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Abstract

A network model of disparity estimation was developed based on disparity-selective neurons, such as those found in
the early stages of processing in the visual cortex. The model accurately estimated multiple disparities in regions,
which may be caused by transparency or occlusion. The selective integration of reliable local estimates enabled the
network to generate accurate disparity estimates on normal and transparent random-dot stereograms. The model was
consistent with human psychophysical results on the effects of spatial-frequency filtering on disparity sensitivity.

The responses of neurons in macaque area V2 to random-dot stereograms are consistent with the prediction of the
model that a subset of neurons responsible for disparity selection should be sensitive to disparity gradients.

Keywords: Binocular disparity, Stereopsis, Disparity gradient, Selection, Macaque area V2

Introduction This paper presents a model of disparity estimation based on a

A wide variety of computational models have been proposed tOmodular neural network architecture known amiature-of-experts

. g . o S architecture (Jacobs et al., 1991), in which a selection pathway
explain how binocular disparity is computed from left-right image . o . .
. ) S . . - °~ gates the output of local disparity information from small adjacent
pairs (Blake & Wilson, 1991; Weinshall & Malik, 1995). Disparity . . . . .
DU - . . ; " regions of space. This model is motivated by the observation that
estimation is made difficult by the inconsistency of local disparity

. : . - local correlation measures are insufficient because they convey no
information, which may be sparse and noisy. Hence, there are twQ . o . ) .
information about the reliability of a particular disparity measure-

conflicting demar_lds when estimating disparity in an image region: ent. By contrast, our model uses a sepasatectiormechanism
thribr::rend(;[fons(;ptag\z;\g?/aa;/neraogvee:o digsectoiznatlj(i:t?s;at;eessetg?:r:ei,na::n:-g determine which locations of the visual input have consistent
puter vision has ofter?fo?:used on a two-sta é rocess 1o soIvindisDarity information. This is especially important in viewing sit-
Fhis roblem: (1) find exact corres ondencge th)atween matchin gations in which disparity estimation is not straightforward, such
ointh) in the -two images, and (2) copm ute the disparity based o8S when multiple objects are present in the image, and particularly
Fhe atterns of corres? or;dences P panty 't one object occludes another. Reliability estimates may also be
P P _ _— useful when dealing with stimuli with high background noise,
der:Zei‘t?Zdari dap;%c;z%f:jezntg EZ?r;IIZti:rﬁ?aeslefclin?r:g%e?:)rr?ts I?;r;@sqorly defined edges, or transparent surfaces. In this paper, we
-g. edge-b : : . .’ assess the importance of such an approach by generating several
sumed that the goal is to provide an accurate disparity estimate for o . "
sets of stimuli in which one or several of these conditions occur.

everyregion of the image. These approaches typically do not ems ) vy :
phasize thereliability of the disparity estimate, which may be We compared the results for the mixture-of-experts model against

. - . . . two more standard approaches, and found that the mixture-of-
reduced in conditions where there is substantial occlusion, trans- .

. : experts model outperformed these alternatives on all the data sets
parency, or noise. Also, many of these computational methods A ted
iterative (e.g. Marr & Poggio, 1976, 1979; Yuille et al., 1991) i

. . The paper is organized as follows. First, the mixture-of-experts
which may be a drawback for a system attempting to respond . ; . . .
. . ; model is described in detail, along with the two more standard
dynamically to the world in real time.

approaches. A procedure for obtaining disparity estimates from our
model is outlined, and a detailed specification of the data sets used
to optimize and test the model is also provided. Second, the results
Correspondence and reprint requests to: Michael S. Gray, Howard Hughe%f the different models on a variety of data sets are reported. Third,

Medical Institute, Computational Neurobiology Laboratory, The Salk In- & more detailed analysis of the response properties of the mixture-
stitute, P.O. Box 85800, San Diego, CA 92186-5800, USA. of-experts model is reported in Analysis of Model Phenomena.
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Finally, the results are discussed in the context of related work in  Desired Output Space Output Actual Output
t is.
stereopsis o] 5 o]
O] /18 [
Model descriptions and methods Q ‘7 2 O]
ol & 0]

Mixture-of-experts model

“Local /37~ >
The goal of the current model is to estimate the disparities present Disparity/ , /%\\\\ Sso Selection
in asm_all patcf‘_of the imagg. Itis assume_d that proce_ssing related g 774 = \\ ,: SO
to spatial localizationof objects occurs in other regions of the 3 i < _fo
visual cortex. In other words, the model trades off spatial accuracy ol td N =)
[0
-

to obtain disparity accuracy.

The model of stereopsis used here is based on a filter model for >
motion detection in area MT (Nowlan & Sejnowski, 1994, 1995). NS / Competition
The motion model was adapted to stereopsis by changing the time N Low SF
domain of the motion model to the Ig¢fight image domain for ! I
stereopsis. The stereo model consisted of several stages, and com- Disparity
puted its output using only feedforward processing. The model hagnergy Filters ! ! Medium SF
a mixture-of-experts architecture (Jacobs et al., 1991). This is a
system of separate networks (expert nets) that specialize in differ- H | High SF
ent input patterns. A separate gating network learns which expert '
is best for the different kinds of input patterns. In the first stage of / \
the model, the input was convolved with a set of disparity energy L | L . L
filters. The output of the filters then became the input to two Left Eye Retina Right Eye Retina
different secondary pathways: (1) the local disparity (expert) net-_ o o
works, and (2) the selection (gating) networks. The output of thd19- 1. Schematic d_lagra_m of the_stere_o model. Patterns of activation on the

. - retina were combined in the disparity energy units at several different
model was a disparity value that was the product of the outputs of

h d h . K o spatial frequencies and phases. The output of the disparity energy units
the two secondary pathways. Because it was not knavpmiori were the input to both the local disparity pathway and the selection path-

what kinds of disparity signals would be valuable for both dispar-yay The outputs of the two pathways were combined multiplicatively to
ity estimation and segmentation, an optimization algorithm wasgenerate estimates of disparity across space (Space Output). By summing
used to find the best parameter values for the model. A schematigcross space for each of the four disparity values in the output, the actual
diagram of the model is shown in Fig. 1. The four important partsoutput of the model was obtained. For the local disparity, selection, and
of the model will be described in detail: the retinal layer and output parts of the model, the vertical axis represented disparity and the
disparity energy filters, the local disparity networks, the selectionhorizontal axis was space.

networks, and the output layer.

uonnadwo)

Retina and disparity energy filters

The retinal layer in the model consisted of two one-dimensional 1 N
arrays 82 pixels in length for the right eye and left eye images.  9(X,¢) = NP EEr eXp<—F>Sin(27waX+ ¢ (1)

