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Abstract

This paper proposes a novel tracking strategy that can robustly track a person or other object

within a �xed environment using a pan, tilt, and zoom camera with the help of a pre-recorded

image database. We de�ne a set of camera states which is su�cient to survey the environment

for the target. Background images for these camera states are stored as an image database.

During tracking camera movements are restricted to these states. Tracking and segmentation

are simpli�ed as each tracking image can be compared with the corresponding pre-recorded

background image.
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1 Introduction

This paper approaches the task of tracking people in a �xed environment by actively controlling a
pan, tilt, and zoom camera while referring to a pre-recorded image database of the environment.
Visual tracking of objects moving in three-dimensions has received considerable attention in the
computer vision community over the past few years [5, 6, 7, 10, 12, 13, 14, 15, 16, 19, 21, 27, 35,
36, 38]. The task is a challenging one because it not only involves the di�culties of segmenting the
target from various backgrounds, but also the analysis and prediction of target motion.

The goal of most previous work in this area is to track a known object by its features projected
in the image. Such features are usually points or lines which are recognized on the basis of a
model of the target. For example, several vision based tracking systems [9, 24, 26] study gesture
classi�cation using �nger edge features or even complete 3D models of the hand [18]. Goncalves
et al. [11] model 3D motion of the arm using two truncated right-circular cones connected with
spherical joints. Baumberg and Hogg [2] use a exible shape model to track the silhouette of a
moving human despite the changing outline.

These approaches typically involve a loop of prediction, projection, measurement, and adjust-
ment. The prediction step generates the next three-dimensional object pose based on current
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estimates of position and velocity. The projection step attempts to project the target onto a two-
dimensional image based on the prediction. The measurement step uses information regarding the
features of the projected image to direct the search for corresponding features in the real image.
The adjustment step combines information from measurement and prediction steps to produce new
values of the target pose and velocities, and these new values are used for the next prediction.

Recent work also examines the task of visually tracking non-rigid objects [7, 10, 12, 13, 14,
15, 16, 19, 27, 35, 36]. For example, Huttenlocher [13] constructed a system for tracking a non-
rigid object moving in a complex scene. The method extracts two-dimensional models of a moving
object from a sequence of images by factoring out motion and shape change. Darrell et. al. [7] have
implemented vision routines to track people and to identify head/hand locations as they walk about
in a room. Foveation cues guide an active camera to follow head or hands. The system assumes a
�xed background and that the person is facing the camera. Gavrila et. al. [10] construct a system to
track unconstrained human movement using a three-dimensional model. Image sequences acquired
simultaneously from multiple views allows them to recover the three-dimensional body pose at each
time instant without the use of markers. Kakadiaris et. al. [15] present a method to mitigate the
di�culties arising due to occlusion among body parts by employing multiple calibrated cameras in
a mutually orthogonal con�guration. Rossi and Bozzoli [28] avoid problems of occlusion by using
a vertically mounted camera to track and count people moving in and out of a scene at a speci�ed
entrance or exit.

Crowley et. al. [6] describe a system which uses multiple visual processes to detect and track
faces for video compression and transmission. Visual processes for face tracking are described using
blink detection, normalized color histogram matching, and cross correlation. Fusion of results into
a uni�ed estimation for tracking is made possible by estimating a covariance matrix with each
observation. The result of face detection is fed into a recursive estimater, and the output from the
estimator is used to control a pan/tilt/zoom camera.

In this paper, we deviate from the above-mentioned schemes in that we make no assumptions
regarding the features of the object. The goal here is to investigate what can be achieved through
sensor planning alone. Active control of the camera is a form of sensor planning advocated in [1]
and analyzed in [33]. The task of sensor planning, while receiving little attention in the past, is
very important during tracking because the camera's state parameters determine the quality of
the resulting image and indeed whether the target will be within the image. Demonstrations of
the e�cacy of planned camera motion in object recognition and tracking can be found in [8] and
[20, 22, 23, 30], respectively. Therefore, the work reported in this paper focuses almost exclusively on
sensor planning | how to control the camera to perform the tracking task, given a target recognition
algorithm. We propose the concept of a detection function to evaluate the performance of given
recognition algorithms. The detection function will be used to help select the state parameters of
the camera during the tracking process.

One of the di�culties faced by previous visual tracking strategies is the complexity of segmen-
tation and recognition tasks required for the measurement and adjustment stages. To successfully
track the target, the system must be able to distinguish the target from the background. This
can be very di�cult when the target does not have distinctive features or when the background is
complex. The point or line features used by most systems can lead to instability in the recognition
algorithm if the background has many similar features. We attempt to overcome this problem
through the use of a pre-recorded image database.

