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Abstract

This paper gives a formulation of a collabora-
tive object search team and studies the learning,
interaction and organization within this multi-
agent environment. Each team member is as-
sumed to be a mobile platform equipped with
an active camera that can take image of the en-
vironment and recognition algorithms that can
analyze the resulted image and detect the target
object within the image. The goal of the team is
to �nd the target within a give time constraint.
In order to do this, the agents must interact and
collaborate with each other and must learn and
modify the various cooperation styles based on
the search results.

Introduction

Many Distributed Arti�cial Intelligence researchers be-
gin to build agents that can work in a complex,
dynamic multiagent domains(Tambe & Rosenbloom
1995). Such domains include virtual theater(Hayes-
Roth, Brownston, & Gen 1995), realistic virtual train-
ing environments (Pimentel & Teixeira 1994)(Rao et
al. 1993)(Tambe & Rosenbloom 1995), RoboCup
robotic and virtual soccer (Kitano et al. 1995) and
robotic collaboration by observation (Kuniyoshi et al.
1994), etc.
This paper focuses on our recent research e�ort

aimed at developing theories and systems for mul-
tiagent object search |{ the task of searching for
a 3D object in a 3D environment by a group of
robots. Constructing multiagent object search systems
requires facing many of the hard research challenges
such as goal-driven behavior, reactivity, real-time per-
formance, planning, learning, coordination, and spatial
and temporal reasoning etc. We believe that given its
real-world nature, the multiagent object search task re-

ects many of the key characteristic of other real-world,
dynamic multiagent environment.
Here we study the problem of object search by a

team formed by collaborative robotic agents. By collab-
orative we mean that the agents are working together
collaboratively in order to realize a common goal |{

�nd the target. Multi-agent object search system is
quite di�erent from the task of object search by a sin-
gle robotic agent, on which we have done an extensive
research and experiments (Ye & Tsotsos 1995) (Ye &
Tsotsos 1996a) (Ye 1996) (Ye & Tsotsos 1996b). The
multiagent team activities are not merely a union of si-
multaneous, coordinated individual activities |{ each
agent is not merely searching alone without consider-
ing other agent's action. Focusing on the multiagent
aspect of the object search task brings to attention a
number of challenging issues where learning is involved,
such as:

� Interaction: How do agents communicate? How do
agents coordinate in a team in order to �nd the tar-
get in the environment as early as possible? How
should the patterns of interaction that characterize
coordinated behavior be modeled and how do agents
learn from the e�ectiveness of the previous patterns
of interaction?

� Knowledge representation and organization: How
do search agents represent their local views of the
world? How is the local knowledge updated or
learned as a consequence of its own action? How
do search agents represent their local views of other
agents? How do agents revise and learn their beliefs
about other agents by exchanging information with
other agents? How do agents organize the knowl-
edge about itself, the other agents, and the world
such that it can easily integrate its newly learned
facts into the representation?

� Planning and Reasoning: How do agents plan their
actions based on the knowledge about themselves,
the knowledge about other agents, the knowledge
learned from the interaction during the search pro-
cess, and the knowledge learned from the e�ective-
ness of its geometric relationships with other agents?

In this paper, we �rst formulate the task of multia-
gent object search and analyze its structure and com-
plexity, then we study various issues in which learning
is involved.



Some Basic Concepts about Object
Search Agent

In this section, we describe some concepts about the
multiagent object search system, such as the 3D region
to be searched, the model of the search agent, the state
parameters of a search agent, the search agent's local
knowledge about the world, the operation of a search
agent and its cost. We assume throughout this paper
that there are totally m search agents a1, a2, : : :, am
available in the object search team.
The search region 
 can be of any form, and it

is assumed that we know the boundary of 
 and its
internal geometric con�guration exactly. In practice,
we tessellate the region 
 into a series of elements ci,

 =

Sn

i=1 ci and ci
T
cj = 0 for i 6= j. We call each of

the element ci a cell of the environment and we assume
in this paper that there are totally n cells. Usually,
the search region is an o�ce-like environment, and it
is tessellated into little cubes of equal size.
The model of the search agent (Figure 1(a)(b))is

assumed to be a mobile platform with a robotic head
and a camera that can pan, tilt and zoom (Note: this
model is based on the ARK robot and the Laser Eye
(Nickerson et al. 1993)). The camera's image plane is
assumed to be always coincident with its focal plane.
The state sa of a search agent a is uniquely deter-

