
Evaluation form – Progress Reports V1.06 Feb. 2004

Project ID 2003252 Project Title An Interactive Recommender System
Student Name Cavan Yie Supervisor R. Zemel
Section # 6 Coordinator D. Beresford

Presentation Copy graded: � electronic � paper � comment summary in paper

Coordinators Signature:

Grade /10
(each report
worth 2.5%)

Technical
Evaluation Total Mark

Suggested
Mark Notes

Progress 10 • following game plan? (milestones accomplished;
milestones missed & why)

Organization 10

• use of human resources?
• use of non-human resources?
• efficiency of efforts?
• preparation & foresight?

Method 15

• are the modules / steps sufficiently tested when ‘done’?
• do these tests have good structure?
• have the interaction specifications of the parts been

properly developed?

Decision
making 10

• suitable response to difficulties?
• appropriate change of course when encounter obstacle or

new development?
• modification of process as necessary?

Creativity /
Complexity /

Effort
35

C/C

Effort

x

x 35

Creativity and Complexity rom charts. Scores for creativity,
complexity and effort are multiplied by maximum score /
1000 to get the grade.

TOTAL 80 (report #1 worth 7.5 & report #2 worth 12.5% of
the student’s final grade)

Supervisor � Accept suggested technical mark
� Change technical mark (reasoning attached in separate sheet, marks in blank column above)

Supervisor’s Signature:

Note to students: There is a design award, the Aloha award, that you might wish to apply for. Please
check the course website for instructions on what to do to be considered for this award.

 2

Page 2 of Progress Report Evaluation Sheet
Project ID 2003252 Project Title An Interactive Recommender System
Student Name Cavan Yie Supervisor R. Zemel
Section # 6 Coordinator/Administrator D. Beresford

Averages for this section: Presentation ______

 Technical ______

Supervisors:
Please review the progress reports for the students in your group(s). The terms are further explained
on the course website using the menu at the top of the website to get to the links on the page at
Student Information | Deliverables/Evaluation | Individual Progress Reports
[The course website is at http://courses.ece.utoronto.ca/ece496y1y/.]
In particular,

• the ‘effort’ assessment is generally .7 to 1.2, but normally close to 1.0. Follow the link to
‘Marking Terms’

• the creativity/complexity mark comes from a graph. Follow the link to ‘Mark Matrix’.
You may choose to accept the technical mark on the first page, or to change the marks. If you choose
to change the mark, please enter the changed mark in each category on the first page and write a note
of justification for the change. The student final grade will be determined after consultation.

Please do not return the reports to the students until you receive notification to do so.
Please return a copy of the first evaluation sheet to the Coordinator with a justification if necessary
within a week.

The average marks for the section are shown above. There will be differences between the marks in
each section. Marks between sections will be normalized after the final reports are marked (about
mid-April). The students are already aware of this.

Supervisors Comments

Supervisor’s Signature:

Return this evaluation sheet as
described below to
� Coordinator
� _______________

 3

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto

ECE496Y Design Project Course
Individual Progress Report

Title: An Interactive Recommender System

Project I.D.#: 2003252

Prepared by: Cavan Yie yie@ecf.utoronto.ca

Supervisor: Richard Zemel

Section #: 6

Section Administrator: D. Beresford

Date: February 23, 2004

 4

Table of Contents

1. Executive Summary... 5

2. Introduction... 6

3. Progress.. 7

3.1 Milestone & Description - Implement Active Collaborative Filtering Logic Layer 7

3.2 Milestone & Description - Integration and testing of web server, ACF logic layer, and
database... 8

3.3 Milestone & Description - Integration of ACF logic layer with MySQL database.................... 9

3.4 Milestone & Description - Testing, comparison and implementation of alternative
recommender algorithms .. 10

4. Conclusion ... 12

Glossary .. 13

Appendix A - Model-Fitting Java Module ... 14

Appendix B - Active Collaborative Filtering Logic Layer Java Module 21

Appendix C – Original Milestones Chart ... 30

Appendix D – Modified Milestones Chart.. 33

 5

1. Executive Summary

In the past few years, e-commerce has brought upon an influx of major businesses going

online. One of the key reasons for this is the promoting of online purchasing. A popular tool used

for online consumerism is the recommender system. Current recommender systems found on the

internet today at sites such as Amazon.com and Netflix.com are not sophisticated enough to generate

quality recommendations. Most recommender systems online today simply look at what the

customer has purchased in the past, and groups the user with other customers who have purchased

the same items. Clustering users in this fashion readily leads to unwanted recommendations. The

most important problem that exists in current recommender systems is the so-called “New User

Problem”. This problem arises when a new user begins using the system and receives unsatisfactory

recommendations due to the lack of information the system has about the new user.

The objective of our project is to create an interactive recommender system for music that

will accurately predict which songs a particular user will like as well as solving the “New User

Problem”. The uniqueness of this project lies in its interactive approach.

In our system, the user builds his/her own profile by interactively rating various songs in the

database in order for the system to generate better recommendations. Active Collaborative Filtering

(ACF) is used to make these recommendations. The overall system consists of three components:

Apache/Tomcat web server for online usage, back-end MySQL database, and the Java ACF

algorithm logic layer.

The majority of the project is progressing according to schedule. We are currently beginning

the research phase of the project where we compare Active Collaborative Filtering to Collaborative

Filtering. We plan to measure whether one approach works better than the other, with respect to

generating quality recommendations.