There are four aspects of our approach: camera states selection by detection function, back-
ground image database generation, target tracking with selected camera states, and target detection
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with image di�erences. The �rst is to use the detection function to select a set of camera states
(pan, tilt, and zoom parameters) such that wherever the target appears in the surveillance region,
there exists at least one camera state for which the target is in the �eld of view and its image is of
su�cient quality. We then take background images with these camera states and store the images
in an image database. During tracking, the camera is restricted to these camera parameter settings,
as they are the best for target detection and recognition. Segmentation is through simple image
di�erencing. The target is de�ned to be the collection of blobs of su�cient size in the di�erence
image. Our strategy is relatively stable in the face of increasing background complexity and can
be used e�ectively in tracking tasks where the identity of the moving target is not an issue. For
example, it can be used in visual surveillance to track an intruder moving about the environment,
or in animal behavioral studies to remotely photograph animals at a water hole or den. In conjunc-
tion with more sophisticated segmentation strategies, the method of determining a minimal set of
camera states and employing a pre-recorded background image database over this set of states may
improve tracking in a wide variety of applications. This paper presents the tracking algorithm and
a simple experiment to illustrate the concepts.

2 The Detection Function

In this section we introduce a detection function which speci�es the ability of the recognition algo-
rithm to detect the target, averaged over various factors and conditions that a�ect its performance.
The detection function b(hw; hi; h�; �; li) gives the probability of detecting the target by the given
recognition algorithm when the camera's viewing angle size is hw; hi and the relative position of
the target to the camera is h�; �; li; where � = arctan(x

z
), � = arctan(y

z
), l = z, and (x; y; z) are the

coordinates of the target center in camera coordinate system. The value of b(hw; hi; h�; �; li) can be
obtained empirically: the target is placed at (�; �; l) and experiments are performed under various
conditions, such as light intensity, background situation, and the relative orientation of the target
with respect to the camera center. The value of b is given by the number of successful recognitions
divided by the total number of experiments.

It is not necessary to record the detection function values of all the di�erent camera viewing
angle sizes. We only need the detection values of one camera angle size (we call it the reference
angle), and those of the other camera angle sizes can be obtained approximately by transforming
them into those of the known camera angle size, as follows. Suppose we know the detection function
values for viewing angle size hw0; h0i. We want to �nd the detection function values for viewing
angle size <w; h>. To get the value of b(hw; hi; h�; �; li) for a given h�; �; li, we need to �nd values
of h�0, �0, l0i for angle size hw0; h0i that make the following approximation true:

b(hw; hi; h�; �; li)� b(hw0; h0i; h�0; �0; l0i): (1)

The approximation relation (Formula (1)) means that when we use the recognition algorithm to
analyze the picture taken with parameters (hw; hi, h�; �; li) and the picture taken with parameters
(hw0; h0i; h�0; �0; l0i), we should get almost the same result. To guarantee this, the images of the
target object should be almost the same in both cases, i.e., they must be approximately equal in at
least two geometric factors, namely the scale factor and the position factor. The scale factor refers
to the size of the projection of the target object on the image plane. The position factor refers to
the position on the image plane of the projection of the center of the target object. Typically, the
position factor has much less inuence than the scale factor.
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We use the scale factor to �nd the value of l0 when l is given. The sizes of the projection of the
target object on the image planes for (hw; hi; h�; �; li) and (hw0; h0i; h�0; �0; l0i) are approximately
determined by l and l0, respectively. Equality of the scale factors means that for a target patch
that is parallel to the image plane, the area of its projection on the image plane for (hw; hi; h�; �; li)
should be same as the area of its projection on the image plane for (hw0; h0i; h�0; �0; l0i). Let W
and H denote the width and height of the image plane, respectively. Since the size of the image
plane remains constant for di�erent focal lengths, W and H will be same for any focal length. (We
assume here that the image plane and the focal plane of the camera are always coincident).

Let S be the area of the target patch. Let S
0

be the area of the projected target image for
the desired arguments (hw; hi; h�; �; li), and S

0

0 be the area of the projected target image for the
reference arguments (hw0; h0i; h�0; �0; l0i). From the similarity relation between the target patch
and its projected image, it is easy to show that

S
0

=
f2

l2
S: (2)

Since

tan(
w

2
) =

W
2

f
;

and

tan(
h

2
) =

H
2

f
;

we have

S
0

=
f2

l2
S =

WH

4l2tan(w2 )tan(
h
2 )
S: (3)

Similarly,

S
0

0 =
WH

4l20tan(
w0
2 )tan(

h0
2 )

S: (4)

To guarantee S
0

= S
0

0, we get:

l0 = l

vuut tan(w2 )tan(
h
2 )

tan(w0
2 )tan(

h0
2 )

: (5)

We use the position factor to �nd the values of �0; �0 when � and � are given. Let D denote the
center of target patch with respect to (hw; hi; h�; �; li), and let D

0

(x
0

; y
0

; z
0

) denote the image of D
on the image plane with respect to (hw; hi; h�; �; li). Similarly, let D0 be the center of target patch
with respect to (hw0; h0i; h�0; �0; l0i), and let D

0

0(x
0

0; y
0

0; z
0

0) represent the image of D0 on the image
plane with respect (hw0; h0i; h�0; �0; l0i), where (x

0

; y
0

; z
0

) and (x
0

0; y
0

0; z
0

0) are in camera coordinate
system. Then we have

x
0

= ftan(�) =
W
2

tan(w2 )
tan(�) =

W

2

tan(�)

tan(w2 )
: (6)

Similarly,

y
0

=
H

2

tan(�)

tan(h2 )
; (7)
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x
0

0 =
W

2

tan(�0)

tan(w0
2 )

; (8)

and

y
0

0 =
H

2

tan(�0)

tan(h02 )
: (9)

To guarantee x
0

= x
0

0 and y
0

= y
0

0, we get

�0 = arctan[tan(�)
tan(w0

2 )

tan(w2 )
]; (10)

and

�0 = arctan[tan(�)
tan(h02 )

tan(h2 )
]: (11)

Therefore, when we want to �nd the detection function value for parameters h�; �; liwith respect
to the camera angle size hw; hi, we �rst �nd the corresponding h�0; �0; l0i, and then retrieve the
detection function value for b(hw0; h0i; h�0; �0; l0i) from the look up table or from the analytical
formula.