. . . . . e T Oy Ox

One-dimensional retinas were used for computational simplicity.
The model would generate similar results for two-dimensional
images because the spatial enhancement mechanism of the selediereo, was the size of the Gaussian window, andwas the
tion networks (described in Selection networks) generalizes difilter center frequency. A simple cell pair (differing in phase by
rectly to two-dimensional image representations (as shown 90 deg) is shown in the upper panels of Fig. 2. The right panel of
Nowlan & Sejnowski, 1994, 1995). The one-dimensional imageshis figure shows schematically how simple cell output is com-
were the inputs to disparity energy filters (Ohzawa et al., 1990pined at the complex cell. These disparity filters were implemented
1996, 1997), which generalized the motion energy filters first pro-in the same manner as Ohzawa et al. (1990). The output of a simple
posed by Adelson and Bergen (1985). Although phase-based disell (at a given phase and spatial frequency) was computed by
parity filters were chosen for preprocessing the input, similar outputonvolving the right eye image with the right filter, the left eye
from the model would also be expected using filters based onmage with the left eye filter, and then adding them. Simple cell
shifted receptive fields (Fleet et al., 1996; Zhu & Qian, 1996). output was then half-wave rectified (truncated and squared). Two

At the energy filter layer, there were 51 receptive-field loca- of the four simple cell pairs were in phase, while the other two
tions which received input from overlapping regions of the retina.were in quadrature phase. The three spatial frequencies were each
At each of these receptive-field locations, there were 30 complexseparated by an octave: 0.25, 0.125, and 0.0625 ciailes (c/p).
cells (three spatial frequencies 10 phase differences), and each The 10 phase differences were equally spaced over a range be-
complex cell received input from four simple cells (two in phase,tween 0 andr/2. The output of the energy filters in response to a
two quadrature) that were linearly combined. The two in-phasesample stimulus is shown in Fig. 3. The outputs of these complex
simple cells, as well as the two quadrature simple cells differectells (or disparity energy filters) should be considered the true
from each other by 180 deg. Each of these simple cells receivethput to the network.
input from a pair of subunits that can be described mathematically The Gaussian windows of the filters in the model were in-
as Gabor functions (Gabor, 1946; Daugman, 1985) differing by aversely proportional to the spatial frequency. The variances of the
phase parametes: windows were 1.0 for 0.25/p, 4.0 for 0.125 ¢p, and 16.0 for
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wherej indexed the 10 complex cells with different phase shifts at
a single spatial location within a single spatial-frequency band,
E;(x) was the initial output of the complex cell, aigl(x) was the
normalized output. This normalization occurred at each spatial
location within each frequency band. Activity in other parts of the

Complex Cell i i - )
/\ ~ model was also normalized with this soft-max computation.
O O O O Local disparity networks
In the local disparity pathway, there were eight receptive-field
Simple Cells locations, and each received a weighted input from the 30 complex

cells at each of nine disparity energy locations in the preceding
Fig. 2. The upper panels show the left and right eye filters for a binocularjayer (270 inputs total). Input to each of these eight receptive-field
simple cell. These filters differed in pha_se by 90 deg. The lower panelgcations overlapped by three locations in the disparity energy
shows how simple cell output was combined into a complex cell layer. Weights were shared across all receptive-field locations for

each disparity. Each receptive-field location at the local disparity

layer contained a pool of four disparity-tuned units, and functioned
0.0625 ¢p. Because there is evidence that cortical cells respond tas a single network. These four disparity-tuned units each received
relative contrast in a scene, rather than absolute contrast (Bond270 inputs from the disparity energy layer. Each receptive-field
1991), the outputs of the disparity energy units were normalizedocation was intended to provide strong support for only one dis-
using a soft-max nonlinearity (Bridle, 1989): parity. This constraint was enforced as the result of competition

Dhzawa, Defngelis, & Freeman (19907
Disparity Energy Filters

Low SF
0,43 0,00
Hed SF
0,38 0,00
High SF
0,91 0,00
Input Stimulus
[ T i e I
0,50 0,01

Fig. 3. Disparity energy filter output in response to a single object at a disparity of approximately 2 pixels. At the bottom of the figure

is the input stimulus with the right eye image in the top row and the left eye image in the bottom row. The three regions above the
stimulus represented the output of the disparity energy filters at three different spatial frequencies. Within each spatial-frequency band,
the horizontal axis represented space, while the vertical axis represented 10 phase differences, equally spaced betwg2n 0 and
radians. The top row of each band had a O0-radian phase difference, while the bottom row had a phase diffey@xddefmaximum

disparity to which the low SF(spatial frequency) band was responsive was 4 pixels f@2thadians phase difference). The medium

SF band responded up to 2 pixels, and the high SF band responded to disparities of 1 pixel or less. In this example, both edges of the
object gave strong signals in each of the SF bands. The pair of numbers below each frequency band were the maximum and minimum
values within that band. White indicated the highest value, black the smallest.
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among the four disparity-tuned units at each receptive-field locafor the network. Specifically, the weights to the local disparity and
tion using the soft-max nonlinearity [Eqg. (2)]. This competition selection units were adjusted according to the following error func-
induced by the soft-max can be considered analogous to the uniquéen (Jacobs et al., 1991):
ness constraint of Marr and Poggio (1976).
In summary, each local disparity network corresponded to a 1
specific spatial location in the input (Fig. 1). The soft-max com- Be= —Iogg &(x)exp[—i ID(x) = Lk(X)HZ] @
petition occurredvithin each local disparity network, and insured
that only one disparity was strongly activated. whereE, represented the error on a single case for the output unit
tuned to disparitk, S(x) was the output of the selection network
Selection networks for spatial locatiorx and disparityk, L (x) was the output of the
As in the local disparity networks, the selection networks werelocal disparity network for locatiox and disparityk, and Dy(x)
organized into a grid of eight receptive-field locations with a pool was the target output. The learning rule for each pathway was
of four disparity-tuned units at each location, and weights wereformed by taking the derivative of this error function with respect
shared across all receptive-field locations for each disparity. Theo the activities in the local disparity and selection pathways [see
four units at each location in the selection layer represented thglowlan & Sejnowski (1994) for further details].
local support for each of the different disparity hypotheses.
Since the goal of this pathway was to select the spatial location
with the most reliable evidence for each disparity, it is useful to
think of the selection networks as four separate layers that reFor comparison with the mixture-of-experts model, a single-
sponded to a specific disparity across all regions of the image. Apathway model trained with backpropagation (Rumelhart et al.,
in the disparity energy and local disparity pathways, the outputs 0i.986) and a cross-correlation model were developed. The single-
the selection networks were normalized with the soft-max operapathway model had 32 hidden units between the same input filters
tion. This competition, however, occurred separately for each ofs in the mixture-of-experts and the same output layer. Units in the
the four disparities in a global fashi@tross space-that is, across  hidden layer had localized receptive fields identical to those in the
all spatial locations (Fig. 1). In summary, each selection networkmixture-of-experts model; weights were shared across the different
corresponded to apecific disparity and its goal was to find the receptive-field locations. In addition, each output unit received
spatial location with the best support for that disparity. In compar-connections only from those hidden units that became tuned to the
ison, the local disparity networks normalized responses locallysame disparity. All units in the hidden and output layers had lo-

