
Evaluation form – Progress Reports V1.06 Feb. 2004

Project ID 203252 Project Title An Interactive Recommender System
Student Name Bernard Ma Supervisor Prof. R. Zemel
Section # 6 Coordinator Beresford

Presentation Copy graded: � electronic � paper � comment summary in paper

Coordinators Signature:

Grade /10
(each report
worth 2.5%)

Technical
Evaluation Total Mark

Suggested
Mark Notes

Progress 10 • following game plan? (milestones accomplished;
milestones missed & why)

Organization 10

• use of human resources?
• use of non-human resources?
• efficiency of efforts?
• preparation & foresight?

Method 15

• are the modules / steps sufficiently tested when ‘done’?
• do these tests have good structure?
• have the interaction specifications of the parts been

properly developed?

Decision
making 10

• suitable response to difficulties?
• appropriate change of course when encounter obstacle or

new development?
• modification of process as necessary?

Creativity /
Complexity /

Effort
35

C/C

Effort

x

x 35

Creativity and Complexity rom charts. Scores for creativity,
complexity and effort are multiplied by maximum score /
1000 to get the grade.

TOTAL 80 (report #1 worth 7.5 & report #2 worth 12.5% of
the student’s final grade)

Supervisor � Accept suggested technical mark
� Change technical mark (reasoning attached in separate sheet, marks in blank column above)

Supervisor’s Signature:

Note to students: There is a design award, the Aloha award, that you might wish to apply for. Please
check the course website for instructions on what to do to be considered for this award.

Page 2 of Progress Report Evaluation Sheet
Project ID Project Title
Student Name Supervisor
Section # Coordinator/Administrator

Averages for this section: Presentation ______

 Technical ______

Supervisors:
Please review the progress reports for the students in your group(s). The terms are further explained
on the course website using the menu at the top of the website to get to the links on the page at
Student Information | Deliverables/Evaluation | Individual Progress Reports
[The course website is at http://courses.ece.utoronto.ca/ece496y1y/.]
In particular,

• the ‘effort’ assessment is generally .7 to 1.2, but normally close to 1.0. Follow the link to
‘Marking Terms’

• the creativity/complexity mark comes from a graph. Follow the link to ‘Mark Matrix’.
You may choose to accept the technical mark on the first page, or to change the marks. If you choose
to change the mark, please enter the changed mark in each category on the first page and write a note
of justification for the change. The student final grade will be determined after consultation.

Please do not return the reports to the students until you receive notification to do so.
Please return a copy of the first evaluation sheet to the Coordinator with a justification if necessary
within a week.

The average marks for the section are shown above. There will be differences between the marks in
each section. Marks between sections will be normalized after the final reports are marked (about
mid-April). The students are already aware of this.

Supervisors Comments

Supervisor’s Signature:

Return this evaluation sheet as
described below to
� Coordinator
� _______________

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto

ECE496Y Design Project Course

Individual Progress Report

Title:

An Interactive Recommender System

Project I.D.#: 2003252

Prepared by: Bernard Ma – bernard.ma@utoronto.ca

Supervisor: Prof. R. Zemel

Section #: 6

Section Administrator: D. Beresford

Date: Monday, February 23, 2003

 1

Executive Summary

 E-commerce sites often employ a feature known as recommender systems. The

purpose of this feature is to intelligently recommend products customers are likely to be

interested in. Ideally, this acts as an incentive for customers to continue to access the site.

Unfortunately, recommender systems often make poor recommendations, often turning off

the user from their online shopping experience.

Many recommender systems employ the Collaborative Filtering (CF) methodology

in making their recommendations. The main problem with CF resulting in inaccurate

recommendations is known as the “new user problem”. Active Collaborative Filtering

(ACF) is a recently developed methodology which seeks to solve the “new user problem.”

The purpose of this project is to implement the ACF methodology into a full-scale system

of high complexity. This system will test the ACF methodology (and other recommender

algorithms) on real users by making recommendations to them on music. After this is

complete, we will analyze and attempt to explain the results of the testing.

Currently, the Web Interface is fully functioning, complete with: Registration and

User Recognition and mp3 playback (for Windows users). Integration with the Database

Module and Application Module has also been completed. We are currently using the

system to perform the analysis phase of the project. The project is currently progressing on

schedule.