In the detection function b(hw; hi; h�; �; li) the position of the target with respect to the camera
is �xed. The variations in the target orientation and the background are taken as a probabilistic
factor which generate the value of the detection function. In general, the orientation of the target
determines which aspect of the target is facing the camera. The appearance of the aspect has a
great inuence on the recognition result. Suppose the target has m di�erent aspects, a1 : : : am. We
de�ne ba(hw; hi; h�; �; li) to be the probability of detecting the target when the camera's viewing
angle size is hw; hi, the relative position of the target is h�; �; li, and the aspect of the target facing
the camera is a (a 2 fa1; : : : ; amg).

3 Minimum set of camera states

In this section we show how to choose a set a camera states such that wherever the target is in
the given environment, at least one of the camera states puts the target into the �eld of view with
good image quality. We begin by explaining the concept of e�ective volume with respect to a given
target aspect a.

3.1 E�ective Volume

For a given camera viewing angle size hw; hi, the ability of the recognition algorithm and the value
of the detection function ba(hw; hi; h�; �; li) are inuenced by the parameters h�; �; li and by the
background. Since we can not predict the background, we only consider the inuences of �, �, and
l. Angles � and � determine the position of the projected target on the image. It is well known that
the target image position has no or very little inuence on the recognition results. Thus, we omit
the inuence of �, � and only consider the inuence of l. Usually the recognizer can successfully
recognize the target only when the image size of the target is such that the whole target can be
brought into the �eld of view of the camera and the features can be detected with the required
precision. For a given recognition algorithm, a �xed viewing angle size, and a given target aspect,

5



the probability of successfully recognizing the target is high only when the target's distance is
within a certain range. Therefore, di�erent sizes of the viewing angle hw; hi will be associated with
di�erent e�ective ranges of distance l.

3.2 Selection of Camera Angle Size

Let D be the maximum distance from the camera center to any point in the environment. Our
purpose here is to select camera angle sizes such that their e�ective ranges will cover the entire
depth D of the environment without overlap.

Suppose that the biggest viewing angle for the camera is hw0; h0i, and its e�ective range for
the given aspect is [N0; F0]. We can use geometric constraints to �nd other required viewing angle
sizes hw1; h1i, : : :, hwn0 ; hn0i and their corresponding e�ective ranges [N1; F1]; : : : ; [Nn0; Fn0 ], such
that [N0; F0]

S
: : :
S
[Nn0; Fn0 ] � [N0; D]; and [Ni; Fi)

T
[Nj; Fj) = ; for i 6= j. These n0 + 1 angle

sizes are enough to examine the whole depth of the environment with high probability. Figure 1
illustrates the above idea in two-dimensions.

D
N0 F0

N1 F1

N2 F2

N3 F3

N4 F4

N5 F5

(a) (b)

Figure 1: Schematic showing selection of the camera angle size in two dimensions. (a) The e�ective
range for a given angle size. (b) The viewing angle sizes should be selected such that their e�ective
ranges can cover the entire depth D without overlap.

The e�ective range [Ni+1; Fi+1] of the next viewing angle hwi+1; hi+1i should be adjacent to the
e�ective range of the current viewing angle hwi; hii, i.e., Ni+1 = Fi. To guarantee that the areas of
the images of the target patch of hwi; hii at Ni and Fi are equal to the areas of the images of the
target patch of hwi+1; hi+1i at Ni+1 and Fi+1, respectively, we obtain (using Equations (5)):

wi = 2arctan[(
N0

F0
)itan(

w0

2
)] (12)

hi = 2arctan[(
N0

F0
)itan(

h0
2
)] (13)

Ni = F0(
F0
N0

)i�1;Fi = F0(
F0
N0

)i (14)

Since Ni � D, we obtain i �
ln( D

F0
)

ln(
F0
N0

)
� 1. Let n0 = b

ln( D
F0

)

ln(
F0
N0

)
� 1c, then the angles that are needed to

cover the whole tracking environment for the given aspect are hw0; h0i, hw1; h1i, : : :, hwn0 ; hn0i.
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From the above discussion, we know that if we can �nd the �rst e�ective range with respect to
the biggest camera angle size, then we can �nd other e�ective ranges. The segmentation strategy
of our approach calculates the image di�erence of the background image and the real image and
detects changing blobs. If the total sum of the areas of changing blobs is within a certain range,
then a person is detected. To �nd the value of N0, we can put the target at various distances d
and calculate values of the detection function. There will be a segment of d with good detection
function values. The biggest d with a good enough detection function value will be the value of F0.
The smallest d with a good enough detection function value will be the value of N0.