mined by 7 parameters (xa; ya; za; wa; ha; pa; ta), where
(xa; ya; za) is the position of the camera center, wa; ha
are the width and height of the solid viewing angle of
the camera, pa; ta are the the camera's viewing direc-
tion (Figure 2). The position (xa; ya; za) can be ad-
justed by moving the mobile platform. In the situation
of a mobile platform, za is a �xed constant (the height
of the camera), thus, only xa and ya are adjustable.
The viewing angle size hwa; hai can be adjusted by the
zoom lens of the camera. Pan and tilt hpa; tai can be
adjusted by the motors on the robotic head.
The agent's knowledge about the possible target po-

sition is speci�ed by a probability distribution function
p. The term p(ai; cj; � ) gives the belief of agent ai
about the probability that the center of the target is
within cell ci at time � . Before the team search pro-
cess, each agent member should obtain its own prob-
ability distribution function about the search region.
This is the agent's local knowledge about the world.
This knowledge should satisfy the following constraint

nX
j=1

p(ai; cj; �0�) + p(ai; cout; �0�) = 1

where �0� means the time before the search process,
p(ai; cout; �0�) refers to agent ai's belief that the target
is outside the search region before the search process.
If agent ai is not able determine whether the target is
more likely to be outside the search region or inside the
search region, then p(ai; cout; �0�) = 0:5. If agent ai
has no knowledge about the possible target distribu-
tion within the search region, then it assumes uniform

distribution

p(ai; cj; �0�) =
1� p(ai; cout; �0�)

n

for j = 1; : : :n.

An operation f = f (ai; sai ; r
(j)
ai ) is an action of the

search agent ai within the region 
, where r
(j)
ai is the

recognition algorithm used by ai to detect the target
(we assume that each agent can have several recogni-
tion algorithms that can be used to detect the target,

r
(j)
ai means agent ai's jth recognition algorithm). An

operation f (ai; sai ; r
(j)
ai ) for ai entails two steps: (1)

take a perspective projection image according to sai ,
and then (2) search the image using the recognition

algorithm r
(j)
ai .

The cost t(f ) for an action f = f (ai; sai ; r
(j)
ai ) gives

the total time needed for ai to execute the action

f (ai; sai ; r
(j)
ai ). It includes (1) manipulate the hardware

to the status sai speci�ed by f ; (2) take a picture using
the camera on ai; (3) update ai's inner representation
of the world; and (4) run the recognition algorithm

r
(j)
ai speci�ed by f . We assume that: (2) and (3) are
same for all the actions; (4) is known for any recogni-
tion algorithm and is constant for a given recognition
algorithm.

Awareness and Knowledge Adaptation

The awareness means that the agent has knowledge
about itself and the world. The knowledge adapta-
tion means that the agent perceives the environment
through actions and incorporates the perception re-
sults into its own internal representation.
For any agent ai, it has the inner knowledge about its

ability to detect the target by applying a given action
f . The detection ability is represented by the detection
function b(ai; cj; f ), which gives the conditional proba-
bility of detecting the target by agent ai given that the
center of the target is located within cj , and the op-
eration is f . This function is further approximated as
the conditional probability of detecting the target by
ai when the target center is located at the center of cj.
For any operation, if the projection of the center of the
cell ci is outside the image, we assume b(ai; cj; f ) = 0;
if the cell is occluded or too far from the camera or too
near to the camera, we also have b(ai; cj; f ) = 0. In
general (Ye 1996), b(ai; cj; f ) is determined by various
factors, such as intensity, occlusion, and orientation,
etc. The value of the detection function b(ai; cj; f ) for
f can be obtained by transforming from a pre-recorded
standard detection function for ai and cj.
It is obvious that the probability of detecting the

target by applying action f for agent ai is given by

P (f ) =
nX

j=1

p(ai; cj; �f )b(ai; cj; f );
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Figure 1: (a) The Laser Eye (the active camera model
for the search agent). At the top is the Optech laser
range �nder; at the bottom is the zoom and focus
controlled lens. The two mirrors are used to ensure
collinearity of e�ective optical axes of the camera lens
and the range �nder. The pan-tilt unit is operated
by two DC servocontrolled motors from Micromo Elec-
tronics, equipped with gearboxes and optical encoders.
(b) The ARK mobile platform (the mobile platform for
the search agent). (c) 2D illustration of the tessella-
tion of the search region 
. (d) 2D illustration of the
state sa of a search agent a.
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Figure 2: A 2D illustration of the state of the hard-
ware. Where (x; y; z) is the position of the center of
the camera, (w; h) is the viewing angle size of the cam-
era, and (p; t) is the viewing direction of the camera.

where �f is the time just before f is applied. It is
obvious that if a cell cj is outside the �eld of view of
the camera determined by f or is occluded with respect
to the geometry speci�ed by f , then b(ai; cj; f ) = 0.
We use


(f ) = fc j c 2 
 ^ b(ai; c; f (ai; sai ; r
(j)
ai
)) 6= 0g

to represent those cells whose detection function values
are not zero with respect to ai and f . 
(f ) is called
the in
uence range for f . Of course,