Etomparison models

(across disparities), as described above. gistic activation functions:
Output layer _ 1 5
The output of the model (as shown in Fig. 1, and in subsequent a=1+ exp(—net) ®)

figures) had a spatial map generated by pairwise multiplying the

activity of units in the local disparity and selection pathways. The  The cross-correlation (Stevenson et al., 1991; Cormack et al.,
global output was generated from the space output by summing991; Gonzalez & Woods, 1992) of a particular stimulus was
these products across all spatial locations for each of the foudefined for the four integral pixel disparity values=< 0, 1, 2, and
disparities: 3 pixels):

Ok = X Lk(X)S(x) 3) Mid I (x + d)1s(X)

CLr(d) = —p—g—— (6)
whereQy was the global (space-independent) evidence for dispar-
ity k, Lk(x) was the local disparity output for disparkyat location ~ whered was the disparity (in pixels) between the left imdgand
X, andS.(x) was the selection output for disparkyat locationx. the right imagdg, x indexed the spatial locations in the image, and
This resulted in a distributed representation for disparity that wasv was the length of the image in pixels. This correlation was
independent of the spatial location of the disparity in the image. unbiasee—it was normalized by the number of terms that contrib-
uted to the sum. This normalization was important for obtaining
Training accurate disparity estimates. The four resulting cross-correlation
The weights from the retina to the disparity energy layer werevalues,C, (d) for d = 0,1,2,3, were then linearly normalized to
fixed. The weights in the local disparity and selection pathwayssum to 1.0. These four values typically did not differ greatly in
however, were initialized with small random values, and then op-magnitude because most of the image (82 pixels in length) was
timized using the mixture-of-experts learning algorithm (Jacobsconstant luminance background, which contributed a constant value
et al., 1991). Training was stopped when the performance of théo the sum in the numerator of eq. (6). To make this disparity signal
model stopped improving. The difference between the activities omore salient, a soft-max operation [eq. (2)] was performed on these
the local disparity units and the known disparities in the imagefour output values. Disparity estimates were obtained by fitting
provided a measure of performance of the local disparity pathwaythese outputs with a Gaussian using the procedure described in
Those local disparity units which had activity levels close to theDisparity estimation.
known disparities in the real scene adjusted their weights to im-
prove their prediction even more. The selection units, on the othelr)isparity estimation
hand, were trained to predict what kinds of features in the image
were likely to lead to good disparity estimates. This functional To compare the model’s outputs with the known disparities of the
division of labor was reflected in the common objective function objects present in the input, the model’s estimate of disparity needs
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to be computed from the four output activation values (labeledactivation values of the output were fit with the sum of two Gaus-
“Actual Output” in figures illustrating the model). For stimuli con- sians, as shown in the lower panel of Fig. 4. In this case, the means
taining a single object, a Gaussian was fit to these outputs using were initialized to 1.0 and 2.0 pixels, and the variances were
least-squared-error minimization procedure in MATLAB. A Gauss-initialized to 1.0. In this example, the input stimulus disparities of
ian was chosen because the disparity tuning curves of the outputie two objects were 0.24- and 2.69-pixel disparity. The model
were Gaussian. The mean and variance of the Gaussian were iterstimates of disparity for this stimulus, based on the sum of Gaus-
atively adjusted to find the least-squares fit with the four datasians fit of the output activations, were 0.21- and 2.70-pixel dis-
points in the output. The initial value of the mean was 1.0, and theparity. There is no mechanism in the current model to indicate
initial value of the variance was 1.0. An example of this fitting whether one object or two objects are present in the input. This
procedure is illustrated in the upper panel of Fig. 4. For this parGaussian-fitting procedure is, of course, subject to local minima.
ticular stimulus, the input disparity was 1.45 pixels. The model'sHowever, given the accuracy of disparity estimation exhibited by
estimate of disparity, as indicated by the mean of the Gaussiarthe model (as described below), local minima were not believed to
was 1.42 pixels. Through the remainder of this paper, references toe a problem, and no precautions were taken to avoid them.
the model’s disparity estimate are based on this Gaussian-fitting Using the mean of the Gaussian obtained from this least-
procedure. When two objects were present in the input, the fousquared error-fitting procedure, the model’s ability to discriminate
between different disparities can be determined. The discrimina-
tion threshold, which can be measured both psychophysically in
primates and computationally in a model, is defined as the dispar-

1 T T v \ T T ity difference at which one can correctly detect a difference in

osl i depth 75% of the time. The disparity-discrimination threshold for
the model was determined using signal-detection theory (Green &

08} 1 Swets, 1966). An alternative, more physiologically plausible way
I to estimate the disparity from a noisy population code is to use a

.gw i network with lateral interactions and a separate inhibitory popu-

%”L j lation (Pouget & Zhang, 1997).

éo,sp .

5 Data sets

go4r 1 = _

3 Five data sets were used to train and test the stereo models de-
03r ) scribed in this paper. In this section, each of these data sets is
04 ) described in detail. In each data set, a single training pattern con-

sisted of a right eye image, a left eye image, and desired output
0.1 ] values. Sample images from each of the different data sets are
0 ) ) . . shown in Table 1. There are training and test stimuli for each data
o output Ur:ns (pixels o?dispamy) 3 set. The number of training stimuli is indicated in the description
below. All test stimuli data sets contained 100 exemplars, unless
1 otherwise indicated.
091 1
? 1. Single ObjectThis data set contained 100 stimuli generated
o8} 1 in the following manner. The images all started with a zero-
07 | disparity background (of constant luminance 0.5). Then, a

2" randomly chosen object between 10 and 25 pixels in size was

ger - included in the image at a real-valued location with a real-

go | valued (nonintegral) disparity between 0.0 and 3.0 pixels. At

505 ) the edge of the object, that is, between integral pixel loca-

%04- i tions, luminance values were linearly interpolated. The lu-

§ minance values in this single object were randomly chosen
0.3 1 from a uniform distribution, and were either in the range
ozl | [0.0, 0.1] or [0.9, 1.0]. This object always appeared in the

fronto-parallel plane; that is, the disparity did not change at
0.1 g any point on the object.
0 2. Multiple Objects This data set contained 250 stimuli. Half

