied. The e�ort allocation F = ff1; : : : ; fkg
gives the ordered set of operations applied in the
search, where fi 2 O
. It is clear that the probability
of detecting the target by this allocation is:

P [F] = P (f1) + [1� P (f1)]P (f2)

+ : : :

+f
k�1Y
i=1

[1� P (fi)]gP (fk) (1)

The total cost for applying this allocation is:

T [F] =
kX
i=1

to(fi)

Suppose K is the total time that can be allowed in
the search, then the task of sensor planning for object
search can be de�ned as �nding an allocation F � O
,
which satis�es T (F) � K and maximizes P [F].
Since this task is NP-Complete (Ye & Tsotsos

1996a), we consider a simpler problem: decide only
which is the very next action to execute. Our objec-
tive then is to select as the next action the one that
maximizes the term

E(f ) =
P (f )

to(f )

We have proved that in some situations, the one step
look ahead strategy may lead to an optimal answer.

Selecting Camera Parameters

The agent needs to select the camera's viewing angle
size and viewing direction for the next action f such



that E(f ) is maximized. Normally, the space of avail-
able candidate actions is huge, and it is impossible to
take this huge space of candidate actions into consid-
eration. According to the image formation process and
geometric relations, we have developed a method that
can tessellate this huge space of candidate actions into
a small number of actions that must be tried.
A brief description of the sensor planning strategy is

as follows (please refer to (Ye 1996b) and (Ye & Tsot-
sos 1995) for detail). For a given recognition algorithm,
there are many possible viewing angle sizes. However,
the whole search region can be examined with high
probability of detection using only a small number of
them. For a given angle size, the probability of suc-
cessfully recognizing the target is high only when the
target is within a certain range of distance. This range
is called the e�ective range for the given angle size.
Our purpose here is to select those angles whose e�ec-
tive ranges will cover the entire depth D of the search
region, and at the same time there will be no over-
lap of their e�ective ranges. Suppose that the biggest
viewing angle for the camera is w0 � h0, and its e�ec-
tive range is [N0; F0]. Then the necessary angle sizes
hwi; hii (where 1 � i � n0) and the corresponding
e�ective ranges [Ni; Fi] (where 1 � i � n0) are:

wi = 2arctan[(N0
F0
)itan(w0

2 )]

hi = 2arctan[(N0
F0
)itan(h02 )]

Ni = F0(
F0
N0

)i�1

Fi = F0(
F0

N0
)i

n0 = b
ln( D

F0
)

ln(
F0
N0

)
� 1c

For each angle size derived above, there are an in-
�nite number of viewing directions that can be con-
sidered. We have designed an algorithm that can gen-
erate only directions such that their union can cover
the whole viewing sphere with minimum overlap (Ye
1996b).
Only the actions with the viewing angle sizes and

the corresponding directions obtained by the above
method are taken as the candidate actions. So, the
huge space of possible sensing actions is decomposed
into a �nite set of actions that must be tried. Finally,
E(f ) can be used to select among them for the best
viewing angle size and direction. After the selected ac-
tion is applied, if the target is not detected, the prob-
ability distribution will be updated and a new action
will be selected again.

The Inuence of the Knowledge
Di�erence

In order to use the agent's initial knowledge to guide
the search process, we formulate the sensor planning

problem as a task to maximize the probability of de-
tecting the target within a given time limit. But the
agent's real goal is to adjust the sensor state to one of
the desired states Sdesire. Since di�erent initial knowl-
edge corresponds to di�erent sensor sequence, the ef-
fect of sensor planning strategy is inuenced by the
agent's initial knowledge TA

pos(�0). We have performed

many experiments to test the inuence of TA
pos(�0) on

the e�ects of the sensor planning strategy. The task is
to search for a baseball within our Lab (Figure 1(b)(c))
using a special sensor: the Laser Eye, which is a robotic
head with a camera that can pan, tilt and zoom (Ja-
siobedzki et al. 1993) (Figure 1(a)). Experimental
results are listed in Table 1(a)(b) as the average num-
ber of actions needed to bring the ball into the e�ective
viewing volume of the camera by using our planning
strategy. For example, the data in the second column
of Table 1(a) refers to the situation when the target is
on table A. Then the number of actions needed to bring
the ball into the e�ective viewing volume of the camera
is 1 when we give the table surface A a high probability
distribution. The number of actions needed to bring
the ball into the e�ective volume of the camera is 7
when we give the table surface C a high probability
distribution (note, the target is on A). Similar expla-
nations can be applied to other columns of Table 1(a)
and Table 1(b). From Table 1(a)(b) we can see that
the performance of the agent's planning strategy is in-
uenced by the accuracy of the initial knowledge. The
more accurate the initial knowledge, the more e�cient
the planning algorithm.