3.3 Select Camera Viewing Direction

The e�ective ranges of hw0; h0i, hw1; h1i, : : :, hwn0 ; hn0i divide the space around the camera center
into a layered sphere. Each layer can be successfully examined by the corresponding e�ective angle.
For a given e�ective angle size hw; hi, there are a huge number of viewing directions that can be
considered. Each direction hp; ti (pan, tilt) corresponds to a rectangular pyramid, which is the
viewing volume determined by parameters hw; h; p; ti. Within this viewing volume, only a slice of
the pyramid can be examined with high detection probability by the given recognition algorithm.
This slice of the pyramid is the e�ective volume for camera state hw; h; p; ti. The union of the
e�ective volumes of all the possible hp; ti given hw; hi will cover the given layer. To examine this
layer, it is not necessary to try every possible hp; ti one by one | we only need to consider those
directions such that the union of their e�ective volumes cover the whole layer with little overlap.
This idea is illustrated in Figure (2).

(a) (b) (c)

Figure 2: (a) Each viewing angle size can check a layer in the space. (b) The selected camera
viewing angle sizes divide the space into a layered sphere. (c) There are a huge number of possible
directions to examine a given layer, but among them, only a limited number of actions are necessary.

Let � = minfw; hg, and the �nal viewing direction set be Scandidate. Then the following
algorithm gives the necessary viewing directions to cover the whole sphere (see [39] for details).

1. Scandidate = �

2. p � 0, t  � 0, Scandidate = Scandidate
S
< p; t >.

3. te  �
�
2

7



4. tb  � arccosf
cos((te��

2
)��

2
)r

1+
sin2(�2 )sin

2((te�
�
2 )�

�
2 )

sin2((te�
�
2 )+

�
2 )

g

5. Cover the slice on the sphere whose tilt is within the range of [tb; te] and the slice on the
sphere whose tilt is within the range of [� � te; � � tb].

(a) Let t � te �
�
2 .

(b) let �pan  � 2arctanf
sin(�2 )

sin((t��
2 )+

�
2 )
g

(c) Use �pan to divide [0; 2�] for the given slide. So, we obtain a series of [pb; pe], viz.,
[0;�pan], [�pan; 2�pan], : : :, [k�pan; 2�]. Note: the length of the last interval may not
be �pan.

(d) For each division, let p  � pb+pe
2 . Then perform Scandidate = Scandidate

S
< p; t > and

Scandidate = Scandidate
S
< p; � � t >.

6. Let te  � tb

7. If te � �, stop the process. Otherwise Goto 4.

In the above algorithm, Step 2 gives the �rst candidate direction. Step 3 and Step 4 gives
beginning value and the end value of tilt for the �rst slice that is going to be covered. Step 6
and Step 5 gives the beginning value and the end value of tilt for the next slice that is going to
be covered. Step 5 selects viewing directions to cover the selected slice and the corresponding
symmetric slice on the sphere. Step 5(d) adds the selected directions into Scandidate. The view
volumes of the selected directions have a little overlap among them.

3.4 E�ective Volumes for a Given Aspect

For a given aspect ai, we can �nd a set of ni e�ective viewing angle sizes hwi;1; hi;1i, : : :, hwi;ni ; hi;nii,
that can examine the whole depth of the environment. For each angle size hwi;j; hi;ji, we can
�nd a set of ni;j viewing directions hpi;j;1; ti;j;1i, : : :, hpi;j;ni;j ; ti;j;ni;j i. Each triple Vijk =< ai;
hwi;j; hi;ji; hpi;j;k; ti;j;ki > determines an e�ective volume. When the aspect of the target facing the
camera is ai, and the target to be tracked is within Vijk, and when the camera state is hwi;j ; hi;ji
and hpi;j;k; ti;j;ki, then the given recognition algorithm can be expected to detect the target. Let
Vi =

Pni
j=1

Pni;j
k=1 Vijk, then Vi is the union of all the e�ective volumes for aspect ai. If the target is

within the environment, then there exists at least one e�ective volume Vijk 2 Vi that contain the
target. The corresponding camera parameters hwi;j; hi;ji and hpi;j;k; ti;j;ki determine the camera's
state by which we can detect the target.

3.5 Minimum Camera Parameter Settings

Suppose the target has N aspects. For each aspect ai there exists a set of e�ective volumes Vi.
Let V =

PN
i=1 Vi. Then V is the set of the e�ective volumes for the target. This means that no

matter where the target might appear in the environment or what aspect the target presents to
the camera, there exists at least one e�ective volume that contains the target. The corresponding
camera parameters with respect to this e�ective volume will detect the target.

When discussing the e�ective volume, we assumed that the camera must cover the entire spher-
ical region surrounding it. In most situations, however, the environment is only a portion of the
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sphere with radius equal to the depth of the environment. Let 
 denote the region occupied by the
environment. Then during the tracking process, we only need to consider those e�ective volumes
Vijk that have common regions with 
.

Thus, we de�ne the Minimum Camera Parameter Settings (MCPS) as:

MCPS = fhwi;j; hi;j; pi;j;k; ti;j;ki j 1 � i � N; 1 � j � ni; 1 � k � ni;j ;

Vijk \ 
 6= ;g (15)

MCPS is a relatively small set of camera settings needed to track the target within the envi-
ronment. The e�ective volumes of these states cover the entire sphere around the camera to some
depth D. Wherever the target may appear in this spherical environment, there exists at least one
camera state in this set appropriate for high probability of target detection.

