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Abstract

A network model of disparity estimation was developed based on disparity-selective neurons, such as those found in
the early stages of processing in the visual cortex. The model accurately estimated multiple disparities in regions,
which may be caused by transparency or occlusion. The selective integration of reliable local estimates enabled the
network to generate accurate disparity estimates on normal and transparent random-dot stereograms. The model was
consistent with human psychophysical results on the effects of spatial-frequency filtering on disparity sensitivity.
The responses of neurons in macaque area V2 to random-dot stereograms are consistent with the prediction of the
model that a subset of neurons responsible for disparity selection should be sensitive to disparity gradients.
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Introduction

A wide variety of computational models have been proposed to
explain how binocular disparity is computed from left–right image
pairs (Blake & Wilson, 1991; Weinshall & Malik, 1995). Disparity
estimation is made difficult by the inconsistency of local disparity
information, which may be sparse and noisy. Hence, there are two
conflicting demands when estimating disparity in an image region:
the need to spatially average to get an accurate estimate, and the
problem of not averaging over discontinuities. Research in com-
puter vision has often focused on a two-stage process to solving
this problem: (1) find exact correspondence between matching
points in the two images, and (2) compute the disparity based on
the patterns of correspondences.

In standard approaches to the first-stage, finding correspon-
dences (e.g. edge-based and correlation-based models), it is as-
sumed that the goal is to provide an accurate disparity estimate for
everyregion of the image. These approaches typically do not em-
phasize thereliability of the disparity estimate, which may be
reduced in conditions where there is substantial occlusion, trans-
parency, or noise. Also, many of these computational methods are
iterative (e.g. Marr & Poggio, 1976, 1979; Yuille et al., 1991)
which may be a drawback for a system attempting to respond
dynamically to the world in real time.

This paper presents a model of disparity estimation based on a
modular neural network architecture known as amixture-of-experts
architecture (Jacobs et al., 1991), in which a selection pathway
gates the output of local disparity information from small adjacent
regions of space. This model is motivated by the observation that
local correlation measures are insufficient because they convey no
information about the reliability of a particular disparity measure-
ment. By contrast, our model uses a separateselectionmechanism
to determine which locations of the visual input have consistent
disparity information. This is especially important in viewing sit-
uations in which disparity estimation is not straightforward, such
as when multiple objects are present in the image, and particularly
if one object occludes another. Reliability estimates may also be
useful when dealing with stimuli with high background noise,
poorly defined edges, or transparent surfaces. In this paper, we
assess the importance of such an approach by generating several
sets of stimuli in which one or several of these conditions occur.
We compared the results for the mixture-of-experts model against
two more standard approaches, and found that the mixture-of-
experts model outperformed these alternatives on all the data sets
tested.

The paper is organized as follows. First, the mixture-of-experts
model is described in detail, along with the two more standard
approaches. A procedure for obtaining disparity estimates from our
model is outlined, and a detailed specification of the data sets used
to optimize and test the model is also provided. Second, the results
of the different models on a variety of data sets are reported. Third,
a more detailed analysis of the response properties of the mixture-
of-experts model is reported in Analysis of Model Phenomena.

Correspondence and reprint requests to: Michael S. Gray, Howard Hughes
Medical Institute, Computational Neurobiology Laboratory, The Salk In-
stitute, P.O. Box 85800, San Diego, CA 92186-5800, USA.

Visual Neuroscience(1998),15, 511–528. Printed in the USA.
Copyright © 1998 Cambridge University Press 0952-5238098 $12.50

511



Finally, the results are discussed in the context of related work in
stereopsis.

Model descriptions and methods

Mixture-of-experts model

The goal of the current model is to estimate the disparities present
in a small patchof the image. It is assumed that processing related
to spatial localizationof objects occurs in other regions of the
visual cortex. In other words, the model trades off spatial accuracy
to obtain disparity accuracy.