Target Pos. A B C

Plan(correctknowledge) (A)1 (B)1 (C)1

Plan(incorrectknowledge) (C)7 (A)8.5 (B) 11.5

Table 1(a)

Target Pos. A or B A or C A, B or C

Plan(correctknowledge) (AB)1.5 (AC)1.5 (ABC)2.5

Plan(incorrectknowledge) (C)6 (B)9 (C)4.3

Table 1(b)

The Representation of the Knowledge
Di�erence

From above, we know that the agent's initial knowl-
edge is very important for e�ective sensor planning.
Suppose the center of the target is within the cube c�,
and let the coordinate of the center of c� be (x�; y�; z�).
Then, the probability distribution with respect to the
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Figure 1: The hardware of the search agent and the
search environment

(a) The Laser Eye; (b) Top view of the search
environment. A, B, C, E are table surfaces. The
Laser Eye is on E; (c) Composite image of the
region from position D of (b).

real world situation Tpos is: p�(c) = 0 for all c 6= c�

and p�(c�) = 1. Of course, the search agent's knowl-
edge di�erence jj TA

pos(�0) � Tpos jj (the discrepancy
between the agent's knowledge and reality) is caused
by the di�erence �(ci) associated with each cube ci.
So, it should be a function of all the �(ci).

kTA
pos(�0)� Tposk = �(�(c1);�(c2); : : : ;�(cn);�(co))

where � is an appropriate function.
Since the function � is very di�cult to quantify, we

simply use
P

to replace it, in the belief that the total
knowledge di�erence is the sum of the discrepancy be-
tween the agent's knowledge and reality with respect
to each cube. Thus, the di�erence can be further rep-
resented as

kTA
pos(�0) � Tposk �

n;oX
i=1

�(ci)

For each cube, two factors are important with
respect to the agent's knowledge representation
and the real situation: the probability assigned
by the agent to this cube and the distance of
this cube to cube c� which contains the tar-
get center. So, �(ci) can be represented as a

(a) (b)

Figure 2: An intuitive explanation about kTA
pos(t0) �

Tposk.

(a) The perfect knowledge p�. (b) The ini-
tial knowledge according to agent's perception of
the world. Some probability masses are mistakenly
scattered into other cubes.

function of two factors: a probability di�erence
jp(ci) � p�(ci)j and a position di�erence k(xi; yi; zi) �
(x�; y�; z�)k =

p
(xi � x�)2 + (yi � y�)2 + (zi � z�)2,

where (xi; yi; zi) is the center of cube ci. Thus, we
write

�(ci) = �(j p(ci)�p
�(ci) j; k(xi; yi; zi)� (x

�; y�; z�)k)

The function � is also very di�cult to specify. For
simplicity, we use the product relation to replace �,
in the belief that the di�erence at each cube is pro-
portional to both the probability di�erence and the
position di�erence. Thus,

kTA
pos(�0) � Tposk �

nX
i=1

(
jp(ci)� p�(ci)j

�k(xi; yi; zi)� (x�; y�; z�)k

)

An intuitive explanation of kTA
pos(�0) � Tposk is

shown in Figure 2. For the reality Tpos, the proba-
bility mass is totally concentrated in the cube c� that
contains the target center. But, for the agent's knowl-
edge TA

pos(�0), some of the probability mass is scattered
into other cubes. This is what causes the knowledge
di�erence kTA

pos(�0) � Tposk. From a certain point of
view, the purpose of object search is to bring the mass,
which is mistakenly scattered into other cubes, back
into the cube that contains the center of the target.
Figure 3 and Table 2 show how well the above for-

mula can represent the real situation. In order to make
the visualization easier, we use 2D instead of 3D to il-
lustrate the result. The 2D region is assumed to be a
rectangle with size 145 � 145. The center of the tar-
get is at (75; 75). Each pixel represents a square in



(a) (b)

(c) (d)

(e) (f)

Figure 3: The initial probability from the agent's
knowledge. The real position of the target is at the
center of the region.

(a) �x = �y = 1, �x = �y = 75;
(b) �x = �y = 5, �x = �y = 75;
(c) �x = �y = 10, �x = �y = 75;
(d) �x = �y = 15, �x = �y = 75;
(f) �x = �y = 15, �x = �y = 105;
(g) �x = �y = 15, �x = �y = 115.

the region. The brightness of each pixel represents the
probability assigned to the corresponding square. The
higher the value of the probability, the brighter the
pixel intensity.
The distribution TA

pos(�0) from the agent's knowledge
is assumed to be in the form of a 2-variate normal
distribution

p(x; y) =
1

2��x�y
e
� 1

2 [
(x��x )

2

�2x
+

(y��y )
2

�2y
]

(2)

Figure 3 illustrates how kTA
pos(�0) � Tposk changes

when �x; �y; �x; �y change. Figure 3(a)(b)(c) shows
the situation that the center (the mean vector) of the
distribution is the same as the target center, while the
value of � changes. It is easy to see that a bigger �
value corresponds to a fuzzier knowledge. This phe-
nomena is clearly represented by the calculated knowl-
edge di�erence (Table 2), as the bigger the �x and
�y, the bigger the value of kTA

pos(�0) � Tposk. Figure
3(d)(e)(f) shows the situation that the value of vari-
ance �x; �y is �xed but the center of the distribution
(the mean vector) is changing. Of course, the nearer
the center of the distribution to the real target center,
the better our knowledge. The phenomenon is also
correctly represented by the calculated knowledge dif-
ference (Table 2), since the smaller the distance, the
smaller the value of rknowledge = kT

A
pos(�0) � Tposk.