 2

���������	�
��
���

�

���������	
����� ��

�

����������� ��

�

���
������������������������	�� ��

����������
���������������������� ��� �� ����

����������
���
�!
�������� �� ����

����������
�����"�
��������� #� ����

����������
���$�%�������&�'���(�
)��������
������ *� ����

�

���
�
��������)������(������������)���!����
)����� �
�

����������
�
�������������������� ��� �
���

����������
�
�
�!
�������� �
��

����������
�
���"�
��������� ���

����������
�
�$�%�������&�'���(�
)��������
������ �$�

�

���
����������)������(������������)���")�)�)��� ���

����������
���������������������� ��� ������

����������
���
�!
�������� �����

����������
�����"�
��������� �����

����������
���$�%�������&�'���(�
)��������
������ ���

�

���+��
�	����� �#�

�

�

,�(����
��� �-�

�

!������.�!/�����.�0�1����	�
��+���� �*�

!������.�2/�����0�1����	�
��+����
3�

!������.�+/�����1)��4)�)���	�
��+����
��

!������.�"/�5�����4)�)���	�
��+����

�

!������.�6/�,��������4)�)���	�
��+����
��

!������.�7/���+����
��4)�)���	�
��+����
$�

� �

!������.��/�"	118�+�)�����
��

!������.�9/�������1����������������
��

!������.��/�+�11	��
)�����2�� �������������
��

!������.�:/������
������)���.�
��

!������.�;/�;������������
������)���.�!�����
#�

!������.�5/�6���	������(�")�)����	
�	���
-�

!������.��/�+��������+����
��4)�)�
*�

!������.�</�������)������������+0)��� �3�

!������.��/����)��������������+0)��� �
�

 3

1. Introduction

 In the retail industry, e-commerce has been gaining prominence over the last decade

[2]. As competition over market share grows more fierce, companies continue to search for

ways to distinguish themselves from the competition. A main feature provided by many of

these online sites is the recommender system. A recommender system intelligently makes

suggestions on products it believes the consumer will have an interest in purchasing. A

recommender system determines what products to recommend based on the ratings the

consumer makes on other products. This is a form of target marketing

 Unfortunately, these recommendations made for the consumer are often inaccurate.

As a result, these inaccurate recommendations can have an adverse affect, turning off the

consumer from the site instead of enticing him/her. Many of these recommender systems

employ the Collaborative Filtering (CF) methodology in making recommendations for the

customer. The CF methodology simply takes in a set of user ratings as input, and uses this

information to make recommendations. The main problem with this technique which leads

the inaccurate recommendations is known as “The New User” problem. In order for the CF

methodology to provide accurate recommendations to the customer, many user ratings from

the customer is required. However, when a user logs onto an e-commerce site for the first

time, little information is known about the new user. As a result, poor recommendations

are made.

 A new approach known as Active Collaborative Filtering (ACF) has been

developed by Professor Craig Boutilier, Professor Richard Zemel and graduate student

Benjamin Marlin at the University of Toronto in an attempt to solve this problem. The

main idea behind ACF is to gather as much useful information about the user as possible

through querying the user for ratings on various products. To minimize the number of

 4

queries made, the ACF approach utilizes the probability model known as EVOI (Expected

Value Of Information) to query users on products that will yield the most information about

the user [4]. From here, probability models are used to intelligently calculate

recommendations for the user. In effect, this provides accurate recommendations for the

user while querying them a minimum number of times.

 To date, the ACF approach has only been tested in laboratories. The purpose of the

design project will be to implement ACF on a full scale system in order to test this ACF

approach on real users. The system will make recommendations on music clips. Other

recommender approaches will also be implemented into the system and tested on users.

Results of these tests will be analyzed, and will likely suggest ways of improving on the

ACF implementation. The project objectives are as follows:

1) Implement ACF in Java

2) Create a web-based user friendly interface using Java Servlets

3) Create an easy to access database of songs, samples and ratings using MySQL

4) Transmit data between the above 3 modules of the system

5) Analyze a select group of recommender algorithms after running tests on our system

 My focus for the project will be to provide a non-static, user-adaptable Web

Interface representing the front-end of the recommender system. This Web Interface must

query the user for ratings, employing the ACF methodology. This means, querying the user

for ratings on the song (optimal query) which will yield the most information about the

user. I will also be responsible for integration of the Web Interface with the Application

(back-end) and Database (guts). This report will discuss the progress made in these areas.

 5

2. Progress

This Section will describe the progress made to date with respect to the milestones I

am responsible for delivering. They are as follows:

• Web Server / GUI Setup

• Integration of Web Server and Application

• Integration of Web Server and Database

• Design Fair Poster Presentation

The Milestones are numbers 4, 7, 6 and 13 (respectively) and can be found in Appendix O.

The original milestone chart can be found in Appendix N. Progress on the Design Fair

Poster Presentation will not be discussed as it has not yet begun. Since the last progress

report, the responsibility of the milestone: “Integration of Web Server and Database” was

transferred to myself from Andrew Yeung. This was a result of the nature of the

integration process as it was more of an extension from the Web Server module to the

Database module rather than from the Database module to the Web Server module. It also

required an intimate understanding of the inner workings of the Web Server, as code would

be modified in various locations within the Servlets.