0 1 2 3 . . . . . .
Output Units (pixels of disparity) of the patterns contained a single object in the image, while

the other half contained two objects. The single object stim-
uli were generated as described above in the Single Object
data set. The training patterns with two objects also had a

Fig. 4. Upper panel: The Gaussian fit for a stimulus containing a single
object. The plus symbols {’) indicate the activation values of the four

output units tuned to 0-, 1-, 2-, and 3-pixel disparity. For this particular test . . .
stimulus, the input disparity was 1.45 pixels; the model’s estimate (the constant luminance (0.5) zero-disparity background and

mean of the Gaussian) was 1.42 pixels. Lower panel: The sum of Gaussians e Objegts had a S'Ze_that was randomly chosen. between 10
fit for a stimulus containing two objects. The test stimulus disparities and 25 pixels. One object had luminance values in the range
were 0.24 and 2.69 pixels. The model estimates of disparity were 0.21 and ~ [0.0, 0.1], while the other had luminance values from [0.9,
2.70 pixels. 1.0]. The differences in luminance were for visualization
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Table 1. Sample stimuli for each of the data sets

Stimulus Type Sample Stimulus
Single
Double
Noise

Random Dot
Transparent
Real

purposes—model performance did not depend on this. The brated Imaging Laboratory (www.cs.cmu.gdis/cs.cmu.

locations of the two objects in the image were real-valued edu/project/cil /ftp/html/cil-ster.html) at Carnegie Mellon
and were randomly chosen subject to the constraint that they University, and contain ground truth information for the pixel
differed by at least 6 pixels. Because the locations were location of specific features in the images. The data set used

chosen independently, often one of the two objects occluded was the “Planar texture” files (data set CIL-0002).
the other one. The disparities of the two objects were also
randomly and independently chosen, but were included in
the data set only if the disparities of the two objects differed
by at least 1.5 pixels. The psychophysical finding of dispar-
ity averaging (Parker & Yang, 1989) was the primary moti-
vating factor for requiring this disparity difference between
the two objects.

The desired values for all training patterns (with real-valued
disparities) were generated under the assumption that each of four
output units had a fixed-variance Gaussian disparity tuning curve,
centered at a disparity of 0.0, 1.0, 2.0, and 3.0 pixels, respectively.
This resulted in a distributed representation for each output. It
should be noted that this output representation was space indepen-
3. Noise This data set contained 250 stimuli. First, a uniform dent. In other words, during training the error signal indicated only

random background (in the range [0.0, 1.0]) was written onwhat disparities were present in the image. The network received

both the left and right eye images. This background wasne information as to where those particular disparities were located

uncorrelated between the left and right eyes. Then, an objegh the image. It had to extract this spatial information through

(10-25 pixels in length) was generated from the same unijearning.

form random distribution (in the range [0.0, 1.0]). This ob-

ject was written in the image at a randomly chosen real-

valued location with a real-valued disparity in the range [0.0, Results

3.0]. This data set differed from the Single Object data set in

that it had an uncorrelated noise background, and the lumiQualitative overview of model performance

nance edge between the object and the background was dif-

ficult to detect. Extracting disparity information from stimuli " Fig- 5, the activation of the model is shown in response to a
in this data set was an especially difficult task. stimulus with two objects in the image. The object on the left in the

) ) ] image (the lighter one) was at a disparity of approximately zero
4. Binary. This data set had binary random-dot stereogramsiyels while the darker object on the right was at a disparity of
(40% dot density) that included transparent surfaces. LuMizond 2 pixels. The darker object was at a closer crossed disparity
nance values were limited to the integral values of 0 and 14,5 the lighter object, and occluded it. In the disparity energy
Transparent random-dot stimuli were particularly challeng-jayer of the model, the two outside edges of each object produced
ing for models of stereopsis so this data set contained 1404 \;isiple |ocalized signal of moderate amplitude (as indicated by
stimuli. 40% of the stimuli contained a single integral dis- 1o grayscale values). The strongest signal in the disparity energy
parity shift of 0, 1, 2, or 3 pixels. The remaining stimuli |5yer however, came at the position where the dark object oc-
represented transparent stimuli and consisted of dots at twygeq the lighter object. This edge (at the left side of the dark
different disparities. Specifically, 50% of the dots were shifted 5piect) produced essentially the same pattern of activation in the
by an integral disparity value (0, 1, 2, or 3 pixels) while the gigparity energy layer as the right edge of the dark object. The
remaining dots were shifted by a different disparity. The gitference was that the left edge of the dark object produced a
disparity difference between the two surfaces was always a{onger amplitude signal because the response of the binocular
least 2 pixels. Thus, the following three combinations of ooy plex cells was a function of contrast in addition to disparity. At
disparity (for the two transparent surfaces) were present ifne eft edge of the dark object, the contrast was greater than at the
the data set: (1) 0- and 2-pixel disparity, (2) 0- and 3-pixel right edge.
disparity, and (3) 1- and 3-pixel disparity. Dots at different = e pattern of activation in the local disparity networks in
disparities were not separated spatially; they were interyegnonse to this two object stimulus appears complicated, but can
leaved across space. Psychophysically, these stimuli corrgse examined systematically. In the leftmost local disparity net-
sponded to transparent fronto-parallel surfaces at differenfyqri activation was strongest for a disparity of zero pixels. Based
depths. on the topographic mapping of the energy filters onto the local
5. Real This data set contained 16 stimuli from real-world disparity networks (and the selection networks), it is apparent that
stereoscopic images. These were obtained from the Calithis activation in the leftmost local disparity network was due to
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Desired Dutput Space Gutput
| E & -
0,598 0,02 1,00 0,00 1,00 4,02
Local _
Tzparity Nets Selection Hets

[

60,00 1,00 0,00

Disparity Energy

Low 5F

0,84 0,00
Hed SF

0.64 0,00
High SF

Input Stimulus

Fig. 5. The activity in the mixture-of-experts model in response to an input stimulus containing two objects—the lighter one on the
left at a disparity of approximately O pixels and the darker one on the right at a disparity of approximately 2 pixels. This figure is
identical in layout to the previous figure. In this example, the dark object on the right was at a crossed disparity (closer than the fixation
plane) and occluded the lighter object on the left. The object on the left was approximately at the plane of fixation—that is, at zero-pixel
disparity.