 6

2. Introduction

Improving the quality of recommendations is an important issue that needs to be addressed

for online businesses to achieve economic growth. There is no question that the recommender

systems found online today leave much to be desired. Only 7.4 percent of online shoppers who use

recommender systems purchased recommended items. Only 22 percent of customers found the

recommendations valuable, and a whopping 42 percent found no interest at all [6]. A website that

recommends unwanted items may turn the customer off and is harmful to the business-customer

relationship. Developing a system that delivers high quality recommendations is crucial for online

businesses to keep loyal customers and to expand their clientele.

 The problem with today’s recommender systems is the fact that the system does not know

enough about the customer when trying to make a prediction on what s/he may like. Simply

knowing what the user has purchased in the past does not necessarily tell you what item s/he may

want to purchase next. The process of Active Collaborative Filtering begins with “model fitting”

which consists of creating a probability model from a given set of user ratings for songs. Based on

what the system has learned from this data, it extracts the most important information out of a user

(through rating songs) to intelligently generate recommendations. Through this interaction between

system and user, the system begins to learn more about the user, and is then able to continually

generate high quality predictions with increasing accuracy.

 To reiterate, the project was decomposed into three components: Web application, Database,

and ACF back-end implementation. The web application and database were developed by Bernie

Ma and Andrew Yeung, respectively. I was responsible for the high-level implementation of the

ACF algorithm logic layer. In this report, I will describe my progress with respect to the

implementation of ACF, the integration of my component with the rest of the system, the research

aspect of the project, as well as go into what milestone’s still remain. Possible strategies to attack

remaining milestones will be discussed.

 7

3. Progress

3.1 Milestone & Description - Implement Active Collaborative Filtering Logic Layer

Includes writing code for model fitting as well as ACF algorithm, which includes an API for

interfacing with web server. Due Jan 21, 2004.

Responsibility

Cavan Yie

Status at start of reporting period

Probabilistic Rating Model code complete, however only accessed fake test data since we did not

have real user ratings in our database at the time. Some errors in the ACF algorithm needed to be

corrected. I ran into performance issues – calculations were being performed extremely slowly. It

took minutes to generate recommendations.

Status at end of reporting period

Fully functional ACF logic layer which includes model fitting module. Speed performance issues

resolved. Completed Jan 4, 2004.

Actions

Code review and tedious code analyzing was performed on both Java modules. Corrected some

logic in the ACF module - the generating of the prediction matrix was being done incorrectly. The

prediction matrix was being generated for all users in the system, rather than generated for only the

user using the system – redundant work. Changed data structures that the user profiles were being

stored in because of performance issues.

Decisions

Originally, user profiles (personal ratings) were stored as Java Hashtable’s – the key being the song

ID, and the value being the song rating. The continuous lookup of items stored in a user profile was

slowing the system down significantly. It was found that since profiles were stored in Hashtables

and looking up a key in a Hashtable is very expensive (with respect to Java processing) a new data

 8

structure was needed to store user profiles. I chose to store the profiles in integer arrays instead of

Hastables. The array index represents the song ID, and the actual ratings are stored in the array.

With the new data structures in place, the generating of recommendations and optimal queries was

reduced to seconds.

Testing & Verification of Progress

I ensured that all model-fitted data was properly stored in data files for efficient future

loading of data (so model fitting is not needed every time you start up the system). I also ensured

that all the files contained the correct number of elements based on the number of users and items

found in the database. Model fitting is an iterative process which terminates when the data

converges. I ensured that the data converged to within 1% before terminating the iterative process.

This makes our probability model extremely accurate.

Testing of the ACF algorithm was performed in isolation in batch mode before integrating it

with the web server. This was done by writing my own main program which mimics the interaction

of the web server with the code. Dummy profiles were created and optimal queries were generated

and lists of recommendations were generated based on these profiles. The correctness of the results

were verified by manually calculating the expected value of information (EVOI) for each item at

every step to make sure the calculations were being performed correctly.

3.2 Milestone & Description - Integration and testing of web server, ACF logic layer,
and database

In order to maximize the effectiveness of the system, the Web Server must interact quickly with the

application. This milestone is responsible for a smooth integration of all three components so they

work together correctly and combine to compose a fully functional system. Due Feb 13, 2004.

Responsibility

Bernie Ma

 9

Status at start of reporting period

Not Started.

Status at end of reporting period

Completed Jan 19, 2004.

Actions

I created an application programming interface (API) for Bernie’s web server in order for him to

easily access my code. Two public methods were written in the ACF logic layer for the web server

to use. The first method was getNextOptimal() which takes a user’s profile and returns the song ID

for the next optimal query item. The second method written for the web server was getTopTen(),

which takes a user’s profile and returns a linked list of song ID’s corresponding to the top ten

recommendations for the user.

Testing & Verification of Progress

Worked together with Bernie when integrating my code with his web server. Spent much time

debugging some minor problems with respect to calling my code and outputting data properly to the

GUI. The rest of the testing was the responsibility of Bernie.

3.3 Milestone & Description - Integration of ACF logic layer with MySQL database

Enabling the Java code to successfully retrieve and update data to the database. Ensure that

communication between the two components is smooth. Due Feb 13, 2004.

Responsibility

Cavan Yie

Status at start of reporting period

Not started.

Status at end of reporting period

Completed Feb 6, 2004.

 10

Actions

I implemented a JDBC (Java Database Connector) connector in order for the logic layer to access

ratings stored in the MySQL database. The model fitting module only required runtime access to the

database. I removed dummy code that originally accessed test data from a data file, and added code

to contact, authenticate, and read data from the database. Runtime access to the database is now

seamless and data retrieval is extremely fast.