The MCPS is particularly useful for e�cient scanning of the environment in search of the target,
since it de�nes a minimum set of camera movements that su�ce for e�ective surveillance. Smooth-
ness of tracking, however, can be improved by selecting additional camera states to supplement the
minimum set, thus creating the Camera Parameter Settings for Tracking (CPST).

4 Segmentation

In order to detect and track a target, we must be able to segment it from the background of
the image. Generally this is a very di�cult task. Our strategy here is to alleviate some of the
di�culties of segmentation by using the camera states of MCPS to create a database of images,
IDBMCPS , of the environment without the target present, and then during tracking to use these
camera states and the corresponding background images for comparison when segmenting for the
target. This strategy should improve the e�ciency and accuracy of segmentation. We illustrate
the concept using the extremely simple segmentation strategy: calculate the di�erence between
the tracking image and the corresponding database image, and interpret any signi�cant di�erence
as target. Presumably, more discriminating segmentation routines could also bene�t from sensor
planning and an image database.

Details of the di�erence calculation in this segmentation method are described with reference to
the example in Fig. 3. Image (a) is from the image database, and image (b) is taken with the same
camera state, but during tracking, after the appearance of a person. Image (c) is the color di�erence
image (b-a) calculated as follows. The color intensity (r; g; b) of a pixel at position (x; y) in (b) is
compared with the intensity (r0; g0; b0) at (x0; y0) in (a), where jx � x

0

j � n and jy � y
0

j � n. The
value of constant n is chosen to compensate for errors in camera movement and depends on camera
angle size. In the Appendix we calculate an upper limit on the value of n required to compensate
for an errors in the camera viewing direction and viewing angle size. The pixel intensity in the
color di�erence image for the position (x; y) is de�ned to be the triple (jr � r

0

j; jg � g
0

j; jb� b
0

j)
whose 2-norm is minimum.

Image (d) in Fig. 3 is the binary di�erence image obtained by converting (r; g; b) intensities �rst
to grey intensities in the range 0 to 255, and then to black/white intensities of 0 or 255 according
to a threshold (40 in this case). Some small white areas are noise, and larger white areas are target.
To reduce noise, we apply standard erosion and dilation operations. Blobs are then detected as
groups of connected white pixels, and blobs of size mi > 1000 pixels are considered to be target.
Image (e) is the same as (c), but with hash marks superimposed marking the average (xi; yi) pixel
coordinates of target blobs. Here the algorithm found �ve blobs of signi�cant size, which are
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(a) (b) (c) (d) (e)

Figure 3: Image Segmentation and Recognition Algorithm

assumed to represent the human. The features of the target are represented by the total mass
M = �mi and the mass-averaged position of the blobs, given by X = �mixi=M; Y = �miyi=M ,
where the summation is over the blobs of su�cient size.

This segmentation algorithm, although extremely simple, can successfully detect the human
body, because the colors and shape of the hair, face, clothes, and other features of the human,
contrast well with most backgrounds. Unfortunately the person's shadow may also be interpreted
as part of the target, (cf. Fig. 3(g)), but generally this does not greatly inuence the calculated
mass and position of the target. In any case, a more sophisticated segmentation method can easily
be substituted in this framework of tracking with an MCPS and IDB.

5 Tracking

Our tracking algorithm uses the set of camera states MCPS and the corresponding Image Database
IDBMCPS while continuously iterating the following four steps:

1. Choose the next camera state hw; h; p; ti based on information obtained from the previous
image, such as the target position X; Y and mass M .

2. Take an image I�hw;h;p;ti.

3. Attempt to segment target from background in the image I�hw;h;p;ti with reference to the
corresponding image Ihw;h;p;ti in IDBMCPS .

4. If the target is detected then calculate its position and mass.

Step 1 is performed by the Where to Look Next routine. When there is no information
regarding the whereabouts of the target, as is the case initially or later if tracking fails, then the
routine simply cycles through the states of MCPS. If the target was recently in the �eld of view
and has now moved out, then the routine uses the last known position and orientation to guess a
set of next possible positions and orientations.

Recall that the space around the camera is tessellated into layers of wedge-shaped cells, each
e�ectively covered by a particular camera state. (This may also be done for several signi�cantly
di�erent target aspects). We assume that images can be processed quickly enough that the target
stays in any one cell long enough for the taking and processing of several images. In this case, if the
target moves out of view, then it can be found in one of the adjacent cells, called the surrounding
region. Similarly, if the target aspect changes, then the next aspect should be one adjacent to
the current aspect in a graph relating the various aspects (cf. [17]). In this case the target's
new position should be in a cell de�ned for the new aspect and which intersects a cell in the
surrounding region.
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The surrounding region for each cell and the neighborhood of each aspect can be determined
ahead of time, so that for each target aspect and position we can plan a set of camera states called
the related camera settings, RCS which permit relocating the target if it is last seen with this
aspect and position. Further, it may be possible to dynamically order by preference choices in RCS
according to the target's trajectory and rotation.