During the integration phase, it was discovered that the communication delay

between the Web Server and Database module was instantaneous, thus making the testing

of the speed trivial for this milestone (milestone #6). The milestone was rewritten

accordingly. The testing for both integration milestones (milestone #6 and #7) were re-

written with the focus on the correctness of the data exchanged between modules. Dates

were updated as a result of the Web Server / GUI Setup milestone delayed. A detailed

account of the progress for the milestones is provided below:

 6

2.1 Web Server / GUI Setup

2.1.1 Milestone Overview

Milestone & Description

A user friendly and informative interface will be designed and implemented. The GUI

will provide features such as information about the music to be rated (mp3 sound clips,

artist information etc.). Due: December 13, 2004

Responsibility: Bernard Ma

Status at start of reporting period:

80% complete. Most of the framework of the Web GUI had been implemented on an

Apache/Tomcat Web Server and was in the process of being debugged.

Status at end of reporting period: Completed December 13, 2004

2.1.2 Actions

The layout of code was designed in a modularized fashion. “Dummy Classes” were

written to mimic the Application module and the Database module. A more detailed

discussion of can be found in Appendix G.

During implementation, a number of problems arose:

• GUI (i.e. tables in HTML) not being displayed as envisioned

• Session Data not being stored properly

Changes were made in the code to rectify these problems. A more detailed discussion can

be found in Appendix H.

In order to complete the milestone, the feature: User Login/User Recognition

needed to be implemented. In order to implement Login and User Recognition, some

extensions needed to be implemented in the change of state design of the system to handle

 7

this additional complexity. Figure 1 illustrates the changes of state in the system (The

previous version was only made up of the “Recommender System” component).

Fig 1: Changes of State for the System

The implementation of the Login/User Recognition was accomplished through

coding in Servlets. A more detailed discussion can be found in Appendix I. The code can

be found in Appendix D (Login.java) and Appendix E (Register.java).

2.1.3 Decisions

To meet the goal of a user friendly user interface, three decisions were made.

Firstly, the code was designed in a modularized fashion. The Servlets functioned as the

“middleman” interfacing with the User, Application Module and Database Module. Figure

2 illustrates this relationship.

 Home Page

Registration Form

Login Screen

Recommender System

 8

Fig 2: Relationship between Modules

The Application and Database Modules are the sources for providing song

information to the Web Server (i.e. artist information, recommendation etc.). Modularity

was taken into account in the design of the system such that the number of modifications to

the code in the Servlets would be minimized during the integration phases. Also, the

communication between modules would be well defined, minimizing the likelihood of

errors during the exchange of data. The dummy classes would simply be replaced will

“real” classes which communicate with the Application Module and Database Module,

while the code in the Servlet (Appendix C: Optimal.java) would continue passing the same

arguments as it did to the dummy classes, with some minor adjustments as necessary. This

allows for concurrent implementation of the modules.

 The next decision was made to complete the objective of implementing the Web

Server. The decision was made to use Servlets to code the Login Screen and Registration

Web Server

Application Module

Database Module

User

 9

Form. Both of these GUI’ s needed to be dynamic in order to interact with the user (i.e.

User logs on with an incorrect password, Login screen prompts the user to re-enter

password).

2.1.4 Testing & Verification Progress

 A test was performed to verify that the Session Data was being stored and retrieved

correctly during a user’ s session. Whenever Session Data was being stored and retrieved

(i.e. ratings, user id), the resulting data retrieved was displayed onto the screen. This test

was performed for numerous iterations and scenarios. After a number of iterations of the

above tests, we could confirm the Session Data was being stored and retrieved correctly.

The time between a user submitting a rating and receiving the Next Optimal

Query/Recommendations was almost instantaneous. As a result, no speed tests were

necessary to verify the system was performing at an acceptable speed. Finally, Usability

Tests were performed on the overall usability and esthetics of the system. User’ s

suggestions were collected pertaining to the layout of information. Suggestions were

compiled, and certain improvements were implemented. The current layout and design can

be seen in Figures 3, 4, 5 and 6.

 10

Fig 3: Home Page

Fig 4: Registration Form

 11

Fig 5: Login Screen

Fig 6: Recommender System

 12

2.2 Integration of Web Server and Application

2.2.1 Milestone Overview

Milestone & Description

In order to maximize the effectiveness of the system, the Web Server must interact

quickly will the application. Integration will focus on the speed of communication

between the modules. Extensive testing must be done to demonstrate the correctness of

the data exchanged. Modifications to the modules will be made if necessary.

Due: January 24, 2004

Responsibility: Bernard Ma

Status at start of reporting period: Not started.