P (f ) =
X

c2
(f )

p(ai; c; �f)b(ai; c; f ) (1)

For any agent ai, its beliefs on the possible target
positions is represented by p(ai; c; � ). But, this belief
keeps changing over time as the agent perceiving the
world. If an action by agent ai �nds the target, then ai
will report the result and the task is accomplished. If
an action by agent ai failed to detect the target, then ai
needs to incorporate this result into its local knowledge
representation related to the target distribution. This
is the process of learning from action. The agent uses
Bayes' formula to update its local knowledge base.
Let �j be the event that the center of the target is in
cell cj , and �out be the event that the center of the
target is outside the search region. Let � be the event
that after applying a recognition action f by agent ai,
the recognizer successfully detects the target. Then
P (:� j �j) gives the probability of not detecting the
target by action f of agent ai given that the target
center is within cube cj. Since b(ai; cj; f ) gives the
probability of detecting the target by action f given
that the target center is within cube cj . We have

P (:� j �j) = 1� b(ai; cj; f )

It is obvious that P (�j j :�) gives the probability
that the target center is within the cube cj given that f
failed to detect the target. If we represent the updated
probability for cube cj as p(ai; cj; �f+), where �f+ is
the time after f is applied. Then we should have

p(ai; cj; �f+) = P (�j j :�)

Since the events �1; : : : ; �n; �out are mutually com-
plementary and exclusive, from Bayes' formula, we get

P (�i j :�) =
P (�i)P (:� j �i)Pn;out

j=1 P (�j)P (:� j �j)

for i = 1; : : : ; n; out
Thus, by replacing P (�i j :�) with p(ai; cj; �f+),

P (�i) with p(ai; cj; �f), and P (:� j �i) with 1 �
b(ai; cj; f ), we can obtain the following probability up-
dating rule

p(ai; cj; �f+) 
p(ai; cj; �f )(1� b(ai; cj; f ))Pn;out

k=1 p(ai; ck; �f)(1 � b(ai; ck; f ))

where j = 1; : : : ; n; o.



Figure 3: A 2D illustration of the belief updating pro-
cess. When an agent applied an action in the envi-
ronment but failed to detect the target, it's belief on
the target distribution within the in
uence range of
the action is decreased and its belief on the target dis-
tribution outside the in
uence range of the action is
increased. This phenomena is modeled by Bayes Law.

The Agent's Sensing Ability
In this section we discuss how to obtain the detection
function value for each agent and explain the concept
of e�ective volume for an action of a given agent.
The value of the detection function b(ai; cj; f ) for f

can be obtained by transforming from a pre-recorded
standard detection function for ai and cj. The stan-
dard detection function b0((�; �; l); hr; w; hi) gives a
measure of the detecting ability of the recognition algo-
rithm a when there is no previous action been applied.
Where hw; hi is the viewing angle size of the camera,
(�; �; l) is the relative position of the center of the tar-
get to the camera, � = arctan(x

z
), � = arctan(y

z
)

and l = z, (x; y; z) is the coordinate of the target
center in camera coordinate system. The value of
b0((�; �; l); hr; w; hi) can be obtained by experiments.
We can �rst put the target at (�; �; l) and then perform
experiments under various conditions, such as light in-
tensity, background situation, and the relative orien-
tation of the target with respect to the camera center.
The �nal value is the total number of successful recog-
nitions divided by the total number of experiments.
These values can be stored in a look up table indexed
by �; �; l and retrieved when needed. Sometimes we
may approximate these values by analytic formulas.
We only need to record the detection values of one

angle size hw0; h0i. Those of other sizes can be approx-
imately transformed to those of size hw0; h0i. Suppose
(�; �; l) is the target position for angle size hw; hi, we
want to �nd the value (�0; �0; l0) for angle size hw0; h0i
such that

b0((�0; �0; l0); hr; w0; h0i) � b0((�; �; l); hr; w; hi)

To guarantee this, the images taken with parame-
ter h�0; �0; l0; w0; h0i and h�; �; l; w; hi should be almost
same. Thus, the area and position of the projected tar-
get image on the image plane should be almost same
for both images, we get

l0 = l

s
tan(w2 )tan(

h
2 )

tan(w0
2 )tan(

h0
2 )

�0 = arctan[tan(�)
tan(w0

2 )

tan(w
2 )

]

�0 = arctan[tan(�)
tan(w0

2 )

tan(w2 )
]