Decisions

The JDBC connector required a database driver to be installed on the same system that the Java code

was running off. Since Bernie Ma already had a JDBC driver installed for his own work on the web

server prior to me starting this milestone, we knew we did not require another installation of a JDBC

driver. This made things much easier for the integration of the logic layer with the database.

Testing & Verification of Progress

The code was tested by running it in batch mode, and observing the messages that were output to the

screen. Print statements were inserted in to the code. Various messages were used to signal

successful access to the database, successful authentication, and successful retrieval of all rows in

the ratings table found in the database. If any of these steps failed, an exception was caught (see

Appendix C). This isolated many of the difficulties I had when trying to integrate my code with the

database.

3.4 Milestone & Description - Testing, comparison and implementation of alternative
recommender algorithms

Comparison of "active" versus "non-active" approaches to collaborative filtering. Analyze their

performances and accuracy to real life usage.

 11

Responsibility

Cavan Yie

Status at start of reporting period

Not started.

Status at end of reporting period

In the process of planning and strategizing the best way of conducting the experiments to compare

ACF to CF.

Actions

Collaborative filtering is essentially identical to active collaborative filtering except that the EVOI is

not calculated for each item to determine the next “optimal” query. CF does not care about

extracting the maximum amount of information out of the user. A new piece of code was written to

simulate CF. Rather than calculating the item corresponding to the maximum EVOI, the CF

approach simply returns a random item with no regard to EVOI. The point is to see whether ACF

generates better recommendations and faster as well compared to CF. This method best simulates

the non-active approach to collaborative filtering.

We have strategized a good way to compare the two methods. The experiment starts with

gathering a handful of complete user profiles where the user’s have rated all items in the database.

These ratings will be used on the ACF algorithm as well as the CF algorithm and the

recommendations for each approach will be compared against those items already in the user’s

profile to see whether the recommended items were rated favourably or not.

Most of the complete user profiles have been gathered from family and friends.

Decisions

Once we have reached a sufficient number of experimental profiles, we will be begin conducting our

experiments. We feel that 10 to 15 profiles should be adequate to make qualitative conclusions

about the benefits or non-benefits of ACF.

 12

4. Conclusion

The project is progressing smoothly and according to plan. We still need to compare ACF to CF to

see which method performs better, and whether ACF is indeed a better approach when developing

recommender systems. The oral presentation and the poster for the design fair are the other

outstanding milestone’s that are quickly approaching.

References

[1] B. Marlin. Active Collaborative Filtering with Naive Bayes. Unpublished.

 http://www.cs.toronto.edu/~marlin/research/research.shtml. 2002.

[2] Cox, B. 2003. "E-commerce News: E-commerce Industry Soaring." E-commerce-Guide Website.

 http://ecommerce.internet.com/news/news/article/0,,10375_1585731,00.html. Site accessed 24/9/03.

[3] Craig Boutilier, Richard S. Zemel, and Benjamin Marlin. Active Collaborative Filtering. In Proc. of the
19th

 Conference on Uncertainty in Artificial Intelligence. 2002.

[4] Craig Boutilier and Richard S. Zemel. Online queries for collaborative filtering. In AI-Stat, 2003.

[5] J. Ben Schafer, Joseph Konstan, John Riedl. Recommender Systems in E-Commerce. In Proc. of the
1st AC

 conference on Electronic commerce 1999.

[6] L. Guernsey. "Making Intelligence a Bit Less Artificial." The New York Times.

 http://www.cs.toronto.edu/~marlin/library/nyt_rec.pdf. Site accessed 01/8/2003.

 13

Glossary

ACF - Active Collaborative Filtering:

A type of Collaborative Filtering Algorithm that applies principled methods from decision theory to obtain
more informative user data and provide more accurate recommendations and predictions.

CF - Collaborative Filtering:

using a database about user preferences to predict additional topics or products a new user might like.

EVOI - Expected Value of Information:

It is the value associated to a query, given a rating profile that represents the expected improvement in
decision quality one obtains after asking the user to rate that particular query item.

 14

Appendix A - Model-Fitting Java Module

/*
 * Created on Nov 12, 2003
 *
 * To change the template for this generated file go to
 * Window>Preferences>Java>Code Generation>Code and Comments
 */

/**
 * @author cavan
 *
 * To change the template for this generated type comment go to
 * Window>Preferences>Java>Code Generation>Code and Comments
 */

import java.util.*;
import java.io.*;
import java.sql.*;

public class NaiveBayesModelFitting2 {

 public static final int MAX_RATING = 5;
 public static final int NUM_ATTITUDE_TYPES = 20; // use 20
 //public final int num_items = 5;
 //public final int num_users = 10;
 public static int num_users;
 public static int num_items;

 //public final String WORKING_DIR = "C:\\My Documents\\ECE496-Design
Project\\java\\";
 //public final String WORKING_DIR = "/h/42/yie/DesignProject/";
 public final String WORKING_DIR = "/h/42/mab/";

 /*double[][] gamma = new double[NUM_ATTITUDE_TYPES][num_users];
 double[] theta = new double[NUM_ATTITUDE_TYPES];
 double[][][] beta = new double[MAX_RATING][num_items][NUM_ATTITUDE_TYPES];
 int[][] knownRatings = new int[num_users][num_items];*/
 public static double[][] gamma;
 public static double[] theta;
 public static double[][][] beta;
 public static int[][] knownRatings;

 /**
 * This method accesses the MySQL DB to access known user ratings.
 * Stores data in knownRatings matrix.
 */
 private void loadKnownRatings() {
 System.out.println("Loading known ratings from database...");

 int user, item;
 Connection conn = null;

 // initialize all values to zero
 for (int i=0;i<num_users;i++) {
 for (int j=0;j<num_items;j++) {