Status at end of reporting period: Completed January 17, 2004

2.2.2 Actions

 In order to meet the objective of quick interaction between the Web Server and

Application module, the following two actions were performed:

1. The decision was made for the Prediction Matrix to be rebuilt every time the user

submits a new user rating. A detailed discussion on the Prediction Matrix can be

found in Appendix J. The Servlets were coded to facilitate this decision. The

current list of ratings was now sent to the Application at every rating submission by

the user and the Dummy Application module was now coded as a static class. The

code for Optimal.java can be found in Appendix C.

2. Servlets were coded with the user ratings defined as an array of “int’ s”. Please see

Appendix K for a detailed discussion about the data structures.

 13

By defining the interface while the modules were implemented concurrently, the integration

was flawless. The dummy class was simply replaced with the “real” Application class.

2.2.3 Decisions

The Web Server / GUI Setup milestone was implemented concurrently with the

Implement ACF Methodology in Java milestone. Throughout this time period, many

discussions between Cavan Yie and myself took place pertaining to:

1. Whether to keep the Prediction Matrix “alive” throughout a user session

2. The type of Data structure to use for user ratings

These two factors were key in meeting the objective of quick interaction between the Web

Server and Application module.

 For the issue of the prediction matrix, our discussions focused on whether this

Prediction Matrix would be kept “alive” throughout the duration of the user’ s session

(option 1), or if it would be rebuilt throughout the user’ s session each time a new rating is

submitted (option 2). Both options had their pros and cons. See Appendix K for a detailed

analysis of the two options. In the end, option 2 was determined to be superior.

The second factor in determining the speed of the system was the Data structure of

the user ratings sent to the Application. The decision was made to define the data structure

as an array of “int’ s” rather than its original structure of a “Hashtable”. The runtime of the

ACF methodology (in the Application Module) using the Hashtable structure was 1-4

minutes. Having the user wait several minutes between rating submissions was

unacceptable. Changing the data structure to an array of “int’ s” improved the runtime of

the ACF methodology to 1-4 seconds. Please see Appendix L for a detailed discussion

about the data structures.

 14

2.2.4 Testing & Verification Progress

The following tests were performed to test that the correctness of data exchanged

between the Web Server and Application Module was correct:

Whitebox Testing was performed on the Application in isolation (ACF.java) to ensure

that the module would return proper results for different sets of ratings. A main class was

written, calling the methods required, and outputting the return data to the terminal. 5 test

cases were defined for a set of 124 songs: sending 0 ratings, 35 ratings, 70 ratings, 105

ratings and 124 ratings. The same data was returned consistently after running each case a

number of times. The Application passed this test.

Blackbox Testing was performed to test that the connection between the modules was

correct. The same ratings used for the Whitebox testing case were manually input through

the Web GUI. The results (recommendations and Next Optimal Query) matched the results

of the 5 test cases used for the Whitebox testing. The communication between the Web

Server and Application passed this test.

 15

2.3 Integration of Web Server and Database

2.3.1 Milestone Overview

Milestone & Description

Interface for modular database component will have a focus on easy access by the web

server. Extensive testing must be done to demonstrate the correctness of data

stored/retrieved to/from the database. Modifications to the modules will be made if

necessary. Due: January 24, 2004

Responsibility: Bernard Ma

Status at start of reporting period: Not started

Status at end of reporting period: Completed January 24, 2004

2.3.2 Actions

To meet the objective of the Web Server having an easy access of the Database, the

following actions were performed:

1. The JDBC driver was downloaded and integrated into the Web Server from the

MySQL homepage (www.mysql.com)

2. The sample code: PointBaseExample.java was used as a template to code:

dbConnect.java [7]

The dummy code representing the database was then replaced with: dbConnect.java

(Appendix F). Please see Appendix M for a detailed description of the communication

process between the Web Server and Database coded in dbConnect.java.

2.3.3 Decisions

To meet the objective of the Web Server having an easy access of the Database, the

following decisions were made:

 16

1. Andrew Yeung had informed me that a JDBC driver needed to be installed on the

Web Server as it was required for an Apache/Tomcat Web Server to access a

MySQL database. The decision to use the JDBC driver was straight forward.

2. Through my prior research into Java Servlets from the University of Toronto course

CSC309 website [7], I had encountered sample code of a Java Servlet interacting

with a PointBase database: PointBaseExample.java. The decision was made to use

this sample code as a template was made after testing out certain commands in the

code and discovering that they were relevant for accessing a MySQL database.

2.3.4 Testing & Verification Progress

To meet the objective of having correctness of data exchanged between the Web Server

and Database Module, the following tests were performed:

Whitebox Testing was performed to ensure the correct data was being read from

database. A main class was written in dbConnect.java calling on the “read” methods in

dbConnect.java, sending it a specific parameter. The return data was observed and cross-

checked with the Database to verify correctness. An exhaustive number of test cases were

run with the program passing each time. This test was repeated to ensure correctness in

writing to the database by calling on the “write” methods in dbConnect.java.