When the con�guration of two operations are very
similar, they might correlated with each other (refer
to (Ye 1996) for detail). Repeated actions are avoided
during the search process. When independence is as-
sumed, b(ai; cj; f ) is calculated as following. First, cal-
culate the corresponding (�; �; l) of the center of cj with
respect to operation f of agent ai. Second, transform
(�; �; l) into the corresponding (�0; �0; l0) of angle size
hw0; h0i. Third, retrieve the detection value from the
look up table, or get the detection value from a for-
mula.
Now we explain the concept of e�ective volume for a

given action. The ability of the recognition algorithm
and the value of the detection function are in
uenced
by the image size of the target. Only when the target
can be totally brought into the �eld of view of the
camera and the features be detected within certain
precision, can the recognition algorithm be expected
to function correctly. So, for an agent's action with a
given recognition algorithm and a �xed viewing angle,
the probability of successfully recognize the target is
high only when the target is within a certain distance
range. We call this range the e�ective range and the
viewing volume within this range the e�ective volume.
For a given action, only those cubes that are within
the e�ective volume can be examined with high detec-
tion probability. Figure 4 gives a 2D illustration of
the e�ective volume for a given action.

Figure 4: 2D illustration of the e�ective volume of a
given action (the shaded area).

The Multi-agent Search Team: a Global
View

A global view of the activities of the multiagent search
team is as following

� Before the search process, each agent ai proposes an
initial target distribution (p(ai; c; �0�) for all c 2 
)
according to its own perception of the world (Figure
5).

� The team forms the common initial target distribu-
tion (p(c; �0) for all c 2 
) by combining the initial
distribution of all the agents together (Figure 6).



AGENT  1     AGENT m

Figure 5: Each agent has a initial target distribution.

AGENT  1     AGENT m

COMBINE

Figure 6: Common initial target distribution forma-
tion.

� Each agent ai uses the common initial distribution
p(c; �0) as its own initial distribution p(ai; c; �0) used
during the search process (Figure 7). That is, per-
forming the substitution

8c;p(ai; c; �0) p(c; �0)

AGENT  1 AGENT  m

Figure 7: Initial distribution used before the search
process for each agent.

� The selection and execution of actions for di�erent
agents goes in parallel (Figure 8). But for each
agent, its action selection and execution must be in
sequence. This means that for a single agent, it can
select and execute the next action only after the cur-
rent action is �nished.

Figure 8: Agents search for the target together at the
same time.

{ Each agent selects its own action based on its own
knowledge and the knowledge learned from inter-
action and communication with other agents.

{ If the selected action succeeds, the corresponding
agent announces the success result immediately
and the team search process terminates.

{ If the selected action fails, the corresponding agent
will broadcast the failure news to the rest of the
agents, together with the action's state parame-
ters and e�ective volume. Then the correspond-
ing agent updates its own knowledge base about



the target distribution and starts selecting its next
action.

� The team search process will terminate when the
available time is used up.

Let K be the total time that is available for search.
Let 
ai be the set of all the actions which can be se-
lected by agent ai (1 � ai � m). Suppose

Fai =
n
f (ai; s

(1)
ai
; r(j1)ai

); f (ai; s
(2)
ai
; r(j2)ai

); : : : ;

f (ai; s
(Nai

)
ai ; r

(jNai
)

ai )
o

is the set of actions selected by agent ai (1 � ai � m)
from 
ai during the search process. Then we call Fai

the e�ort allocation for agent ai. The e�ort allocation
for the search team is the union of the e�ort allocations
of all the agents of the team

F = Fa1

[
Fa2

[
: : :
[

Fam

Let P [F] be the probability of detecting the target
by the team e�ort allocation F, K is the total time
that can be used by the team. Then the task of object
search by a multiagent team can be de�ned as �nding
a team e�ort allocation F such that P [F] is maximized
within the time constraint K.

The Initial Common Target Distribution

Before the search process, each agent has some knowl-
edge about the whereabouts of the target. This knowl-
edge can come from di�erent sources. Because the
object search team is collaborative, the team should
form a common initial target distribution by consider-
ing each agent's knowledge. One way to get the com-
mon initial distribution is to use the Dempster-Shafer
theory. Here we simply generate the initial common
target distribution p(c; �0) (for c 2 
) by forming a
weighted sum of the probability distributions of all the
agents. This means that for all c 2 
, perform the
following operation:

p(c; �0) 
mX
k=1

wkp(ak; c; �0�)

Where w1, : : :, wm are weights that satisfy
mX
k=1

wk = 1 and wk � 0; 1 � k � m

It is obvious that the newly generated target distri-
bution satis�es

n;outX
i=1

p(ci; �0) =

n;outX
i=1

� mX
k=1

wkp(ak; ci; �0�)
�

=
mX
k=1

�
wk

n;outX
i=1

p(ak; ci; �0�)
�

=
mX
k=1

wk

= 1

In order to make this strategy work e�ectively, it is
important to obtain a set of values w1, : : :, wm such
that they can re
ect the relative credibility of the tar-
get distributions from di�erent agents. If the multia-
gent team has not been working together before, then

w1 = : : : = wm =
1

m
:

This is because that the team does not know the rela-
tive reliability of the agents.
In general, more reasonable value of wk can be ob-

tained by training and learning.
Each set of training is obtained by running the team

search process for m cases, each case uses a di�er-
ent agent's initial probability distribution as the ini-
tial global probability distribution (Note: there is no
weighted sum operation).
Suppose the time needed to detect the target for a

case when agent k's initial probability distribution is
used is minimum, then we say that agent k wins this
set of training. The result illustrates that agent k's
knowledge sources are more reliable that other agent's
knowledge sources for this training.
So, each set of training can select an agent whose

initial knowledge is more reliable. Suppose we have
performed Q set of training, then the value of wk for
agent k will be the number of trainings won by agent
k divided by Q.

Detection Probability for an E�ort

Allocation
We derive a general expression to calculate P [F] in
this section in a global view. By global view we mean
that the probability of detecting the target by applied
actions and the probability distribution update after
each action is applied are tracked in a global consistent
fashion. In a global consistent fashion means that if an
action can detect the target, then the success news is
broadcast at the moment this action is selected. If an
action cannot �nd the target, then the environment is
updated at the moment this action is selected.
In order to get a general expression, let us �rst con-

sidering a special case by assuming that the actions in
F are applied in sequence (Note: in real application,
the actions of di�erent agents can be executed at the
same time).
Let

F = ff1; f2; : : : ; fqg

where

q = Na1 + : : :+Nam =j Fa1 j + j Fa2 j + : : :+ j Fam j

and
�f1 < �f2 < : : : < �fq



The correspondence of the action index for fi with
the actions executed by each agent is illustrated in the
following

F =
n Fa1z }| {
f1; : : : ; fNa1

; : : : ;

Famz }| {
fNa1+:::+Nam�1

+1; : : : ; fq

o
The search process goes as following: at the begin-

ning, f1 is selected and applied, the probability distri-
bution used by f1 is the initial common target distribu-
tion. If fi (1 � i � q) succeed, then the news is broad-
cast to all agents and the search process terminate; if
fi failed, then the probability distribution is updated,
and this updated probability distribution will be used
by fi+1. It is clear that the expected probability of
detecting the target by allocation F is:

P [F] = P (f1) + [1� P (f1)]P (f2)

+ : : :

+f
k�1Y
i=1

[1� P (fi)]gP (fq) (2)

Formula ( 2) is not intuitive in �nding regularities
about P[F] and it is not appropriate in de�ning the
probability of detecting the target by an e�ort alloca-
tion when the actions of di�erent agents can be exe-
cuted in parallel. In order to obtain a representation
of the detection probability in general sense, we need
to do some algebraic transformations.
For any operation f 2 F, we de�ne its in
uence

range as 
(f ) = fc j b(c; f ) 6= 0g, where b(c; f ) =
b(a; c; f ), a is the agent executing action f . In the
following discussion, we will use b(c; f ) to represent
b(a; c; f ), with a understanding that the agent exe-
cuting f is a. Please note that 
(f ) is di�erent from
the e�ective volume of f , 
(f ) 6= EV (f ). The initial
probability distribution is denoted as p[0](c1), p[0](c2),
: : :, p[0](cn), p[0](cout). Of course, we have p[0](ci) =
p(ci; �0), for i = 1; : : : ; n; out. After the application of
the operation f1, the distribution is denoted by p

[1](c1),
p[1](c2), : : :, p[1](cn), p[1](cout). Generally, after the
application of the operation fi, the distribution is de-
noted by p[i](c1), p[i](c2), : : :, p[i](cn), p[i](cout), where
1 � i � q. Let P (fi) represent the probability of de-
tecting the target by applying the action fi with respect
to the allocation F. Then of course we have

P (fi) =
nX

j=1

p[i�1](cj)b(cj ; fi)

Let P [0](fi) represents the probability of detecting
the target by applying the action fi when there is no
action been applied before, then we have

P [0](fi) =
nX

j=1

p[0](cj)b(cj; fi)

After some calculations, we can obtain the general
expression of the target distribution as following

Lemma 1. For allocation F, we have

p[k](c) =
p[0](c)[1� b(c; f1)] : : : [1� b(c; fk)]

(1� P (f1))(1 � P (f2)) : : : ; (1� P (fk))
(3)

By using Lemma 1, we can obtain the general ex-
pression for the detection probability for any action in
F.