The model of stereopsis used here is based on a filter model for
motion detection in area MT (Nowlan & Sejnowski, 1994, 1995).
The motion model was adapted to stereopsis by changing the time
domain of the motion model to the left0right image domain for
stereopsis. The stereo model consisted of several stages, and com-
puted its output using only feedforward processing. The model has
a mixture-of-experts architecture (Jacobs et al., 1991). This is a
system of separate networks (expert nets) that specialize in differ-
ent input patterns. A separate gating network learns which expert
is best for the different kinds of input patterns. In the first stage of
the model, the input was convolved with a set of disparity energy
filters. The output of the filters then became the input to two
different secondary pathways: (1) the local disparity (expert) net-
works, and (2) the selection (gating) networks. The output of the
model was a disparity value that was the product of the outputs of
the two secondary pathways. Because it was not knowna priori
what kinds of disparity signals would be valuable for both dispar-
ity estimation and segmentation, an optimization algorithm was
used to find the best parameter values for the model. A schematic
diagram of the model is shown in Fig. 1. The four important parts
of the model will be described in detail: the retinal layer and
disparity energy filters, the local disparity networks, the selection
networks, and the output layer.

Retina and disparity energy filters
The retinal layer in the model consisted of two one-dimensional

arrays 82 pixels in length for the right eye and left eye images.
One-dimensional retinas were used for computational simplicity.
The model would generate similar results for two-dimensional
images because the spatial enhancement mechanism of the selec-
tion networks (described in Selection networks) generalizes di-
rectly to two-dimensional image representations (as shown in
Nowlan & Sejnowski, 1994, 1995). The one-dimensional images
were the inputs to disparity energy filters (Ohzawa et al., 1990,
1996, 1997), which generalized the motion energy filters first pro-
posed by Adelson and Bergen (1985). Although phase-based dis-
parity filters were chosen for preprocessing the input, similar output
from the model would also be expected using filters based on
shifted receptive fields (Fleet et al., 1996; Zhu & Qian, 1996).

At the energy filter layer, there were 51 receptive-field loca-
tions which received input from overlapping regions of the retina.
At each of these receptive-field locations, there were 30 complex
cells (three spatial frequencies3 10 phase differences), and each
complex cell received input from four simple cells (two in phase,
two quadrature) that were linearly combined. The two in-phase
simple cells, as well as the two quadrature simple cells differed
from each other by 180 deg. Each of these simple cells received
input from a pair of subunits that can be described mathematically
as Gabor functions (Gabor, 1946; Daugman, 1985) differing by a
phase parameterf:

g~x,f! 5
1

#2p~3/2!sx
expS2

x2

2sx
2Dsin~2pvxx 1 f! (1)

wheresx was the size of the Gaussian window, andvx was the
filter center frequency. A simple cell pair (differing in phase by
90 deg) is shown in the upper panels of Fig. 2. The right panel of
this figure shows schematically how simple cell output is com-
bined at the complex cell. These disparity filters were implemented
in the same manner as Ohzawa et al. (1990). The output of a simple
cell (at a given phase and spatial frequency) was computed by
convolving the right eye image with the right filter, the left eye
image with the left eye filter, and then adding them. Simple cell
output was then half-wave rectified (truncated and squared). Two
of the four simple cell pairs were in phase, while the other two
were in quadrature phase. The three spatial frequencies were each
separated by an octave: 0.25, 0.125, and 0.0625 cycles0pixel (c0p).
The 10 phase differences were equally spaced over a range be-
tween 0 andp/2. The output of the energy filters in response to a
sample stimulus is shown in Fig. 3. The outputs of these complex
cells (or disparity energy filters) should be considered the true
input to the network.

The Gaussian windows of the filters in the model were in-
versely proportional to the spatial frequency. The variances of the
windows were 1.0 for 0.25 c0p, 4.0 for 0.125 c0p, and 16.0 for

Fig. 1.Schematic diagram of the stereo model. Patterns of activation on the
retina were combined in the disparity energy units at several different
spatial frequencies and phases. The output of the disparity energy units
were the input to both the local disparity pathway and the selection path-
way. The outputs of the two pathways were combined multiplicatively to
generate estimates of disparity across space (Space Output). By summing
across space for each of the four disparity values in the output, the actual
output of the model was obtained. For the local disparity, selection, and
output parts of the model, the vertical axis represented disparity and the
horizontal axis was space.
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0.0625 c0p. Because there is evidence that cortical cells respond to
relative contrast in a scene, rather than absolute contrast (Bonds,
1991), the outputs of the disparity energy units were normalized
using a soft-max nonlinearity (Bridle, 1989):

ZEi ~x! 5
exp@Ei ~x!#

(
j

exp@Ej ~x!#
(2)

wherej indexed the 10 complex cells with different phase shifts at
a single spatial location within a single spatial-frequency band,
Ei ~x! was the initial output of the complex cell, andZEi ~x! was the
normalized output. This normalization occurred at each spatial
location within each frequency band. Activity in other parts of the
model was also normalized with this soft-max computation.