Blackbox Testing was performed to test that the connection between the Servlet and the

dbConnect.java is correct. A read test was performed by outputting the data retrieved from

the “read” methods. An exhaustive number of test cases were run with the program passing

each time. This test was repeated for writing to the database by calling on the “write”

 17

methods in dbConnect.java. An exhaustive number of test cases were run with the program

passing each time.

3 Conclusion

 To date, the Web Server is fully functioning, complete with: Registration and User

Recognition and mp3 playback (for Windows users). The modularity of the code allowed

for smooth integration with the Database Module and Application Module. All

components have been tested are considered correct. The web site is hosted at:

“http://giraffe.ai.toronto.edu:30492/ACF”.

 18

References

[1] B. Marlin. Active Collaborative Filtering with Bayes. Unpublished.

 http://www.cs.toronto.edu/~marlin/research/research.shtml. 2002.

[2] Cox, B. 2003. "E-commerce News: E-commerce Industry Soaring." E-commerce-
Guide Website.

 http://ecommerce.internet.com/news/news/article/0,,10375_1585731,00.html. Site
accessed 24/9/03.

[3] Craig Boutilier, Richard S. Zemel, and Benjamin Marlin. Active Collaborative
Filtering. In Proc. of the 19th

 Conference on Uncertainty in Artificial Intelligence. 2002.

[4] Craig Boutilier and Richard S. Zemel. Online queries for collaborative filtering. In
AI-Stat, 2003.

[5] J. Ben Schafer, Joseph Konstan, John Riedl. Recommender Systems in E-
Commerce. In Proc. of the 1st AC

 conference on Electronic commerce 1999.

[6] L. Guernsey. "Making Intelligence a Bit Less Artificial." The New York Times.

 http://www.cs.toronto.edu/~marlin/library/nyt_rec.pdf. Site accessed 01/8/2003.

 [7] D. Penny. “CSC309F Lectures”

 http://www.cs.toronto.edu/~penny/teaching/csc309/lectures/ Site accessed 30/10/03

 [8] S. Zeiger. “Servlet Essentials”

 http://www.novocode.com/doc/servlet-essentials/ Site accessed 10/11/03

 [9] Kurniawan. B. “How Servlet Containers Work”

 http://java.sun.com/products/servlet/docs.html Site accessed 05/11/03

 19

Appendix A – index.html

<!-- file: index.html -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html>
<head>
<title>Active Collaborative Filtering</title>

<link rel="stylesheet" type="text/css" href="mystyle.css" />
</head>

 <!-- 3 frames in this document, "top" is for querying User, main is for the displaying
Song Info of Song to be rated,
 topTen is the left. Displays Top 10 Recommendations -->
 <frameset rows="120,*,120" frameborder="0" >
 <frame name="topFrame" noresize="noresize" src="top.html"> <!--
Provides querying facility for user-->
 <frameset cols="150,*" frameborder="0">
 <frame name="topTen" noresize="noresize" src="topTen.html">
<!--Displays the top ten items...not yet implemented-->
 <frame name="mainFrame" noresize="noresize"
src="../servlet/Optimal"> <!--Displays infor of next Optimal Query-->
 </frameset>
 </frameset>
</html>

 20

Appendix B – top.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html>
<head>
<link rel="stylesheet" type="text/css" href="../mystyle.css" />
</head>
<body scroll = "no">
 <table>
 <tr><td>
 <form method="get" action="http://localhost:8080/servlet/Optimal"
target="mainFrame">
 Enter A Rating For The Sound Clip
 </td><td>
 <table>
 <tr>
 <td> <input type=radio name=rating value=1> </td>
 <td> <input type=radio name=rating value=2> </td>
 <td> <input type=radio name=rating value=3 checked> </td>
 <td> <input type=radio name=rating value=4> </td>
 <td> <input type=radio name=rating value=5> </td>
 <td> <input type=submit> </td>
 </tr>
 <tr>
 <td align="middle"> 1 </td>
 <td align="middle"> 2 </td>
 <td align="middle"> 3 </td>
 <td align="middle"> 4 </td>
 <td align="middle"> 5 </td>
 <td></td>
 </tr>
 </table>
 </td></tr>
 </form>
</body>
</html>

 21

Appendix C – Optimal.java

See Optimal.java

 22

Appendix D – Login.java
See Login.java

 23

Appendix E – Register.java
See Register.java

 24

Appendix F – dbConnect.java

See dbConnect.java

 25

Appendix G – Dummy Classes

“Dummy Classes” were written to mimic the Application module and the Database

module. These classes would return the data expected from the actual Application and

Database (in development at this time). Session Data was utilized in mimicking the

Database, as ratings submitted by the user would be stored in Session Data rather than

directly to the database (which will be implemented during the Integration phase, milestone

#6).