Lemma 2 For allocation F, we have

P (fk) =
1

(1� P (f1)) : : : (1� P (fk�1))

(
P [0](fk)

+(�1)1
k�1X
i1=1

� X
c2
(fi1 fk)

p[0](c)b(c; fi1)b(c; fk)
�

+(�1)2
X

1�i1<i2�k�1� X
c2
(fi1 fi2 fk)

p[0](c)b(c; fi1)b(c; fi2)b(c; fk)
�

+(�1)3
X

1�i1<i2<i3�k�1

� X
c2
(fi1 fi2 fi3 fk)

p[0](c)b(c; fi1)b(c; fi2)b(c; fi3)b(c; fk)
�

+ : : :

+(�1)k�1
X

c2
(f1:::fk�1fk)

p[0](c)b(c; f1)b(c; f2) : : :b(c; fk�1)b(c; fk)

)

for k = 2; : : : ; q.
By using Lemma 2, we can prove the following im-

portant lemma.

Lemma 3 For allocation F, we have

P (F) =

qX
i=1

� nX
j=1

p(cj; �0)b(cj; fi)
�

+(�1)2+1
X

1�i1<i2�q� X
c2
(fi1 fi2 )

p(c; �0)b(c; fi1)b(c; fi2)
�

: : :



+(�1)r+1
X

1�i1<i2<:::<ir�q� X
c2
(fi1 fi2 :::fir )

p(c; �0)b(c; fi1)b(c; fi2) : : :b(c; fir)
�

: : :

+(�1)q+1
� X
c2
(f1f2:::fq)

p(c; �0)b(c; f1) : : :b(c; fq)
�

(4)

Lemma 3 explicitly reveals a very important prop-
erty of P [F]: the order of actions been applied does not
have any in
uence on the value of P [F]. This agrees
with our common knowledge. Because whether an ac-
tion fi = f (ai; sai ; r

j
ai
) can detect the target is deter-

mined only by the agent ai, the state parameters sai
of ai, the recognition algorithm rjai used to analyze the
image taken by ai, the real target position and the real
situation (lighting, background, etc.) surrounding the
target. Since these factors will not change with time,
the time when the action f (ai; sai ; r

j
ai
) is applied has

no e�ect on whether this action can detect the target.
If action fi detects the target in one application order
in the e�ort allocation F, then, it will detect the target
in another application order in the e�ort allocation F;
if action fi fails to detect the target in one application
order, then, it will fail to detect the target in another
application order.
Because of Formula ( 4)'s advantage discussed above,

it is used as the general de�nition of the expected prob-
ability of detecting the target by an e�ort allocation F
in a multiagent search team.
So, in the real team search process where actions can

be applied concurrently by di�erent agents, we will use
Formula ( 4) to calculate the expected probability of
detecting the target by the given e�ort allocation.

The Task of Multiagent Search and its
Complexity: a Global View

The object search task for a multiagent object search
team fa1; : : : ; amg can be de�ned as the task for each
agent ai to �nd a set of operations Fai , such that the
expected probability of detecting the target P [F] by
the e�ort allocation F (formed by the union of the
e�ort allocations of all the agents of the team

F = Fa1

[
Fa2

[
: : :
[

Fam

is maximized with the constraint that the cost for the
e�ort allocation for each agent ai is less than or equal
to K:

t(f
a
(1)
1
) + t(f

a
(2)
1
) + : : :+ t(f

a
(Na1 )

1

) � K

t(f
a
(1)
2
) + t(f

a
(2)
2
) + : : :+ t(f

a
(Na2 )

2

) � K

...

t(f
a
(1)
q
) + t(f

a
(2)
q
) + : : :+ t(f

a
(Naq )

q

) � K

where f
a
(j)
i

(1 � j � Nai) refers to the jth actions of

agent ai.
This is a NP-hard problem. We can use prove by re-

striction to prove this result. By assuming that m = 1,
the task becomes for agent a1, �nd an e�ort allocation
such that P [F ] is maximized and

t(f
a
(1)
1
) + t(f

a
(2)
1
) + : : :+ t(f

a
(Na1 )

1

) � K

Since this simpli�ed problem (m = 1) is NP-hard
(please refer to (Ye & Tsotsos 1996a) for proofs), thus
the multiagent object search problem is also NP-hard.
Because of this, it is impractical to design a team
search strategy that can always generate an e�ort allo-
cation that maximizes the probability of detecting the
target. Thus, the goal becomes for each member of
the team to corporate with each other so as to �nd the
target as early as possible.