 15

 knownRatings[i][j] = 0;
 }
 }

 /* Connect to database */
 try {

 String userName = "root";
 String password = "andrew";
 //String url = "jdbc:mysql://mysql/bin/mysql";
 String url = "jdbc:mysql://localhost:3306/musicratings";
 //Class.forName ("com.mysql.jdbc.Driver").newInstance ();
 Class.forName ("org.gjt.mm.mysql.Driver").newInstance ();
 conn = DriverManager.getConnection (url, userName, password);
 System.out.println ("Database connection established");
 }
 catch (Exception e) {

 System.err.println ("Cannot connect to database server");

 }

 /* Load data */
 try {
 Statement s = conn.createStatement ();
 s.executeQuery ("SELECT * FROM ratings");

 ResultSet rs = s.getResultSet ();
 int userCount = 0;
 int rating;

 while (rs.next ()) {

 for (int i=1;i<=num_items;i++) {

 if (rs.getString(i+1).equals("N/A")) {

 knownRatings[userCount][i-1] = 0;
 }
 else {
 knownRatings[userCount][i-1] =
rs.getInt(i+1);
 }
 System.out.println("knownRatings
userCount="+userCount+" itemNum="+i+" =" + knownRatings[userCount][i-1]);
 }

 ++userCount;
 }
 rs.close ();
 s.close ();
 System.out.println (userCount + " rows were retrieved and
loaded");
 }
 catch (Exception e) {
 System.err.println ("Could not load ratings from database");
 }

 /* Close connection to database */
 try {

 16

 conn.close ();
 System.out.println ("Database connection terminated");
 }
 catch (Exception e) { /* ignore close errors */ }

 /*for (int i=0;i<num_users;i++) {
 for (int j=0;j<num_items;j++) {
 System.out.println(knownRatings[i][j]);
 }
 }*/
 }

 /* Takes the table of ratings and performs model fitting */
 private void generateBetaTheta() {

 initializeBetaTheta();

 /*for (int i=0;i<NUM_ATTITUDE_TYPES;i++) {
 System.out.println(theta[i]);
 }
 System.out.println("\n");

 for (int i=0;i<num_items;i++) {
 for (int j=0;j<MAX_RATING;j++) {

 System.out.println(beta[j][i][4]);
 }

 }*/

 /* model fit - use 20 iterations for now */
 for (int i=1;i<=40;i++) {
 System.out.println("iteration: " + i);
 // E-Step
 for (int z=0;z<NUM_ATTITUDE_TYPES;z++) {

 for (int u=0;u<num_users;u++) {

 gamma[z][u] = (theta[z] *
gammaNumerator(u,z))/gammaDenominator(u,z);
 //System.out.println("z="+z+" u="+u+"->
"+gamma[z][u]+"\t");
 }
 }

 // M-Step
 for (int z=0;z<NUM_ATTITUDE_TYPES;z++) {

 theta[z] = thetaNumerator(z)/thetaDenominator(z);
 //System.out.println("z="+z+"-> "+theta[z]+"\t");
 }

 for(int v=0;v<MAX_RATING;v++) {

 for (int y=0;y<num_items;y++) {

 for (int z=0;z<NUM_ATTITUDE_TYPES;z++) {

 17

 beta[v][y][z] =
betaNumerator(v,y,z)/betaDenominator(y,z);
 //System.out.println("v="+v+" y="+y+"
z="+z+"-> "+beta[v][y][z]+"\t");
 }
 }
 }

 }
 }

 private double gammaNumerator(int u, int z) {

 //double result=theta[z];
 double result=1;

 for (int y=0;y<num_items;y++) {

 for (int v=0;v<MAX_RATING;v++) {

 if (knownRatings[u][y] == v) {

 result = result * beta[v][y][z];
 }
 }
 }
 return result;

 }

 private double gammaDenominator(int u, int z) {

 double result=0;

 for (int aType=0;aType<NUM_ATTITUDE_TYPES;aType++) {

 result += theta[aType] * gammaNumerator(u,aType);

 }
 return result;
 }

 private double thetaNumerator(int z) {

 double result=0;

 for (int u=0;u<num_users;u++) {

 result += gamma[z][u];
 }
 return result;
 }

 private double thetaDenominator(int z) {

 double result=0;

 for (int aType=0;aType<NUM_ATTITUDE_TYPES;aType++) {

 18

 result += thetaNumerator(aType);
 }
 return result;
 }

 private double betaNumerator(int v, int y, int z) {

 double result=0;

 for (int u=0;u<num_users;u++) {

 if (knownRatings[u][y] == v) {

 result += gamma[z][u];
 }
 }
 return result + 1;
 }

 private double betaDenominator(int y, int z) {

 double result = 0;

 for (int rating=0;rating<MAX_RATING;rating++) {

 result += betaNumerator(rating,y,z);
 }
 /*if (result != 0)
 return result;
 else
 return 1;
 */
 return result + MAX_RATING;
 }

 /* This method initializes beta and theta with random values */
 private void initializeBetaTheta() {

 Random generator = new Random();
 double r;

 /* Initialize THETA with random values */
 double total=0;
 for (int i=0;i<theta.length;i++) {
 r = generator.nextDouble();
 theta[i] = r;
 total += r;
 }
 /* normalize THETA so values sum to 1 */
 for (int j=0;j<theta.length;j++) {
 theta[j] = theta[j]/total;
 }