the left edge of the lighter object. The next local disparity networkenergy layer, the left edge of this darker object had a much stronger
to the right was more confused—activation was shared betweeamplitude signal. However, in the selection network, this pattern of
the unit for O-pixel disparity and the unit for 2-pixel disparity. In activation from the left edge of the object was apparently not as
the next local disparity network (third from the left), activation was reliable as the information from the right edge of the object. The
strongest for a 2-pixel disparity. This signal was due to the leftproximity between the left edge of the lighter object and the left
edge of the darker object. On the right side of the local disparityedge of the darker object may account for the lack of strong acti-
pathway, the networks that were second and third from the rightation in the left part of the 2-pixel disparity selection network.
edge were most active at a disparity of 2 pixels, corresponding tdhat is, the two left edges have contaminated each other in the
the right edge of the dark object. disparity energy output, and thus did not provide reliable informa-
The activity in the selection networks reveals much about howtion for disparity estimation. The bottom row (for disparity of 3
the network solved the disparity-estimation task. In the top rowpixels), like the row for 1-pixel disparity, also showed a more
(tuned to O-pixel disparity), activation was concentrated in thediffuse activation pattern.
leftmost unit, corresponding to the left edge of the lighter object. At the space output level, there was strong activation at only the
The next row down (tuned to find evidence for a 1-pixel disparity) two locations where the selection network indicated reliable evi-
showed a more diffuse pattern of activation. The 2-pixel disparitydence for a disparity, and the local disparity net confirmed that that
network (second row from the bottom) showed strong activation atisparity was present in its receptive field. At the leftmost position,
the position that is close to the right edge. One interesting aspec¢he unit responsive for a disparity of O pixels was highly active,
about the activation in this row is that looking in the disparity corresponding to the lighter object on the left part of the retina. At
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the second location from the right, there was high activation for aof the narrowest disparity tuning curves, but it can be accounted
disparity of 2 pixels. This corresponded to the right edge of thefor in a distributed population of statistically independent neurons
dark object. Comparing the global output to the desired output(Lehky & Sejnowski, 1990).

there was a close match. For each output unit, the actual value was After training the model on the Multiple Objects data set, it was
within 0.05 of its desired value. A quantitative comparison of thetested to see if it also demonstrated stereo hyperacuity. Using the
performance of the network to two objects across a range of disdisparity-estimation procedure (described in Disparity estimation),

parities is given in Fig. 6 (lower left panel).

Stereo hyperacuity and performance on stereograms

Stereo hyperacuity

the disparity threshold was 0.23 pixels on the Single Object data
set (Fig. 6, upper left panel). This value is substantially less than
the input resolution of the model (1 pixel) and is thus indicative of
stereo hyperacuity. In addition, the model had a fairly low bias in
its estimates of-0.05 pixels, determined as tlyantercept of the

Humans can discriminate differences in depth stereoscopicallpest-fitting line through the model disparity estimates. Because the
in the range of a few arc seconds. This discrimination threshold i$saussian-fitting procedure can result in disparity estimates that are
much smaller than both the width of a photoreceptor and the widtloutside the input range of 0.0 to 3.0 pixels, estimates were clipped
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Fig. 6. Upper left: Mixture-of-experts model performance for the Single Object data set. The model’s estimates are plotted as a function
of the input disparity. Using signal detection theory, the disparity threshold was 0.23 pixels. The biag(#reept of the best-fitting

line) was—0.05. Lower left: Model performance in estimating disparity of double-object stimuli. The test set contained 50 stimuli, each
with two objects. This figure shows disparity estimates for all 100 individual objects in this set of 50 double-object stimuli. Lower right:
Mixture-of-experts model performance on 100 novel Noise stereograms.
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at 0.0 and 3.0 pixels when this occurred. The data appear to ap- Stereogram performance
proximate a step function (with steps at 0-, 1-, 2-, and 3-pixel

disparity) because the tuning curves for the output units are cen- Noise stereogramsin the experiments described thus far, all

tered at these values. This caused the model to estimate, for espmull contained objects, defined as a contiguous array of similar

ample, a disparity of 1.0 pixels when the input was in the range o uminance values that were significantly different from the back-

0.8-1.2 pixels. It is also apparent from this figure that the modelground luminance. The model was also trained and tested on two

overestimated at high disparities and underestimated at low di kinds of stereograms (Julesz, 1971): the Noise data set and the
. ed at g P o S'Binary data set. In the Noise data set, as noted in the description in
parities. This is likely due to the fact that the Gaussian-fitting Data sets, the strong luminance edge between the object and the

problem 'S severely unfjercqnstramed when there are only fou@ackground (found in the Multiple Objects data set) was no longer
ogtput'unlts (preferred dlspanty yalues). With a more dense Map O esent. The disparity signal of the object remained, but it was
disparity (10-20 output units), this problem should be SUbSt"’mua”){‘)nuch more difficult to detect because of the variation ir; luminance
reduced, . . values and the uncorrelated random background (see Fig. 7).
The model was also tested on a novel set of 50 Multiple Object The model’s response to a novel set of 100 noisy random-dot

stimuli (Fig. 6, lower left panel). The sum of two Gaussians was ﬁtstereo rams is shown in Fig. 6 (lower right panel). The model's
to the output activation values, as described in Disparity estima: 9 9 gnt p :

tion. The disparity threshold calculated using the model’'s disparitydISparIty threshold was 0.55 pixels, and still demonstrated stereo

estimate for each of the 100 objects (50 stimuR object/stimuli) hypgracwty. The |ncrea§ed threshold may be attributed to the dis-
. . ) - . tracting uncorrelated noise background, as well as to the loss of the
was 0.41 pixels, and relatively unbiased. The paucity of objects : .
o . . . strong luminance edge at the border of the object and the back-
with input disparities roughly between 1.0 and 2.0 pixels (see round
Fig. 6, lower left panel) is due to the constraint, in generating the? '
stimuli, that the disparities must differ by 1.5 pixels. Thistended to  Binary random-dot stereograméfter training the model on a

push the input disparities out toward the limiting values of 0- anddata set of 1400 binary random-dot stereograms (40% dot density)

3-pixel disparity. that included transparent surfaces, the model was tested on novel
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stimuli—100 standard single-disparity random-dot stereograms anthodel generalized well from the statistics of the synthetic images
50 transparent stimuli that defined two surfaces at different disto the real-world images.