6 Example experiment

In this section we describe the tracking algorithm with reference to an experiment in a �xed o�ce
environment. The camera used in our experiment is a canon VC-C1 MKII Communication Camera
(Fig. 4). The pan, tilt, and zoom of the camera are controlled by an SGI Indy machine through an
RS-232 port during the tracking process. The mechanical errors are relatively small, which makes
this a perfect device for our tracking strategy. The image size taken with this camera is 640� 480.
The rotation angle for pan is limited to Right-Left +/- 50 degrees, the rotation angle for tilt is
Up-Down +/- 20 degrees. The zoom range is 8 � power zoom. To control the camera, pan can
take values from 0 (leftmost) to 1300 (rightmost). Each step of pan corresponds to 0:0769 degree.
The tilt can vary from 0 (lowermost) through 289 (horizontal) to 578 (uppermost). Each step of
tilt corresponds to 0:0692 degree. The zoom can take values from 0 (largest camera angle) to 128
(smallest camera angle).

Tables

VCC1 Camera

A

(a) (b) (c)

Figure 4: (a) The Canon VCC1 MKII camera used in the experiments. (b) Sketch of top view of
the tracking environment. (c) Global view of the tracking environment.

The tracking environment is a normal o�ce. Fig. 4(b) shows the top view of the environment.
Region A is the most distant part of the o�ce visible from the camera. Fig. 4(c) gives a global
view of the environment, as constructed from three camera images with pan = 0, 525 and 1050,
and constant tilt of 277 and zoom 0. These are states (a), (h), and (p) of Table 1.. Since these
three camera settings su�ce for a complete scan of the o�ce environment, they form the Minimum
Camera Parameter Settings for tracking.

For smooth tracking, however, we increase the number of camera states to form the Camera
Parameter Settings for Tracking, as listed in Table 1. The background images for these camera
states are shown in Fig. 5. For this simple example, the tilt and zoom parameters remain constant
except for one state (j) where they are adjusted to accommodate for the distant Region A (cf.
Fig. 4). For the other states, the pan parameter is incremented in steps of 75, producing a smooth
sweep of images of the environment.

The inference engine which controls the movement of the camera during tracking iterates the
following steps:

1. Repeatedly scan the environment using camera states (a), (h) and (p) of Table 1 since these
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State p t z n State p t z n

a 0 277 0 1 i 600 277 0 1

b 75 277 0 1 j 600 199 55 5

c 150 277 0 1 k 675 277 0 1

d 225 277 0 1 l 750 277 0 1

e 300 277 0 1 m 825 277 0 1

f 375 277 0 1 n 900 277 0 1

g 450 277 0 1 o 975 277 0 1

h 525 277 0 1 p 1050 277 0 1

Table 1: Camera parameter settings for tracking: (p = pan, t = tilt, z = zoom)

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 5: The image database for the Camera Parameter Settings for Tracking
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comprise the Minimum Set of Camera Parameters. If a target is detected calculate its mass
M and x-coordinate X, and Goto (2).

2. If the current zoom is 0 then select the next pan, tilt, and zoom using Method (a) below,
otherwise use Method (b).

(a) Select pan value: Let p1, p2, : : :, p15 represent the pan values 0, 75, : : :, 1050. Let
pi be the current pan value, and P = fpi�3; pi�2; pi�1; pi; pi+1; pi+2; pi+3g. The set P
includes all of the pan values for which the viewing directions are within the current
image. The x-coordinates of the intersection of these viewing directions with the image
plane are: 81, 173, 233, 320, 407, 467, and 559, respectively (the calculation is omitted).
Select the next pan direction pk from P such that the corresponding x-coordinate xk of
intersection with the image plane is closest to X .
Select tilt and zoom values: If the next pan pk = 600, and M < 10000, then
select camera state (j) (< pan; tilt; zoom >=< 600; 199; 55 >) as the next action for
tracking. (The direction and low mass imply that the person is within Region A, which
being distant from the camera requires a small angle size). Otherwise the tilt and zoom
remain unchanged.

(b) Select pan, tilt and zoom values: (The current zoom is 55, i.e., camera state (j).)
If M < 31; 100 then do not change the camera state. (The direction and mass suggest
that the person is still in Region A.) Otherwise, select State h (< pan; tilt; zoom >=<
525; 277; 0>) as the person apparently just left the region.

3. Adjust the camera to the new state and take a picture,

4. Segment as described above, using n = 1 for zoom 0 or n = 5 for zoom 55. Calculate the new
mass M and x-coordinate X of the target if it is detected.

5. If the target was detected then go to Step 2, otherwise go to Step 1.

The nine actions and image sets for this experiment are shown in Fig.s 6 and 7. Each image
set consists of �ve images: the background image, the image with the target present, the color
di�erence image, the improved binary di�erence image, and the color di�erence image overlaid
with a cross mark for each signi�cant segmented blob. An explanation of the action at each step
follows. The sequence begins with Action 1 in State p (pan = 1050, tilt = 277, zoom = 0) where
the human is �rst detected.