Appendix H – Problems in Web Server

During implementation, a number of problems arose. Oftentimes the GUI,

specifically the tables coded in HTML, would not be displayed as envisioned. My past

experience with web development aided in rectifying these formatting issues. Another

issue I faced at the time of the reporting period was Session Data not being stored properly

in the Web Server. As stated previously in Progress Report #1, the data being stored in the

Session Data did not always match the data submitted by the user query. After doing some

tests, it was discovered that the data was being stored properly, but was not being retrieved

properly. The advantage of using Servlets, is user interaction through data that is

exchanged between the Client and Server

This Client-Server interaction is essential for e-commerce sites. Every time a user

accesses a site, they are assigned a Session ID which represents the user throughout the

session. The Session ID is sent to the server through an HTTP Request every time data

exchange occurs between the Client and Server. As multiple users can access the site

simultaneously, this Session ID is essential in determining which user the Session Data

belongs to. If the HTTP request received by the Server is not handled correctly, the Session

 26

ID will not be received by the Server and Session Data previously stored for that Session

ID will not be retrieved. The code was modified so that the Servlet could properly service

the HTTP request, receiving the Session ID properly.

Appendix I Communication Between Servlets

The implementation of the Login/User Recognition required the coding of a Login

screen and a Registration form using Servlets. The Servlets: Login.java (Appendix E) and

Register.java (Appendix F) were written to represent the Login Screen and Registration

Form respectively. The coding was not too difficult, as the experience from coding

Optimal.java provided me with a solid understanding of how Servlets work. At this stage I

did not know how to pass data between the Servlets. i.e. When an existing user logs in,

how do you pass the username to Optimal.java so that it can access the previous song

ratings the user had submitted? Fortunately, I gained a thorough the understanding of

Sessions through my previous debugging. It became apparent that data could be passed

between Servlets by storing that data in Session Data which is accessible for any Servlet

during the user’ s session. Therefore, the user id would be stored in session data.

Appendix J – Prediction Matrix

Based on the ratings submitted by the user (through the Web Interface), the

Application Module would send back the Next Optimal Query and List Of

Recommendations (represented by song ID’ s) to the Web Server. In order to compute the

Next Optimal Query and List Of Recommendations, a Prediction Matrix needs to be built

based on the ratings the user has made as the ratings from the survey conducted offline.

 27

From this Prediction Matrix, EVOI (Estimated value of Information) for each item would

be computed.

Appendix K – Keeping Prediction Matrix Alive

For the issue of the prediction matrix, our discussions focused on whether this

Prediction Matrix would be kept “alive” throughout the duration of the user’ s session

(option 1), or if it would be rebuilt throughout the user’ s session each time a new rating is

submitted (option 2). Option 1 would save overhead required in rebuilding the prediction

matrix. An instance of Cavan’ s class could be created and stored in session data, keeping

the prediction matrix alive. However, problems would arise if the user were to log off, and

log on again. The Prediction Matrix “dies” after the user’ s session ends when they log off.

A more complicated communication process between the Web Interface and Application

would be required as the Web Interface must indicate whether the Prediction Matrix will

need to be re-built. Also, problems could occur as the Prediction Matrix can only be kept

alive throughout the user’ s session. However, in the case of a “timeout”, if a user does not

submit a rating for an extended amount of time, the session may be discarded, “killing” the

prediction matrix and as a result, killing the process. Option 2 makes for a more “clean”

interface and also solves this “timeout” issues common for web applications. For example,

a user could log on to the system and submit a rating well after the timeout and the system

would still operate as correctly. The same Session ID is no longer a requirement of the

system. Thus, the decision was made to not keep the Prediction matrix alive throughout the

user session. Instead, the Prediction matrix would be rebuilt throughout the user’ s session

each time a new rating is submitted.

 28

Appendix L – Evolution of Data Structure

The data structure went through 3 stages of evolution. Originally, the data was

defined as a counter (representing the number of ratings) and two Hashtables (representing

the Rating corresponding songID), as I was of the understanding that the order the ratings

submitted would affect the computation of the EVOI and in turn, affect the Next Optimal

Query and the list of Recommendations.

When I was informed that the order of ratings submission does not play a factor in

the Application, the data structure was modified to a single Hashtable with the index as the

songID and the rating as the output. The advantage of using a Hashtable was twofold.