parities. The model performed well on the standard random-dot

stereograms, with a disparity threshold of 0.36 pixels. For the

stimuli containing two transparent surfaces, the threshold rose sutinsemble performance on a varied set of stimuli

stantially to 0.83 pixels. An example of the model's response 0 aryg gimylations that we have described thus far in the paper are the
test stimulus after training is shown in Fig. 8. result of training and testing on a single kind of stimulus (with the
exception of Real-world images). But it is not clear how well the
model would generalize when trained on several different kinds of
stimuli. In this section, we describe how the mixture-of-experts
The results described thus far for the stereo model are based onnaodel performs when trained on a set of stimuli containing: (1)
variety of synthetic stimuli. Although these stimuli differ in a 150 single objects, (2) 150 double objects, (3) 150 Noise stereo-
number of ways (e.g. luminance profile, spatial-frequency contentgrams (from the Noise data set), and (4) 150 stereograms from the
and contrast), they may still contain certain statistical regularitieBinary data set. These stimuli were generated in the same way as
that are not representative of natural visual stimuli found in thedescribed in Data sets, and illustrated in Table 1.
world. After training on this ensemble of stimuli, we computed dis-
Using the parameters obtained after optimizing the model orparity thresholds for four testing sets—one for each of the four
the Multiple Objects data set, the model was tested on real-worldinds of stimuli. For single-object stimuli, the model performed
stereoscopic image pairs (Real data set described in Data sets). Teetremely well, with a disparity threshold of 0.16 pixels. This
disparity threshold for these real-world stimuli was 0.30 pixels, performance is even better than when the model is trainezhiyn
with a bias of—0.02 pixels (Fig. 9, upper left panel). Thus, the single and double objects. It may be that the added diversity of this

Real-world images
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left: Performance of the single-pathway model for the Single Object data set after training on the Multiple Objects data set. Lower
right: Performance of the single-pathway model for 50 novel stimuli each containing two objects, after training on the Multiple Objects
data set.

training set (with many different kinds of objects) accounts for theComparison to the single-pathway model

model’s outstanding generalization ability. This disparity threshold

rose to 0.45-pixel disparity for stimuli containing two objects. For A single-pathway model (trained with backpropagation) was used
the Noise stereograms, the threshold increased substantially for comparison with the two pathway (local disparity and selec-
1.09-pixel disparity with a bias of 0.55 pixels. This is nearly dou- tion) mixture-of-experts model. A difference in performance be-
ble the threshold of the model when trained on Noise stimuli alonéween these two models provides an estimate of the contribution
(see Stereogram performance). The poor performance on theseade by the selection pathway (Table 2). The single-pathway model
stimuli is likely due to the fact that they are, statistically, a difficult (described in Comparison models) was trained using several dif-
disparity signal to estimate, and that they only account for 25% offerent data sets. The first training set was the Multiple Objects data
the stimuli in the training set. In a similar manner, the model didset. Disparity estimates were computed for the Single Object data
not generalize well to novel stimuli containing two transparentset using the Gaussian-fitting technique described in Disparity es-
surfaces. The threshold for these stimuli was 0.84 pixels, with d@imation. This test set is the same as the one used for the mixture-
bias of 0.41 pixels. Discovering the kinds of energy filter response®f-experts disparity threshold results shown in Fig. 6 (upper left
that are indicative of two transparent surfaces is difficult, espepanel). The disparity threshold was 0.74-pixel disparity in this
cially when these kind of stimuli also comprise only 25% of the single-pathway model (Fig. 9, lower left panel), compared to 0.23
stimuli on which the model is trained. for the mixture-of-experts model. When tested on a set of 50
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Table 2. Disparity thresholds (in pixels) for each data set for
the mixture-of-experts model (ME), the single-pathway model
(SP), and the cross-correlation model (CGC)

Stimulus type ME SP CcC
Single 0.23 0.74 0.46
Double 0.41 0.66 NT
Noise 0.55 NT 1.28
Random dot 0.36 NT NT
Transparent 0.83 NT NT
Real 0.30 NT 0.28

M.S. Gray et al.

Multiple Object stimuli (100 objects altogether), the threshold of
the model was 0.66 pixels (Fig. 9, lower right panel).

The single-pathway model was also trained on the Single Ob-
ject data set, and tested on a different set of 100 Single Object
stimuli. The computed disparity threshold of the single-pathway
network for these novel stimuli was 0.33 pixels (see Fig. 10, upper
left), substantially lower than when multiple objects were present
in the training set.

Comparison to the cross-correlation model

The disparity estimates for the Single Object data set using the
cross-correlation model are shown in Fig. 10 (upper right panel).

aNT means the model was not tested on that data set. For all data sets, tljthe disparity threshold was 0.46 pixels. When tested on 100 stim-
model was tested and trained on the same kind of stimuli, with one ex-uIi from the Noise data set, the threshold rose to 1.28 pixels of

ception: Doubleobject stimuli were tested after training on the Multiple

Objects data set, which included Single Object and Double Object stimulidisparity, with a large bias (Fig. 10, lower left panel). The disparity
The cross-correlation model was not trained.

Trair/Test on Single Object stimuli

signal in these Noise stimuli was much more difficult to detect
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with the cross-correlation approach. Because the background lu- Selection units
minance was no longer constant (as it was for the Single Object The responses of units in the selection pathway as a function of
data set), the background did not contribute a constant value to thepace and disparity, shown in Fig. 12, were not as stereotyped as
sum in eqgn. (6). Instead, the background contributed a differenthose of units in the local disparity pathway. The selection unit
amount for each disparity valu So, although the object in the tuned to O-pixel disparity (upper left part of Fig. 12) responded
stimulus contained a well-defined disparity signal, this informationstrongly to a change in disparity (from approximately O- to 1-pixel
was swamped by the noisy disparity cues in the background. Thdisparity) moving from left to right across the receptive field. The
cross-correlation model was also tested on the Real data set, a s#lection unit tuned to 1-pixel disparity (upper right) showed a
of real-world images with known (ground truth) disparities. The more complex response pattern. Note, however, that it shared (with
disparity threshold was 0.28 pixels (Fig. 10, lower right panel). Forselection unit 0) the property that it responded to changes in dis-
performance comparisons with the mixture-of-experts and singleparity across space. This pattern also held for the selection unit
pathway models, see Table 2. tuned to a pixel disparity of 2 (lower left). Unlike the units in the
local disparity pathway, the selection pathway units werrained
to find the best disparity estimate within their local receptive field.
Instead, units in the selection pathway were trained to find reliable
patterns in the disparity energy layer that were indicative of a given
disparity, regardless of spatial location. This selection was en-
hanced by competition across space in the selection pathway.
The receptive-field properties of units in the local disparity and  The spatial receptive-field structure of these selection units
selection pathways were examined to gain insight into the functiorguggests that they may be sensitivedisparity contrastin other
of the mature network. As noted in Qualitative overview of modelyords, the selection units have learned that a reliable indicator for
performance, the model became sensitive to the disparity edges ﬁfgiven disparity was a change in disparity across space. These
the objects as a result of the optimization of model parameters. TQpits responded only at the edge of an object (not in the middle),
further explore how the model responded to edges, the receptivgyen when there was a disparity signal present in the middle of the
field of a unit in each pathway was mapped systematically. object. This selection-unit activity can be interpreted as indicating
The receptive-field response of a unit depended on the archiyhere thecontinuity constrainhas been violated (Marr & Poggio,
tecture, receptive-field layout, and weight-sharing properties 0fj976). Thecontinuity constraintsuggests that surfaces generally
the model. The receptive field of a unit in either the local disparitychange smoothly in depth except at object boundaries. The oper-
or the selection pathway covered nine spatial locations (horizonatjon of the selection units occurred not only across space, but in
tally in the figures) in the disparity energy filters. At each of these gepth as well. These selection units could thus provide valuable
nine spatial locations there were 30 disparity energy output$,formation in the construction of a three-dimensional (3-D) model
(vertically—10 at each of three spatial frequencies). Weights ingf the world.
each pathway were sharedross spaceFor example, the weights  Recent neurophysiological data from von der Heydt et al. (1995)
to each of the eight local disparity units tuned to 3-pixel disparityjs consistent with selection-unit activity. They found that neurons
(the bottom row of the local disparity pathway) were the same. Theyt awake, behaving monkeys in area V2 responded to edges of
same was true for other rows (disparities) of the local disparityyandom-dot stereograms. Because random-dot stereograms have
pathway, anq fqr the selection pathway. Thus, all units tuned t0 th@o monocular form cues, these neurons must be responding to
same disparity in the same pathway computed the same function @fges in depth. This behavior is analogous to that observed in the
the input. _ _ selection pathway of the model. The units were responsive to
The responses of a single unit were mapped at each of folghanges in disparity across space—in other words, they were sen-
disparities in each pathway as a function of space and disparity. Ajtive to edges in a depth map.
single high-contrast edge was moved systematically across the
receptive field of the unit in increments of approximately 0.5 pix-
els. At each of these spatial locations, the disparity of the edge wasychophysics
varied between 0.0 and 3.0 pixels in increments of approximatelyrne model was tested on a psychophysical task for which human
0.15 pixels. In this way, a dense response map was generated aggherimental data were available for comparison. Disparity sensi-
function of space (within the receptive field) and disparity for eachyjyity is affected by the spatial-frequency content of an image.
of the four disparities in both the local disparity and selection\yestheimer and McKee (1980) found, in human psychophysical