1. The coordinates x; y and mass m of each of the �ve detected target blobs are: (x; y;m) =
(309, 205, 16013), (332, 68, 13006), (318, 360, 5202), (422, 180, 5714), and (416, 33, 1612),
yielding a total mass of M = 41547 and a mass averaged x-coordinate of X = 337. Since the
zoom is 0, Rule (2a) of the inference engine applies, and the next state selected is p again.

2. One blob is detected: (x; y;m) = (125; 170; 29670). The target is calculated to be at position
X = 125, and according to Rule (2a) the pan must be decreased three units to 825 (State
m).

3. Three blobs are detected: (289, 115, 5040), (331, 212, 13111), (283, 35, 2362). Thus,X = 315,
implying that the person is near the center again. The state does not change.
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4. Six blobs are detected: (79, 99, 4535), (50, 182, 1121), ( 169, 21, 5085), (109, 306, 3012),
(123, 195, 1281), (175, 87, 1300). Thus, X = 128, implying that the person is left of center.
By Rule (2a), the pan is decreased two units to 675 (State k).

5. Four blobs are detected: (279, 107, 8772), (221, 187, 1284), (291, 294, 2432), (299, 21, 3458).
Thus, X = 280, implying that the person is near center again. Hence no state change.

6. Three blobs are detected: (210, 236, 1054), (227, 101, 4536), (260, 17, 2834). Thus, X = 234,
suggesting a next pan value of 600. Since the calculated target size M = 8234 is small (less
than 10,000), Rule 2(a) causes an increase in zoom to 55, i.e., State (j).

7. Five blobs are detected: (373, 221, 13438), (376, 50, 7314), (368, 364, 2307), (485, 82, 6445),
(503, 10, 1346). Thus, X = 402 and M = 30850. Since the zoom is 55, Rule 2(b) is invoked.
The mass is less than 31,100, thus no change in state.

8. Four blobs are detected: (137, 204, 21174), (180, 37, 8517), (129, 387, 1262), (181, 389, 1357).
Thus, X = 149 and M = 32310. The target mass is now large enough that Rule 2(b) causes
a switch to State h.

9. Four blobs are detected: (258, 204, 4794), (282, 43, 2607), (322, 94, 3821), and (323, 216,
1031). At this point the experiment is terminated. Thus, the person was successfully tracked
during a walk about the o�ce.

7 Discussion

This paper proposes a novel tracking strategy that can robustly track a person, or other object
within an environment by a pan, tilt, and zoom camera with the help of a pre-recorded image
database. We de�ne a concept called Minimum Camera Parameter Settings (MCPS) which gives a
small but su�cient number of camera states required to detect the target anywhere within a given
region. For each camera parameter setting in MCPS, we pre-record an image of the environment,
and this set of camera states is used during tracking. When the target appears within an image, we
segment target from the background by using the corresponding background image as a reference.
This greatly simpli�es segmentation, and the main part of the person's body can be detected
robustly. In order to guarantee smooth tracking, we can increase the number of camera states
in the above process. Our method requires to pre-store a set of environmental images. Thus,
it may need more memory then other tracking algorithms. However, since the segmentation is
done by simply comparing the pre-stored image and the current image, the computational cost is
generally less than other methods. The set of background images taken by our method is similar to
a panoramic image mosaic [31] which consists of a set of images taken around the same viewpoint.
However, images within a panoramic image mosaic are taken with the same camera viewing angle
size, while background images taken with our method might be associated with di�erent viewing
angle sizes. This di�erence in zoom is important to guarantee that a good view of the target to be
tracked can always be obtained no matter where the target is within the environment.

Since the camera is actively controlled during tracking, and segmentation is based on com-
parison of images taken with the same camera parameters, our method requires good mechanical
reproducibility. We tested our strategy with the Canon VCC1 Camera, and the tracking results
are satisfactory. Complexity of the environment is not a problem in segmentation, however the
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1. State p :< p = 1050; t = 277; z = 0 >=) [X = 337;M = 41547].

2. State p :< p = 1050; t = 277; z = 0 >=) [X = 125;M = 29670].

3. State m :< p = 825; t = 277; z = 0 >=) [X = 315;M = 20513].

4. State m :< p = 825; t = 277; z = 0 >=) [X = 128;M = 18563].

5. State k :< p = 675; t = 277; z = 0 >=) [X = 280;M = 15946].

6. State k :< p = 675; t = 277; z = 0 >=) [X = 234;M = 8424].

Figure 6: A tracking experiment performed in our lab.
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7. State i :< p = 600; t = 199; z = 55 >=) [X = 402;M = 30850].

8. State i :< p = 600; t = 199; z = 55 >=) [X = 149;M = 32310].

9. State h :< p = 525; t = 277; z = 0 >=) [X = 288;M = 12253].

Figure 7: A tracking experiment performed in our lab (continued).

simple segmentation algorithm which we use in this paper does depend on the constancy of the
background. More sophisticated segmentation methods can also be incorporated in the same over-
all strategy. For example, the problems associated with changes of lighting or shadows can be
attacked by using techniques involving color consistancy [3, 37] as illustrated in [25, 38]. Our re-
sults show that through the use of a few pre-recorded background images and active control of
the camera, the task of visual tracking can be simpli�ed. By incorporating various techniques in
object recognition, this strategy may �nd applications in many practical situations such as human
machine interaction and automated surveillance. This method may also be used to advantage in
face recognition [4, 6, 7, 21, 25, 29, 32, 34, 38, 41] by setting the e�ective volume to regions where
the facial features can be clearly captured.