First, the Hashtable could be stored in Session Data as an object (as the integration with the

Database had yet taken place). Secondly, Hashtables are dynamic. As more ratings are

submitted, the size of the Hashtable would increase with the number of ratings. The

alternative to this would be allocating the memory of all 126 ratings before hand. Using

Hashtables would save overhead in that the Application would not have to traverse through

126 data types including those for songs not yet rated.

 When the Application was tested with this data structure, the runtime of the ACF

methodology would take 1-4 minutes depending on the number of ratings submitted. It was

determined that the overhead in extracting data from the Hashtable was too great. When I

was informed the runtime of the ACF methodology still took 1-4 minutes, the decision was

made to change the data structure again by predefining 126 memory allocations in an array

of “int’ s”. When the Application module was tested using this data structure, the time to

run the ACF methodology would take 1-4 seconds depending on the number of ratings

submitted. Thus, the 3rd and final modification to the data structure was implemented,

using an array of int’ s.

 29

Appendix M – Coding dbConnect.java

 With the JDBC driver installed, and the PointBase example as a template, the

dummy code representing the database was replaced by: dbConnect.java (Appendix D).

dBConnect.java is a static java class with separate methods written to accommodate any

Database interactions required. Instead of the user ratings being stored in Session Data, the

ratings would now be stored directly into the database.

Three categories of methods were coded:

1. Methods to “connect” and “disconnect” to and from a particular database. This

must be done before any queries can be run on a particular table.

2. Methods to query a particular table. This includes reading or writing from or to a

particular table. After a connection is established above, a simple SQL command is

sent to the Database based on information provided from Optimal.java. (i.e.

Optimal.java required the Title, Artist and Genre for a Particular songID. This

method will query the database for this songID and return the desired information).

3. Methods to verify information. These methods were implemented with respect to

the Login and Registration Servlets to handle corner cases. (i.e. Verifying a

password is correct for a particular username).

dbConnect.java acts as a “middleman” between the Servlets and the database. By keeping

all direct communications with the database (through SQL commands) were coded in the

module dbConnect.java, the chance of errors were decreased and changes were made to the

Servlets was reduced.

 30

Appendix N

Milestones - Original
List each major milestone in chronological order. Assign ONE key team member that has ultimate
responsibility to each milestone. Use up to two pages if necessary.

 Description Assigned to Start Date End Date

1. Clear definition of project objectives, methodologies
and software and hardware components that will be
used:

Collection and research of resources and papers
that will be used for project. Obtain computer
resources from Professor Zemel and obtain access
priviledges to Artificial Intelligence labs.

Andrew 01/09/2003 10/17/2003

2. Implement Active Collaborative Filtering
Methodology in Java.

The back-end of the system will be coded in Java.
This includes the calculations of EVOI for queries,
model fitting for the probability model, and
computing rating predictions. Its main purpose is to
return a set of recommendations to a user given a

Cavan 10/17/2003 11/21/2003

3. Database Implementation in MySQL:

MySQL database will be created to store music
information. Decisions on the music information to
be displayed, types and categories of music to be
used, and music sample format and size will be
made based on research of related sites and
considerations such as transfer speed.

Andrew 10/17/2003 11/07/2003

4. Webserver / GUI Setup using Jakarta Tomcat, Java
Server Pages, Apache Server.

A user friendly and informative interface will be
designed and implemented. The GUI will provide
features such as information about the music to be
rated (mp3 sound clips, artist information etc.).

Bernard 10/17/2003 11/14/2003

5. XML structure definition for music, users and
ratings:

A Document Type Definition structure will be
created for use in the transfer of music information
between the web server, application and database
modules, and ultimately to the user. This step
requires an understanding and coordination with the

Andrew 10/31/2003 11/17/2003

6. Integration of web server and database:

Interface for modular database component will have
a focus on easy and fast access with webserver.
Testing of speed of data retrieval will be looked at
and optimizations and modifications to both
components will be considered if necessary.

Andrew 11/14/2003 12/19/2003

 31

7. Integration of web server and application.

In order to maximize the effectiveness of the
system, the Web Server must interact quickly will
the application. The speed of use will be tested,
and modifications to both components will be made
if necessary.

Bernard 11/21/2003 12/19/2003

3. Milestones (cont’d)
List each major milestone in chronological order. Assign ONE key team member that has ultimate
responsibility to each milestone. Use up to two pages if necessary.

 Description Assigned to Start Date End Date
8. Integration of application and database. (2 weeks)

Enabling the Java code to successfully retrieve and
update data to the database. Ensure that
communication between the two components is
smooth.

Cavan 01/04/2004 01/25/2004

9. Testing, comparison and implementation of
alternative recommender algorithms. (2 weeks)

Comparison of "active" versus "non-active"
approaches to collaborative filtering. Analyze their
performances and accuracy to real life usage.