Analysis of model phenomena

Receptive-field properties

pathways. experiments, that disparity thresholds increased for any kind of
spatial-frequency filtering of line targets, although disparity sen-
Local disparity units sitivity was more adversely affected by high-pass filtering than by

The response of a unit in the local disparity pathway tuned tdow-pass filtering. The disparity-estimation performance of the
0-pixel disparity is shown in the upper left part of Fig. 11. The unit model was assayed after manipulations of the spatial-frequency
responded strongly when the edge was at a 0-pixel disparity in theontent of the input. The effects of this spatial-frequency filtering
middle of its receptive field. The response decreased when movedn model performance depended on the frequency responses of the
away from 0-pixel disparity (vertically, in the figure), and when disparity energy filters that pre-process the input to the model.
the edge was moved toward the side of the receptive field. Similahese frequency responses (of simple cells in the energy filters)
responses were found for units tuned to 1-, 2-, and 3-pixel disparitgre shown in Fig. 13a. The specific amplitude values of the fre-
in the local disparity pathway (Fig. 11). Within each spatial loca-quency response are not important because these simple cell re-
tion in the local disparity pathway, there was a soft-max compesponses were normalized and combined to generate the complex
tition across the four disparities. The responses in Fig. 11 reflectell (disparity energy) response. In addition, the soft-max opera-
this competition. tion across disparities within each spatial location of each filter
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Fig. 11.The activation of units in the local disparity pathway tuned to 0-, 1-, 2-, and 3-pixel disparity (starting in upper left) in response
to a single edge, as a function of space and disparity.

bank normalized responses by boosting the highest signal. (Se@iscussion

Retina and disparity energy filters and Ohzawa et al. (1990) forThe difficulty in disparity estimation under less than ideal circum-

more details). stances (e.g. transparency, occlusion, noise) is knowing which dis-
Westheimer and McKee (1980) filtered their line targets with . o P Y, . 9
) L arity cues are reliable and should be integrated. The approach to
low-pass and band-pass filters. When their stimuli were Iow—pasg]. . . L
filtered, the disparity thresholds increased by a factor of 1.1-1.4 is problem taken here was to model the disparity estimation
' "~ process that would be needed to account femall patchof the

relative to the unfiltered stimuli. After band-pass filtering, dispar- : . . ) o .
. . image. A multiscale neurophysiologically realistic implementation
ity thresholds had increased by a factor of 1.7-3.5. The low-pass, | : . . .
y o . A of binocular cells was used for the input, combined with a neural
filtering of Westheimer and McKee was matched using filter A, 35 etwork model to learn reliable cues for disparity estimation. This
shown in Fig. 13b, and filter B for the band-pass filter. Filter A party )

retained most of the information in the low and medium SF filters,l?st;?gg?tlggr;;ne;rﬂgl r?ealIrz[ls(;rﬂsdilll%vz?filirz%tﬁgff tfi(: zta_—
while losing some of the signal in the high SF filters. Relative to g b P P

filter A, filter B lost much of the low SF information. proaching other open probl_ems in computational neuroscience. A
With the weiahts obtained during training on the Multiple Ob- number of related computational models have also emphasized the
9 g 9 P importance of data reliability for estimation tasks (Derin & Elliot,

jects data set, the model's estimates of disparity for the Singl R . )
Obiject data set filtered using filters A (low-pass) and b (band-pas:?l987’ Foldiak & Young, 1.995’ G.rzywa_lcz etal, 1995)2 The per
ormance of the model, its relationship to neurophysiology and

were determined. Consistent with Westheimer and McKee (1980 . S )
. . - ; . ehavior, and the limitations of the model are discussed below.
the disparity threshold of low-pass filtered images had risen to
0.33-pixel disparity (a factor of 1.46) relative to unfiltered test
stimuli (with a threshold of 0.23 pixels). The disparity threshold of Performance
band-pass filtered images (filter B) rose to 0.60-pixel disparity, a
factor of 2.64 relative to unfiltered stimuli. This result is also The mixture-of-experts model performed well overall on a variety
consistent with Westheimer and McKee (1980). of disparity-estimation tasks, compared to the single-pathway and
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Fig. 12. The activation of units in the selection pathway tuned to 0-, 1-, 2-, and 3-pixel disparity (starting in upper left) in response
to a single edge, as a function of space and disparity.