Learning, Interaction and Planning

The multiagent object search task described in this pa-
per is an ideal task to study the relationships between
learning, interaction and planning in multiagent envi-
ronments.
Ideally, an agent should plan its actions based on a

perfect knowledge about the current situation of the
world (such as the target distribution), the ability of
itself and all the other agents, and the activities of the
whole team performed so far. But because of the lim-
ited computation power, limited memory, and limited
communication power, an agent is not able to track ev-
erything. For example, it is not possible for an agent to
update its own knowledge base every time when other
agents executed an action and failed to detect the tar-
get. This is because the probability updating process
is time consuming. In the multiagent search team, the
agent updates the probability distribution only after
its own action is applied.
But, it is also not e�cient if an agent just performs

searching task only based on its own knowledge with-
out considering other agents actions. Because this
may cause many extraneous activities. Thus, a cer-
tain among of communications is essential for the team
search task. The question is how much communica-
tions are needed and how much memory the agents
must maintain in order to keep a satisfactory coordi-
nation behavior for the whole team.
An agent's internal knowledge can be divided into

two parts: local knowledge and global knowledge. The
local knowledge is the agent's knowledge about itself
and the in
uence of its own action on the world. The
global knowledge is its knowledge about other agents
and the e�ects of the actions of other agents on the



world. Each agent should have a perfect local knowl-
edge, but it is not able to have a perfect global knowl-
edge because of various limitations. Usually the global
knowledge is obtained by interaction, communication
and learning from other agents during the search pro-
cess. A search agent's planning system is in
uenced by
both its local knowledge and the learned global knowl-
edge.

LOCAL KNOWLEDGE GLOBAL KNOWLEDGE

WHAT  ACTION  TO  SELECT ?

Figure 9: A search agent's planning system is in-

uenced by both its local knowledge and the global
knowledge.

Learning and Where to Look Next

The task of \where to look next" for an agent ai can
be de�ned as: for a �xed position (xc; yc; zc), select
the state parameters (w; h; p; t; r) for the next action f
of agent ai such that the probability of detecting the
target is maximized.

The Local Knowledge If only local knowledge is
considered, the task is the same as object search by
a single agent, on which we have done an extensive
research. We have designed a strategy to select the best
action such that P (f ) =

P
c2
(f )p(ai; c; �f )b(ai; c; f ) is

maximized (Ye & Tsotsos 1995).

But in multiagent environment, the P (f ) calculated
this way does not perfectly re
ect the real probability
of detecting the target by action f . Because the knowl-
edge distribution p(ai; c; �f) used in the calculation is
agent ai's local knowledge. This distribution does not
re
ect the in
uences of the actions of the other agents
(because agent ai is not able to update the probability
distribution whenever other agents apply an action on
the environment). So, even though ai thought that the
region within the e�ective volume EV (f ) of f has high
probability, it might not be so, since other agents may
have already examined this region extensively. From
the global point of view, the probability within EV (f )
may not be so high as ai thought at the moment �f .
Thus, ai needs to integrate the in
uences of other

agents' applied actions into its action planning process.

The Learned Global Knowledge Although each
agent ai is not able to update its target distribution
whenever other agent executes an action, it is able to
record a crude information about how the cells of the
region have been checked by other agents.
As discussed before, for a given action f , only those

cubes that are within f 's e�ective volume EV (f ) can
be checked with high con�dence. Thus, whenever an
action f is executed, only the examination situation of
those cubes that are withinEV (f ) need to be recorded,
the examination situation of other cubes need not to
be recorded. To do this, each agent ai maintains the
Examination Situation Map E(a; c). E(a; c) gives the
number of times that the cell c falls into the e�ective
volume of the actions executed by agent a. Each agent
ai must maintain the Examination Situation Map for
every other agent aj (1 � j � m; j 6= i) of the search
team and every cell c c 2 
 of the search region 

(Figure 10).

Probability  Distribution   p(a,c) Examination Situation  E(a*,c),  for all other  a*

p(a,c)

E(a*,c)

Figure 10: An agent's local and global knowledge.

For each agent, the Examination Situation Map is
maintained through a process of learning by communi-
cation. During the search process, as soon as an agent
ai selected an action f (ai; sai ; r

j
ai
) to execute, it will

broadcast all the cells that are within the e�ective vol-
ume EV (f ) of action f to all the other members of
the team. Upon receiving the broadcast from ai, each
other team members aj (1 � j � m, j 6= i) will update
its Examination Situation Map as following:

8c 2 EV (f ) perform E(ai; c) E(ai; c) + 1.

The In
uence of the Learned Global Knowledge
on Planning The next action f are selected by both
local knowledge and external stimuli. The local knowl-
edge is the probability of detecting the target P (f ) by
action f . The external stimuli ES(f ) is derived from
the learned global knowledge, which is represented by
the Examination Situation Map. The objective func-
tion for agent ai is: select an action f that maximizes
the following weighted sum

w1P (f )� w2ES(f ) (5)



where w1, w2 are weights, and ES(f ) are de�ned as
following

ES(f ) =
X

c2
(f )

mX
j 6=i

E(aj; c) (6)

Learning, Coordination and Where to
Move Next

The goal of \where to move next" for an agent ai in a
multiagent object search team can be de�ned as: select
the agent position (xc; yc) for agent ai such that the
chances of detecting the target for agent ai and the
whole team is maximized.