Cavan 01/26/2004 02/12/2004

10. Oral Presentation:

Summarization of progress will be condensed into
presentation format. Visuals and aids will be
considered and created to provide an effective
emphasis and attract audience. Rehearsal of
presentation and analysis of strengths and
weaknesses.

Andrew 02/13/2004 02/27/2004

11. Design Fair Poster Presentation

The poster will attempt to give an overall view of
our design project while keeping in mind the
audience will mostly be comprised of 3rd year ECE
students. The results of our research will be
displayed through the use of charts and graphs. A
computer will also be available to provide a hands

Bernard 02/27/2004 03/16/2004

12. Completion of group final report

Intregration of the documentation of all components
which make up the design project including
diagrams, figures, references.

Cavan 03/16/2004 04/08/2004

 32

Appendix O

Milestones - Updated

List each major milestone in chronological order. Assign ONE key team member that has ultimate responsibility to
each milestone. Use up to two pages if necessary.

 Description Assigned to Start Date End Date

1. Clear definition of project objectives, methodologies and
software and hardware components that will be used:

Collection and research of resources and papers that will be
used for project. Obtain computer resources from Professor
Zemel and obtain access privileges to Artificial Intelligence labs.

Andrew 09/01/2003 10/17/2003

2. Implement Active Collaborative Filtering Methodology in Java.

The back-end of the system will be coded in Java. This includes
the calculations of EVOI for queries, model fitting for the
probability model, and computing rating predictions. Its main
purpose is to return a set of recommendations to a user given a
database of user ratings.

Cavan 10/17/2003 01/21/2003

3. Database Implementation in MySQL:

MySQL database will be created to store music information.
Decisions on the music information to be displayed, types and
categories of music to be used, and music sample format and
size will be made based on research of related sites and
considerations such as transfer speed.

Andrew 10/17/2003 11/07/2003

4. Web server / GUI Setup using Apache/Jakarta Tomcat Server
and Java Servlets

A user friendly and informative interface will be designed and
implemented. The GUI will provide features such as information
about the music to be rated (mp3 sound clips, artist information
etc.).

Bernard 10/17/2003 12/13/2003

5. Creation of Website to gather User Ratings using PHP, MySQL
and HTML

Website created and tested to gather approximately 75 user
ratings and other information such as age, sex and mood for
songs in the database. Information will be gathered and stored
in multiple MySQL database tables to be used by the
recommender system

Andrew 11/15/2003 01/17/2003

6. Integration of web server and database.

Interface for modular database component will have a focus on
easy access by the web server. Extensive testing must be done
to demonstrate the correctness of data stored/retrieved to/from
the database. Modifications to the modules will be made if
necessary.

Bernard 12/14/2003 01/24/2004

 33

7. Integration of web server and application

In order to maximize the effectiveness of the system, the Web
Server must interact quickly will the application. Integration will
focus on the speed of communication between the modules.
Extensive testing must be done to demonstrate the correctness
of the data exchanged. Modifications to the modules will be
made if necessary.

Bernard 12/14/2003 01/24/2004

8. General Testing of web server / application / database
functionality:

As integration of web server, application and database
progresses, general tests of the system will be conducted to
determine boundary exceptions, broken links, correctness of
algorithm implementation, and ease of communication and
speed between modules.

Andrew 01/17/2004 02/13/2004

9. Integration and testing of application and database.

Enabling the Java code to successfully retrieve and update data
to the database. Ensure that communication between the two
components is smooth.

Cavan 01/04/2004 02/13/2004

10. Coordination of Research Schedule.

Decision on two methods of testing will be decided, numbers of
test subjects to be used, and types of measuring scales to be
used to determine accuracy and usefulness of
recommendations.

Andrew 01/30/2004 02/13/2004

11. Research, comparison and implementation of alternative
recommender algorithms.

Comparison of "active" versus "non-active" approaches to
collaborative filtering. Analyze their performances and accuracy
to real life usage.

Cavan 02/13/2004 03/05/2004

12. Oral Presentation:

Summarization of progress will be condensed into presentation
format. Visuals and aids will be considered and created to
provide an effective emphasis and attract audience. Rehearsal
of presentation and analysis of strengths and weaknesses.
Results of testing will be added in as tests are completed.

Andrew 02/13/2004 03/26/2004

13. Design Fair Poster Presentation

The poster will attempt to give an overall view of our design
project while keeping in mind the audience will mostly be
comprised of 3rd year ECE students. The results of our
research will be displayed through the use of charts and graphs.
A computer will also be available to provide a hands-on
demonstration of our system.

Bernard 02/27/2004 03/16/2004

14. Completion of group final report

Integration of the documentation of all components which make
up the design project including diagrams, figures, references.

Cavan 03/16/2004 04/08/2004