Parameters �x �y �x �y rknowledge

(a) 1 1 75 75 1:214148
(b) 5 5 75 75 6:265085
(c) 10 10 75 75 12:532640
(d) 15 15 75 75 18:802147
(e) 15 15 105 105 19:958609
(f) 15 15 115 115 26:120419

Table 2

Obtain the Initial Distribution

The initial probability distribution TA
pos(�0) has a huge

inuence on the agent's performance. A good initial
distribution can lead to a quick discovery of the tar-
get, while misleading knowledge can greatly degrade
the performance. It is thus important to obtain an
initial distribution TA

pos(�0) such that the knowledge
di�erence is as small as possible.
TA
pos



knowledge, such as our habits to put the target at a
particular place. Since usually we have more than one
knowledge source, we need to combine knowledge from
all the sources to obtain the initial distribution.
Our strategy is to �rst use the Dempster-Shafer the-

ory (Schubert 1994) to integrate knowledge derived
from a variety of sources. Then, we transform the inte-
grated result into a reasonable probability distribution.
As discussed before, the search space 
 is tessellated

into a series of elements ci. This tessellation actually
forms the frame of discernment � = fc1; c2; : : : ; cn; cog.
For each knowledge source Si, we can obtain a belief
function mSi . To combine the belief functions from
two knowledge sources Si and Sj , we use Dempster-
Shafer's rule of combination (Schubert 1994)

m(A) = mSi

M
mSj (A)

=

P
X
T

Y=AmSi (X) �mSj (Y )

1�
P

X
T

Y=�mSi (X) �mSj (Y )
(3)

where X is a focal element of mSi ; Y is a focal ele-
ment of mSj ; m = mSi

L
mSj is the combined basic

probability assignment; and A is a focal element of m.
After integrating the belief functions from all knowl-

edge sources, we need to �nd a rule that can trans-
form the results into a probability distribution to be
used by the sensor planning algorithm. Let A =
fci1 ; : : : ; cikg 2 2

� be a focal element of the combined
basic probability assignment m. The mass m(A) cor-
responds to the part of the belief that is restricted to
A and that, due to lack of further information, can-
not be allocated to a proper subset of A. In order to
build the needed probability distribution, we distribute

m(A) equally among the atoms of A. Therefore, m(A)
k

is given to each cij , 1 � j � k. This procedure corre-
sponds to the Insu�cient Reason Principle (Schubert
1994): if one must build a probability distribution on
n elements, given a lack of information, give a proba-
bility 1

k
to each element. This procedure is repeated

for each mass m. Thus, we have the following rule to
calculate the probability distribution:

p(ci) =
X

ci2A;A22�;m(A)6=0

m(A)

jAj
(4)

This is the initial distribution that will be used by
the agent.

Experiments

We have performed experiments to test our strategy.
The task is to search for a baseball. The knowledge
comes from two sources. One is from physics. The

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

Figure 4: Uniform target distribution before the search
process.

The top 10 images taken when the initial dis-
tribution is unknown. The target is not detected
within these 10 images.



other is from our restrictions on the possible position of
the baseball. From physics, a baseball can only appear
on a horizontal surface. So, for cube c, if c is around
the table surface, the chair surface, or the oor surface,
then we give the belief mass mS1 (c) = 1, otherwise,
mS1 (c) = 0. For any focal element A which is the
union of several cubes A = ci1

S
: : :
S
cij , where j > 1,

we have mS1 (A) = 0. Finally, we normalize mS1 such
that the total belief mass is 1.
The second knowledge source restricts position of

the baseball to heights above 1 meter. So, for cube
c, if c is above 1 meter, then mS2 (c) = 1, otherwise
mS2 (c) = 0. We also need to normalize mS2 such that
the total belief mass is 1. After we get the values of
mS1 and mS2 for each cube, Dempster-Shafer's role
of combination is used to integrate mS1 and mS2 to
obtain the combined belief mass. This belief mass is
transformed into a probability distribution. The re-
sulting probability distribution is used as the agent's
initial knowledge. The experimental results show that
with the use of the Dempster-Shafer's rule of combi-
nation, the performance of the sensor planning system
is enhanced. Figure 4 shows the top 10 images taken
in a test when the initial knowledge is unknown (the
Dempster-Shafer rule of combination is not used). The
initial target distribution is thus initialized as a uni-
form distribution. The target is not detected within
these 10 images. Figure 5 shows the top three images
taken in another test when the Dempster-Shafer rule
of combination is used. The third action detects the
target.

Conclusion

This paper addresses the issue of knowledge di�erence
and its inuence on the behavior of a goal directed
agent. The concept of knowledge di�erence is de�ned
and its inuence on the performance of a 3D object
search agent is tested. We suggest a way to quanti-
tatively represent the knowledge di�erence and a way
to obtain the initial knowledge for a 3D object search
agent. We believe that the concept of knowledge dif-
ference is very important for agent theory in general,
and there are many interesting and challenging issues
that need to be studied.
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