 /* Initialize BETA with random values */
 total=0;
 for (int z=0;z<NUM_ATTITUDE_TYPES;z++) {

 for (int y=0;y<num_items;y++) {

 19

 for (int v=0;v<MAX_RATING;v++) {

 r = generator.nextDouble();
 beta[v][y][z] = r;
 total += r;
 }
 /* normalize the vector so its sum is 1 */
 for (int n=0;n<MAX_RATING;n++) {

 beta[n][y][z] = beta[n][y][z]/total;
 }
 total=0;
 }

 }
 System.out.println("Done initializing beta and theta...");

 }

 /* Saves calculated Theta (attitude type distribution) and
 Beta (rating distribution for items given an attitude type) matrices
 to local disk for future use.
 */
 private void storeThetaAndBeta() throws IOException {

 File thetaFile = new File(WORKING_DIR + "theta.txt");

 if (!thetaFile.exists()) {

 thetaFile.createNewFile();
 }

 BufferedWriter theta_out = new BufferedWriter(new
FileWriter(thetaFile));

 for (int i=0;i<theta.length;i++) {

 theta_out.write(""+theta[i]+"\n");
 }

 theta_out.close();

 System.out.println("Created updated theta.txt...");

 File betaFile = new File(WORKING_DIR + "beta.txt");

 if (!betaFile.exists()) {

 betaFile.createNewFile();
 }

 BufferedWriter beta_out = new BufferedWriter(new
FileWriter(betaFile));

 for (int z=0;z<NUM_ATTITUDE_TYPES;z++) {

 for (int y=0;y<num_items;y++) {

 20

 for (int v=0;v<MAX_RATING;v++) {

 beta_out.write(""+beta[v][y][z]+"\n");
 }
 }

 }
 beta_out.close();
 System.out.println("Created updated beta.txt...");

 }

 /* This program generates a Naive Bayes' probability model
 based on a set of user ratings on specific items
 (e.g. movies, songs, etc). Stores data into data files
 on the local disk.
 */
 public static void main(String[] args) {

 if (args.length != 2) {
 System.out.println("Usage: java NaiveBayesModelFitting <#
users> <# items>");
 return;
 }
 else {
 num_users = Integer.parseInt(args[0]);
 num_items = Integer.parseInt(args[1]);
 }

 gamma = new double[NUM_ATTITUDE_TYPES][num_users];
 theta = new double[NUM_ATTITUDE_TYPES];
 beta = new double[MAX_RATING][num_items][NUM_ATTITUDE_TYPES];
 knownRatings = new int[num_users][num_items];

 NaiveBayesModelFitting2 n = new NaiveBayesModelFitting2();

 /* Load known ratings */
 try {
 n.loadKnownRatings();
 }
 catch (Exception e) {
 return;
 }

 /* Model Fitting */
 n.generateBetaTheta();

 /* Store beta & theta probability distribution to disk */
 try {
 n.storeThetaAndBeta();
 }
 catch (IOException e) {}

 }
}

 21

Appendix B - Active Collaborative Filtering Logic Layer Java Module

import java.util.*;
import java.io.*;
import java.lang.Integer;

public class ACF {

 public static final int MAX_RATING = 5;
 public static final int NUM_ATTITUDE_TYPES = 20; // use 20

 //public static final String WORKING_DIR = "C:\\My Documents\\ECE496-
Design Project\\java\\";
 //public static final String WORKING_DIR = "/h/42/mab/jakarta-tomcat-
5.0.16/webapps/ACF/WEB-INF/classes";
 //public static final String WORKING_DIR = "/h/42/yie/DesignProject/";
 public static final String WORKING_DIR = "/h/42/mab/";

 public static int num_users = 63; //63
 public static int num_items = 126; //126

 public static double[] theta;
 public static double[][][] beta;

 public static double[][] predictionVector;
 public static double[][] predictionVectorTemp;

 public static int[][] knownRatings;

 /**
 * Generates the prediction matrix from our beta and theta
 * probability distributions.
 */
 public static double[][] generatePredictionVector(int[] profile) {

 double[][] pVector = new double[num_items][MAX_RATING];

 double entry=0;
 double[] theta_prime = new double[NUM_ATTITUDE_TYPES];

 /*for (int i=1;i<127;i++) {
 if (profile[i] != 0) {
 System.out.println("item "+i+" is: " +profile[i]);
 }
 }*/

 /* Calculate theta prime */
 for (int i=0;i<NUM_ATTITUDE_TYPES;i++) {

 //theta_prime[i] = theta[i] *
(getNumerator(profile,i)/getDenominator(profile));
 theta_prime[i] = theta[i] * getNumerator(profile,i);

 }

 22

 /*for (int i=0;i<20;i++){
 System.out.println("theta_prime["+i+"]="+theta_prime[i]);
 }*/

 for (int y=0;y<num_items;y++) {

 for (int v=0;v<MAX_RATING;v++) {

 for (int i=0;i<NUM_ATTITUDE_TYPES;i++) {

 entry += beta[v][y][i] * theta_prime[i];
 }

 pVector[y][v] = entry;
 //System.out.println("pVector: y="+y+" v="+v+"->
"+pVector[y][v]+"\t");
 entry=0;
 }
 }

 return pVector;
 }

 private static double getNumerator(int[] p, int z) {

 double result=1;

 for (int y=0;y<num_items;y++) {

 for (int v=0;v<MAX_RATING;v++) {

 if (p[y+1] == v+1) {
 result = result * beta[v][y][z];

 //System.out.println("beta["+v+"]["+y+"]["+z+"]="+beta[v][y][z]);