The Local Knowledge and the Learned Global
Knowledge If only local knowledge is considered,
then the task is the same as the \where to move next"
task for a single agent. The strategy of selecting the
next agent position is straight forward. For each can-
didate position (x; y), there is a range of space that
can be checked by the camera without occlusion. We
call this range the sensed sphere SS(x; y) for position
(x; y) (please refer to (Ye & Tsotsos 1995) (Ye 1996)
for more detail). The sum of the probability of all the
cells within the corresponding sensed sphere is called
the sensible probability for this position Sprob(x; y).
The task is to �nd a position (x; y) such that the sen-
sible probability is maximized.

Similar to the previous discussion, the local knowl-
edge Sprob(x; y) does not perfectly re
ect the real sensi-
ble probability for the position (x; y). The agent should
also include the learned global knowledge Es(x; y) into
its decision making. Es(x; y) gives the measurement
about how much the region within the sensed sphere
of position (x; y) has been checked by other agents

ES(x; y) =
X

c2SS(x;y)

X
j 6=i

E(aj ; c) (7)

Coordination For the \where to move next" task of
the multiagent search team, coordination among dif-
ferent agents should also be taken into consideration.
For example, if all the agents �nd a position (or posi-
tions near this one) has the highest sensible probabil-
ity, then when coordination is not considered, all the
agents will be gathered around this position to perform
actions. This is not desirable for the team as a whole
because there is no agents to check other regions of
the search space and many of the actions may be re-
dundant. So, coordination is needed for agents in a
multiagent team to decide their positions. From the
global point of view, the agents should be distributed
evenly across the search space. Thus, a coordination
factor D(x; y) should be considered in planning the
next action. D(x; y) speci�es how far the new position
(x; y) is to other agents of the team (Figure 11).

Figure 11: The relative positions for di�erent agents
are also very important for e�cient search. The posi-
tions of the agents in the team should be carefully se-
lected such that the extraneous activities are avoided.

Learning, Coordination and Planning The next
position (x; y) for agent ai should be selected by inte-
grating the local knowledge, the learned global knowl-
edge, and the coordination factor together. The goal
is to maximize the following weighted term

w1Sprob(x; y) �w2Es(x; y) + w3D(x; y) (8)

where w1, w2, and w3 are weights, and

D(x; y) =
mX

j=1;j 6=i

[wij

q
(x� xj)2 + (y � yj)2] (9)

The value of wij (1 � j � m, j 6= i) is used to bal-
ance the importance of the distance between di�erent
agents with respect to ai. These value must satisfy

mX
j=1;j 6=i

wij = 1

If there is no preference, then we set

w12 = : : : = w1m =
1

m � 1

A better values can be obtained by learning from ex-
perience for agent ai. The method is to include each
success experience into the values of wij.
Suppose during a search process, the weights for

agents ai are wij (1 � j � m, i 6= j). When this pro-
cess �nally �nds the target, we can get the distances lij
(1 � j � m, i 6= j) between agent ai and other agents
aj (1 � j � m, i 6= j). The relative information about
these distance should be incorporated into the future
weights by updating the current weights wij. For ex-
ample, if the distance between ai and another agent aj
is the longest among all the other agents when the tar-
get is detected, then the updated weights should give
more weight to wij, such that during the next team
search process there is a factor in the new weights that



encourage a bigger distance between ai and aj. Sup-
pose

lsum =
mX

i=1;i6=j

lij

We suggest to use the following updating rules to in-
corporate the new distance information:

wij  �wij + (1 � �)
lj

l

(for all 1 � j � m, j 6= i). Where 0 � � � 1 is
a constant. It is easy to know that the sum of the
updated wij is still 1.

Conclusion
In this paper, we formulate the multiagent object
search task and prove that this task is NP-Complete
from a global point of view. We analyze various issues
that learning is involved in a multiagent object search
system, including: (A) the local knowledge updating
rule for an agent; (B) a method to obtain the initial
common target distribution; (C) the learning of the
global knowledge through interaction and communica-
tion with other agents; (D) learning and interaction
so as to improve the \where to look next" task; (E)
learning and coordination so as to improve the \where
to move next" task.
The work reported in this paper is only in its primi-

tive stage. In future work we will endeavor to develop
a more detailed interaction and learning theory for the
multiagent object search task. Given the highly co-
operative nature of this task, we believe that a further
study of this problem will reveal a deeper relationships
between learning, interaction and organizations in mul-
tiagent environments.
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