Acknowledgments

We would like to thank James Maclean and Gilbert Verghese for their help. We also thank anony-
mous reviewers of IEEE Workshop on Visual Surveillance for their comments and suggestions. This
work was funded by IBM Center for Advanced Studies, Canada and the Department of Computer
Science, University of Toronto.

16



Appendix

The E�ect of Mechanical Error on Segmentation

Our method of surveillance and tracking involves collecting a set of background images to serve
as a reference during segmentation. Segmentation is based on calculating the di�erence between
the current image and the reference image for the same camera state. Camera states, however,
may not be reproduced exactly. For this reason, we introduced a parameter, n, to compensate for
mechanical error (cf. Section entitled Segmentation). In this Appendix we relate the parameter n
to the size of errors in the camera viewing direction and angle size. To do this, we study how these
errors inuence the projection of a point P from the environment onto the image plane.

       f

W

W

W

Figure 8: The viewing plane and viewing angle size.
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Figure 9: Change in projection of a point as camera viewing direction shifts from OR to OR0.

Without loss of generality, suppose that the viewing plane is a square with side length W , and
that the viewing angle size for the reference image is � � �. Let the focal length be f , as shown in
Figure 8. Suppose the resolution of the camera is m�m. Then a unit length is W

m
.

We have the following relationship:

tan(
�

2
) =

W
2

f
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f =
W

2 tan(�2 )
:

In Figure 9 we represent the intended camera viewing direction as OR, and the erroneous
viewing direction as OR0. The desired (reference) viewing angle size is �� �, but mechanical error
results in a size of ���. As a result, a point in the environment whose projection on the reference
image is (u; v) projects to (u0; v0) in the tracking image. The head coordinate system is sketched in
Figure 10 where the viewing direction of the camera is speci�ed by pan and tilt: (p; t). The value
of tilt (0 � t � �) is the angle between the camera's viewing direction and the Z axis. The value
of pan (0 � p � 2�) is the angle between the projection of the camera's viewing direction on the
XY plane and the X axis.

t

X

Y

Z

(p,t)

p

Figure 10: The head coordinate system and the viewing direction of the camera.

Let the mechanical errors in pan, tilt and viewing angle size be within �p, �t, and �, respectively
(usually �p and �t can be found in product speci�cations). Our aim is to �nd the maximum value of
j u�u0 j and j v�v0 j given these error bounds. Here, we calculate the maximum value of j u�u0 j;
the maximum value of j v � v0 j can be similarly obtained.

For a given camera angle size �, the error j u� u0 j achieves its maximum value when (u; v) =
(W2 ;

W
2 ) and the reference viewing direction is (p; t) = (0; �2 ), i.e., along the X axis in the head

coordinate system. The erroneous viewing direction is (p0; t0) = (��p;
�
2 + �t), and the erroneous

viewing angle size is � � �. To calculate the value of u0, we �rst rotate the head coordinate system
around the Z axis by ��p, and then around the Y axis by �t. By considering also the change in the
zoom and the geometry of Figure 9 we obtain the following equations.

u0 =
f sin(�p) + u cos(�p)

f cos(�p) cos(�t)� u sin(�p) cos(�t)� v sin(�p)

W

2 tan(���2 )

=

W

2 tan(�2 )
sin(�p) +

W
2 cos(�p)

W

2 tan(�2 )
cos(�p) cos(�t)�

W
2 sin(�p) cos(�t)�

W
2 sin(�p)

W

2 tan(���2 )
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=

1
tan(�2 )

sin(�p) + cos(�p)

1
tan(�2 )

cos(�p) cos(�t)� sin(�p) cos(�t)� sin(�p)

W

2 tan(���2 )
(16)

The shift in position as measured in pixels is:

n =
u0 � u

W
m

=
m

2

n sin(�p) + cos(�p) tan(
�
2 )

[cos(�p) cos(�t)� sin(�p) cos(�t) tan(
�
2 )� sin(�p) tan(

�
2 )] tan(

���
2 )
� 1
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Figure 11: (a) and (b) The inuence of the error in viewing direction and the error in camera
viewing angle size on the image error. (c) The inuence of mechanical error and the camera visual
angle size on the image error. Camera resolution parameter m = 150.

Figure 11 (a) and (b) show the dependence of image error n (in pixels) on the errors in camera
viewing direction and camera viewing angle size. Here, we set �p = �t, and take this to be the value
of the error in viewing direction. The error in viewing angle size is �. The errors are represented
in degrees in Figure 11. Figure 11(a) shows that the image error n increases with the size of errors
in viewing direction and viewing angle. The graph in Figure 11(b) shows that the segmentation
algorithm requires good mechanical reproducibility, since large camera errors necessitate such large
values of n as to render the segmentation is meaningless.

Figure 11(c) shows the inuence of visual angle size � and mechanical error on the image error
n. Here, mechanical error is de�ned to be �t = �p = �, The units along the X and Y axes are
degrees. From this �gure we can see that image error n increases with increasing mechanical error
and decreasing visual angle size.
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