 }

 }
 }

 //System.out.println("getNumerator for z="+z+ " is: " + result);
 return result;
 }

 private static double getDenominator(int[] p) {

 double result=0;

 for (int i=0;i<NUM_ATTITUDE_TYPES;i++) {

 result += theta[i] * getNumerator(p,i);
 }

 if (result != 0) {
 //System.out.println("getDenom: " + result);
 return result;
 }
 else {

 23

 //System.out.println("getDenom:1");
 return 1;
 }
 }

 /* Returns the item number of the next optimal
 query. This method assumes the profile index corresponds
 to the item number. Index zero does not contain any info.
 BERNIE MUST DECLARE THE SIZE TO BE "num_items + 1"
 */
 public static int nextOptimal(int[] profile) {

 int returnItem = 0;

 double voi_orig;
 double evoi = 0;
 double evoi_max = 0;

 int[] profileCopy = new int[num_items+1];

 /* Find VOI for given profile (i.e. V(pi)) */
 //voi_orig = getVOI(profile);

 predictionVector = generatePredictionVector(profile);

 /*for (int i=1;i<127;i++) {
 System.out.println("profile: i=" + i + " -> " + profile[i]);
 }*/

 /*for (int i=0;i<num_items;i++) {

 for (int v=0;v<MAX_RATING;v++) {
 System.out.println("predictionVector: item="+i+"
rating="+v+" -> "+predictionVector[i][v]);
 }
 }*/

 /* Find item corresponding to maximum EVOI */
 double aug_voi = 0;
 for (int item=1;item<(num_items+1);item++) {

 if (profile[item] == 0) { // if profile rating contains a
zero, it means item was not rated.

 /* copy contents of profile into auxilary array */
 for (int i=1;i<(num_items+1);i++) {

 profileCopy[i] = profile[i];
 }

 for (int rating=0;rating<MAX_RATING;rating++) {

 aug_voi = getAugVOI(profileCopy, item, rating);
 //System.out.println("aug_voi = " + aug_voi);
 evoi += predictionVector[item-1][rating] *
aug_voi;
 //System.out.println("evoi = " + evoi);
 }
 //evoi = evoi - voi_orig;

 24

 System.out.println("Item#"+item+" EvOI=" + evoi);

 if (evoi > evoi_max) {
 evoi_max = evoi;
 returnItem = item;
 }

 evoi=0;
 }
 //System.out.println(profile[item]);

 }
 System.out.println("nextOptimal returned: " + returnItem);
 return returnItem;

 }

 /* This method finds the VOI for an augmented profile (i.e. V(pi_n+1)) */
 private static double getAugVOI(int[] profile, int item, int rating) {

 //Hashtable h_temp = profile;
 int[] profile_aug = new int[num_items+1];
 double voi_augmented = 0;
 double voi_temp;
 double[][] pv = new double[num_items][MAX_RATING];

 profile_aug = profile;

 /* Augment profile */
 profile_aug[item] = rating+1;

 /* Generate new prediction vector for augmented profile */
 pv = generatePredictionVector(profile_aug);

 /* Get VOI for this augmented profile */
 voi_augmented = getVOI(profile_aug,pv);

 return voi_augmented;

 }

 /* This method returns the value of information contained
 in a rating profile.
 */
 private static double getVOI(int[] profile, double[][] pv) {

 double maxValue = 0;
 double voi = 0;
 for (int item=0;item<num_items;item++) {

 if (profile[item+1] == 0) {

 for (int rating=0;rating<MAX_RATING;rating++) {

 voi += (rating+1) * pv[item][rating];
 }

 if (voi > maxValue) {
 maxValue = voi;
 }

 25

 }
 voi = 0;
 }

 return maxValue;
 }

 /*
 * Returns list of recommendations. *** NOTE: Using an array instead of
LL could improve performance
 */
 public static LinkedList topTen(int[] profile) {

 LinkedList recList = new LinkedList();
 Integer itemNum = null;
 double[][] pv = new double[num_items][MAX_RATING];

 pv = generatePredictionVector(profile);

 for (int i=0;i<10;i++) {

 //itemNum = new Integer(getRecommendedItem(profile, pv,
recList));
 itemNum = new Integer(getRecommendedItem(profile, pv,
recList));
 recList.add(itemNum);
 System.out.println("topTen item: " + itemNum);
 }

 return recList;
 }

 /**
 * Returns item number with highest VOI that has not been
 * chosen for recommendation.
 */
 private static int getRecommendedItem(int[] profile, double[][] pv,
LinkedList list) {

 int returnItem = 0;
 double maxValue = 0;
 double voi = 0;

 for (int item=0;item<num_items;item++) {

 if (profile[item+1] == 0) {

 if (!list.contains(new Integer(item+1))) { // item
can't be in profile either! fix this.

 for (int rating=0;rating<MAX_RATING;rating++) {

 voi += (rating+1) * pv[item][rating];
 }

 if (voi > maxValue) {
 maxValue = voi;
 returnItem = item+1;
 }

 26

 }
 }
 voi = 0;
 }

 return returnItem;

 }

 /* This method loads theta from a data file already stored on disk */
 private static void loadTheta() throws IOException, FileNotFoundException
{

 BufferedReader br = new BufferedReader(new FileReader(WORKING_DIR +
"theta.txt"));
 String thisLine = null;
 int i=0;
 while ((thisLine = br.readLine()) != null) {

 theta[i] = Double.parseDouble(thisLine);
 //+
 //System.out.println("theta: " + theta[i]);
 i++;
 }
 br.close();
 System.out.println("Theta.txt successfully loaded.");

 }

 /* This method loads beta from a data file already stored on disk */
 private static void loadBeta() throws IOException, FileNotFoundException {