cross-correlation models. The performance of these models for formed the crucial task of selecting reliable energy filter output
variety of data sets is summarized in Table 2. One explanation fowhen multiple objects were present, and avoided averaging over
the poorer performance of the mixture-of-experts model on thedepth discontinuities. This comparison with a single-pathway net-
Double Object stimuli (relative to the Single Object stimuli) may work illustrated the advantages of an architecture that separated
be the difficulty in fitting the sum of two Gaussians using only four the disparity-estimation and selection (integration) tasks into two
data points. More data points (i.e. a larger number of output unitsyeparate pathways.
would improve this fitting process substantially. Disparity thresh-  The cross-correlation model had no mechanism for estimating
olds for the mixture-of-experts model rose as the data sets becantiee disparity of more than one object, and so could not be tested on
more complicated. Especially challenging was the Transparent datseveral of the data sets. Without a meansgatially selecteliable
set, where the threshold rose to 0.83 pixels. For all data setdisparity information (like the single-pathway model), the cross-
however, the mixture-of-experts model achieved stereo hyperaciweorrelation approach fared poorly, relative to the mixture-of-
ity performance. experts model, on both the Single Object stimuli and the Noise
In addition to the Multiple Objects data set, the single-pathwaystimuli. It estimated accurately, however, the disparities present in
model was also trained and tested on Single Object stimuli (nothe Real data set.
shown in Table 2). In this case, the disparity threshold improved to  Another model using the multiscale approach was developed
0.33 pixels. This low threshold for single-object stimuli suggestsby Marr and Poggio (1979). The strategy in this model is often
that a selection mechanism was not necessary when only one didescribed as “coarse-to-fine.” Spatial filters with low spatial fre-
parity was present in the image, and when there were high-contraguencies were presumed to trigger vergence eye movements. When
disparity edges at the object boundaries. The lack of a selectiothe eyes verged to within a quarter-cycle disparity of the smaller
mechanism in the single-pathway model, however, limited perfor{high-frequency) receptive fields, disparity estimates would be
mance when more than object was present (Table 2). The selectiamomputed by summing disparities from all spatial scales. There are
pathway of the mixture-of-experts model, on the other hand, pertwo important differences between the model developed by Marr
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disparity energy output are likely to be reliable for estimating
disparity (selection pathway). The selection pathway determined
what patterns of activity in the complex cell output were consistent
indicators of disparity and should be selected. The response prop-
erties of units in the selection pathway qualitatively matched re-
sponses of binocular cells in monkey visual cortex area V2 (von
der Heydt et al., 1995), which also were selectively activated by
disparity gradients. Although it was not clearpriori what re-
sponse properties these selection units should have, after learning
it was found that units that responded to disparity contrast were
particularly valuable. The hard-coding of these response charac-
teristics is a clear next step for future models.

Amplitude

Medium SF

Comparison to psychophysical data

The performance of the model matched psychophysical data of
Westheimer and McKee (1980) on the effects of spatial-frequency
filtering on disparity thresholds in humans. These results can be
b) i T understood in terms of the frequency response of the model. Con-
sider the dynamic range of the disparity energy filters for the
different spatial frequencies. As described in the caption of Fig. 3,
the phase differences of the low spatial-frequency filters covered a
B range of 0- to 4-pixel disparity, while the medium and high spatial-
frequency filters had a much narrower response range. Because the
test stimuli included disparities between 0 and 3 pixels, it is un-
derstandable that the network performed better with low-frequency
information present. It should be noted, however, that although the
[ low-frequency information did lead to reasonable stereoacuity, per-
| formance of the network was much improved if information from
all spatial-frequency bands was present.

The sensitivity to depth contrast that was found in the selection
units in the model may be a general mechanism for segmenting
objects in depth. This response profile is consistent with a Laplacian-
like center-surround operating on a depth map (Mitchison, 1993),

Fig. 13. Frequency response of simple cells and spatial filters. (a) Fre-2Nd may explain psychophysical results reported by Westheimer
quency response of simple cells (in each frequency band) that were th€l986). Westheimer studied stereoscopic depth contrast, in which
basis of the disparity energy filters. (b) Spatial-frequency filters analogouglisparity estimates of vertical line targets presented psychophysi-
to those used by Westheimer and McKee (1980). ‘A is the low-pass filter,cally are modulated by the disparity of neighboring features. This
‘B’ is the band-pass filter. The units of frequency were cygpesel. modulation depended on the spatial separation between targets.
When targets were closely spaced, they were perceived at a similar
depth—this is often referred to as disparity pooling. At larger
spatial separations, however, the line targets were perceived as
and Poggio (1979) and the current model. First, Marr and Poggiseparated in depth, called repulsion effect. These phenomena
(1979) matched disparities at each scale sequentially (in time). Theould be explained by neurons with short-range excitatory con-
current model had only a single time step. Information from all nections and long-range inhibitory ones, as suggested by Lehky
scales (high, medium, and low spatial frequencies) was integrateand Sejnowski (1990).
simultaneously. Since these computations could be performed in
parallel, the current model might be expected to compute morg i tions
quickly than Marr and Poggio (1979). In addition, the selection
pathway allowed the disparity to be robustly estimated. PsychoThe model was designed to selectively integrate reliable patterns
physical evidence against the coarse-to-fine strategy (Smallmarf activation in the local disparity pathway which are combined to
1995; Mallot et al., 1996; Mowforth et al., 1981) would also favor produce a space-independent measure of the disparities present in
a parallel architecture like the present one. a small local patch of an image. One limitation of the current
The disparity energy filtering of the input image was a fixed model is this focus on only a small region of space. The integration
computation in the model—no adaptation or learning was in-of the local disparity estimates (produced at the output level of our
volved. In subsequent stages (the local disparity and selectiomodel) across a whole image scene is beyond the scope of the
pathways), however, parameters were adjusted according to aurrent model. In practice, the visual field would be tiled with
error signal. The mixture-of-experts model was optimizegdex-  networks performing local operations similar to those performed
ample to determine what features in the disparity energy layerby our model, in a columnar organization as found in visual cortex.
were important. The advantage of this particular network architec- A related limitation of the model is that there is no represen-
ture was that it dissociated the disparity-estimation process (locahtion ofsurfacespresent in a visual scene, as may be found in the
disparity pathway) from the task of determining which cues in thebrain (see Nakayama & Shimojo, 1992). This surface representa-
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) ) network model using a multiscale neurophysiologically realistic
Disparity implementation of binocular cells for the input, combined with a
# % - method for discovering the properties of reliable cues for disparity

$ / estimation. The gradient of the disparity, which is computed in the
visual cortex, emerged as an important variable in an intermediate
stage of the model that was responsible for selecting the most
reliable disparity estimates. This is illustrated in Fig. 14 which
provides a schematic summary of the current model. The model
achieved excellent performance on a range of different input stim-
uli. This same approach could be used to integrate motion with
disparity information, and could be combined with further stages
of processing that dynamically represent surfaces and boundaries
of objects.
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