 BufferedReader br = new BufferedReader(new FileReader(WORKING_DIR +
"beta.txt"));
 String thisLine = null;

 for (int z=0;z<NUM_ATTITUDE_TYPES;z++) {

 for (int y=0;y<num_items;y++) {

 for (int v=0;v<MAX_RATING;v++) {

 beta[v][y][z] = Double.parseDouble(br.readLine());
 //System.out.println("beta: v="+v+" y="+y+"
z="+z+"-> "+beta[v][y][z]);
 }
 }
 }
 br.close();
 System.out.println("Beta.txt successfully loaded.");

 }

 public static void init() {

 System.out.println("num_items: " + num_items);

 27

 System.out.println("num_users: " + num_users);

 predictionVector = new double[num_items][MAX_RATING];
 predictionVectorTemp = new double[num_items][MAX_RATING];

 theta = new double[NUM_ATTITUDE_TYPES];
 beta = new double[MAX_RATING][num_items][NUM_ATTITUDE_TYPES];
 knownRatings = new int[num_users][num_items];

 try {

 loadTheta();
 loadBeta();
 }
 catch (FileNotFoundException f) {

 System.out.println("Ensure that the probability model fitting
has been performed before running this application.");

 }
 catch (IOException e) {

 System.err.println("Error: " + e);
 }

 }

 /* Main program */
 public static void main(String[] args) {

 if (args.length != 2) {
 System.out.println("Usage: java ActiveCollaborativeFiltering
<# users> <# items>");
 return;
 }
 else {
 num_users = Integer.parseInt(args[0]);
 num_items = Integer.parseInt(args[1]);
 }

 predictionVector = new double[num_items][MAX_RATING];
 predictionVectorTemp = new double[num_items][MAX_RATING];

 theta = new double[NUM_ATTITUDE_TYPES];
 beta = new double[MAX_RATING][num_items][NUM_ATTITUDE_TYPES];
 knownRatings = new int[num_users][num_items];

 //ActiveCollaborativeFiltering3 acf = new
ActiveCollaborativeFiltering3();
 ACF acf = new ACF();

 // Load stored beta & theta from data files
 try {

 loadTheta();
 loadBeta();
 }
 catch (FileNotFoundException f) {

 28

 System.out.println("Ensure that the probability model fitting
has been performed before running this application.");
 return;

 }
 catch (IOException e) {

 System.err.println("Error: " + e);
 return;
 }

 int newItem;

 int[] p = new int[num_items+1];
 p[15] = 2;
 p[39] = 3;
 p[45] = 5;
 p[61] = 5;
 p[86] = 5;

 for (int i=1;i<127;i++) {
 if (p[i] != 0) {
 System.out.println("item "+i+" is: " +p[i]);
 }
 }

 // Generate Prediction Matrix
 System.out.println("Generating prediction matrix from main()...");

 predictionVector = acf.generatePredictionVector(p);

 System.out.println("Successfully generated prediction matrix from
main()");

 //newItem = acf.nextOptimal(p);
 //System.out.println("\nNext Optimal is: " + newItem);

 //LinkedList list = null;

 //list = topTen(p);

 /*for (int i=0;i<10;i++) {
 System.out.println("#"+(i+1)+"-> item
"+((Integer)(list.get(i))).intValue());
 }*/

 }

 /*
 //Bernie's Main
 public static void main(String[] args) {

 init();
 int[] sendRatings = new int[127];

 int Optimal;
 Integer temp1;
 int temp2;

 29

 LinkedList list;

 for(int i=1 ; i<127 ; i++)
 {
 sendRatings[i] = 0;
 //System.out.println(returnRatings[i]);
 }

 LinkedList info = new LinkedList();
 list = topTen(sendRatings);

 Optimal = nextOptimal(sendRatings);

 System.out.println("TopTen:");
 for(int i=0; i<10 ; i++)
 {
 temp1 = (Integer)list.get(i);
 temp2 = temp1.intValue();
 System.out.println(temp2);
 }
 System.out.println("nextOptimal:");

 System.out.println(Optimal);

 }
 */

}

 30

Appendix C – Original Milestones Chart

 Description Assigned To Start Date End Date
1. Clear definition of project

objectives, methodologies
and software and hardware
components that will be
used:

Collection and research of
resources and papers that will
be used for project. Obtain
computer resources from
Professor Zemel and obtain
access priviledges to Artificial
Intelligence labs.

Andrew

09/01/2003

10/17/2003

2. Implement Active
Collaborative Filtering
Methodology in Java.

The back-end of the system will
be coded in Java. This includes
the calculations of EVOI for
queries, model fitting for the
probability model, and
computing rating predictions.
Its main purpose is to return a
set of recommendations to a
user given a database of user
ratings.

Cavan

10/17/2003

11/21/2003

3. Database Implementation
in MySQL:

MySQL database will be
created to store music
information. Decisions on the
music information to be
displayed, types and categories
of music to be used(10 genres),
and music sample format (mp3)
and size (~100 songs) will be
made based on research of
related sites and considerations
such as transfer speed.

Andrew

10/17/2003

11/07/2003

4. Webserver / GUI Setup
using Jakarta Tomcat, Java
Server Pages, Apache
Server.

A user friendly and
informative interface will be

Bernard

10/17/2003

11/14/2003

 31

designed and implemented.
The GUI will provide
features such as information
about the music to be rated
(mp3 sound clips, artist
information etc.).

5. XML structure definition

for music, users and
ratings:

A Document Type Definition
structure will be created for use
in the transfer of music
information between the web
server, application and database
modules, and ultimately to the
user. This step requires an
understanding and coordination
with the three main modules to
ensure optimal compatibility.

Andrew

10/31/2003

11/17/2003

6. Integration of web server
and database:

Interface for modular
database component will
have a focus on easy and fast
access with webserver.
Testing of speed of data
retrieval will be looked at
and optimizations and
modifications to both
components will be
considered if necessary.

Andrew

11/14/2003

12/19/2003

7. Integration of web server
and application.

In order to maximize the
effectiveness of the system, the
Web Server must interact
quickly will the application.
The speed of use will be tested,
and modifications to both
components will be made if
necessary. .

Bernard

11/21/2003

12/19/2003

8. Integration of application
and database.

Enabling the Java code to
successfully retrieve and update
data to the database. Ensure

Cavan

01/04/2004

01/25/2004

 32

that communication between
the two components is smooth.

9. Testing, comparison and
implementation of
alternative recommender
algorithms.

Comparison of "active" versus
"non-active" approaches to
collaborative filtering. Analyze
their performances and
accuracy to real life usage.

Cavan

01/26/2004

02/12/2004

10. Oral Presentation

Summarization of progress
will be condensed into
presentation format. Visuals
and aids will be considered
and created to provide an
effective emphasis and
attract audience. Rehearsal
of presentation and analysis
of strengths and weaknesses.
Results of testing will be
added in as tests are
completed.

Andrew

02/13/2004

02/27/2004

11. Design Fair Poster
Presentation

The poster will attempt to give
an overall view of our design
project while keeping in mind
the audience will mostly be
comprised of 3rd year ECE
students. The results of our
research will be displayed
through the use of charts and
graphs. A computer will also
be available to provide a hands
on demonstration of our system.

Bernard

02/27/2004

03/16/2004

12. Completion of group final
report

Intregration of the
documentation of all
components which make up the
design project including
diagrams, figures, references.

Cavan

03/16/2004

08/04/2004

 33

Appendix D – Modified Milestones Chart

 Description Assigned To Start Date End Date
1. Clear definition of project

objectives, methodologies
and software and hardware
components that will be
used:

Collection and research of
resources and papers that will
be used for project. Obtain
computer resources from
Professor Zemel and obtain
access priviledges to Artificial
Intelligence labs.

Andrew

09/01/2003

10/17/2003

2. Implement Active
Collaborative Filtering
Methodology in Java.

The back-end of the system will
be coded in Java. This includes
the calculations of EVOI for
queries, model fitting for the
probability model, and
computing rating predictions.
Its main purpose is to return a
set of recommendations to a
user given a database of user
ratings.

Cavan

10/17/2003

01/21/2004

3. Database Implementation
in MySQL:

MySQL database will be
created to store music
information. Decisions on the
music information to be
displayed, types and categories
of music to be used(10 genres),
and music sample format (mp3)
and size (~100 songs) will be
made based on research of
related sites and considerations
such as transfer speed.

Andrew

10/17/2003

11/07/2003

4. Webserver / GUI Setup
using Jakarta Tomcat, Java
Server Pages, Apache
Server.

Bernard

10/17/2003

12/13/2003

 34

A user friendly and
informative interface will be
designed and implemented.
The GUI will provide
features such as information
about the music to be rated
(mp3 sound clips, artist
information etc.).

5. Creation of Website to

gather User Ratings using
PHP, MySQL and HTML

Website created and tested to
gather appromixately 75 user
ratings and other information
such as age, sex and mood for
songs in the database.
Information will be gathered
and stored in multiple MySQL
database tables to be used by
the recommender system.

Andrew

11/15/2003

01/17/2004

6. Integration and testing of
web server and application
and database.

In order to maximize the
effectiveness of the system,
the Web Server must interact
quickly with the application.
Interface for modular
database component will
have a focus on easy and fast
access with webserver. .

Bernard

12/14/2003

01/24/2004

7. General Testing of web
server / application /
database functionality:

As integration of web server,
application and database
progresses, general tests of the
system will be conducted to
determine boundary exceptions,
broken links, correctness of
algorithm implementation, and
ease of communication and
speed between modules.

Andrew

1/17/2003

02/13/2003

8. Integration and testing of
application and database.

Enabling the Java code to

Cavan

01/04/2004

02/13/2004

 35

successfully retrieve and update
data to the database. Ensure
that communication between
the two components is smooth.

9. Coordination of Research
Schedule.

Decision on two methods of
testing will be decided,
numbers of test subjects to be
used, and types of measuring
scales to be used to determine
accuracy and usefulness of
recommendations.

Andrew

01/30/2004

02/13/2004

10. Testing, comparison and
implementation of
alternative recommender
algorithms.

Comparison of "active" versus
"non-active" approaches to
collaborative filtering. Analyze
their performances and
accuracy to real life usage.

Cavan

02/13/2004

05/03/2004

11. Oral Presentation

Summarization of progress
will be condensed into
presentation format. Visuals
and aids will be considered
and created to provide an
effective emphasis and
attract audience. Rehearsal
of presentation and analysis
of strengths and weaknesses.
Results of testing will be
added in as tests are
completed.

Andrew

02/13/2004

03/26/2004

12. Design Fair Poster
Presentation

The poster will attempt to give
an overall view of our design
project while keeping in mind
the audience will mostly be
comprised of 3rd year ECE
students. The results of our
research will be displayed
through the use of charts and
graphs. A computer will also
be available to provide a hands

Bernard

02/27/2004

03/16/2004

 36

on demonstration of our system.
13. Completion of group final

report
Intregration of the
documentation of all
components which make up the
design project including
diagrams, figures, references.

Cavan

03/16/2004

04/08/2004