Local disparity networks
In the local disparity pathway, there were eight receptive-field

locations, and each received a weighted input from the 30 complex
cells at each of nine disparity energy locations in the preceding
layer (270 inputs total). Input to each of these eight receptive-field
locations overlapped by three locations in the disparity energy
layer. Weights were shared across all receptive-field locations for
each disparity. Each receptive-field location at the local disparity
layer contained a pool of four disparity-tuned units, and functioned
as a single network. These four disparity-tuned units each received
270 inputs from the disparity energy layer. Each receptive-field
location was intended to provide strong support for only one dis-
parity. This constraint was enforced as the result of competition

Fig. 2. The upper panels show the left and right eye filters for a binocular
simple cell. These filters differed in phase by 90 deg. The lower panel
shows how simple cell output was combined into a complex cell.

Fig. 3. Disparity energy filter output in response to a single object at a disparity of approximately 2 pixels. At the bottom of the figure
is the input stimulus with the right eye image in the top row and the left eye image in the bottom row. The three regions above the
stimulus represented the output of the disparity energy filters at three different spatial frequencies. Within each spatial-frequency band,
the horizontal axis represented space, while the vertical axis represented 10 phase differences, equally spaced between 0 andp/2
radians. The top row of each band had a 0-radian phase difference, while the bottom row had a phase difference ofp/2. The maximum
disparity to which the low SF(spatial frequency) band was responsive was 4 pixels (at thep/2 radians phase difference). The medium
SF band responded up to 2 pixels, and the high SF band responded to disparities of 1 pixel or less. In this example, both edges of the
object gave strong signals in each of the SF bands. The pair of numbers below each frequency band were the maximum and minimum
values within that band. White indicated the highest value, black the smallest.
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among the four disparity-tuned units at each receptive-field loca-
tion using the soft-max nonlinearity [Eq. (2)]. This competition
induced by the soft-max can be considered analogous to the unique-
ness constraint of Marr and Poggio (1976).

In summary, each local disparity network corresponded to a
specific spatial location in the input (Fig. 1). The soft-max com-
petition occurredwithin each local disparity network, and insured
that only one disparity was strongly activated.

Selection networks
As in the local disparity networks, the selection networks were

organized into a grid of eight receptive-field locations with a pool
of four disparity-tuned units at each location, and weights were
shared across all receptive-field locations for each disparity. The
four units at each location in the selection layer represented the
local support for each of the different disparity hypotheses.

Since the goal of this pathway was to select the spatial locations
with the most reliable evidence for each disparity, it is useful to
think of the selection networks as four separate layers that re-
sponded to a specific disparity across all regions of the image. As
in the disparity energy and local disparity pathways, the outputs of
the selection networks were normalized with the soft-max opera-
tion. This competition, however, occurred separately for each of
the four disparities in a global fashionacross space—that is, across
all spatial locations (Fig. 1). In summary, each selection network
corresponded to aspecific disparity, and its goal was to find the
spatial location with the best support for that disparity. In compar-
ison, the local disparity networks normalized responses locally
(across disparities), as described above.

Output layer
The output of the model (as shown in Fig. 1, and in subsequent

figures) had a spatial map generated by pairwise multiplying the
activity of units in the local disparity and selection pathways. The
global output was generated from the space output by summing
these products across all spatial locations for each of the four
disparities:

Ok 5 (
x

Lk~x!Sk~x! (3)

whereOk was the global (space-independent) evidence for dispar-
ity k, Lk~x! was the local disparity output for disparityk at location
x, andSk~x! was the selection output for disparityk at locationx.
This resulted in a distributed representation for disparity that was
independent of the spatial location of the disparity in the image.

Training
The weights from the retina to the disparity energy layer were

fixed. The weights in the local disparity and selection pathways,
however, were initialized with small random values, and then op-
timized using the mixture-of-experts learning algorithm (Jacobs
et al., 1991). Training was stopped when the performance of the
model stopped improving. The difference between the activities of
the local disparity units and the known disparities in the image
provided a measure of performance of the local disparity pathway.
Those local disparity units which had activity levels close to the
known disparities in the real scene adjusted their weights to im-
prove their prediction even more. The selection units, on the other
hand, were trained to predict what kinds of features in the image
were likely to lead to good disparity estimates. This functional
division of labor was reflected in the common objective function

for the network. Specifically, the weights to the local disparity and
selection units were adjusted according to the following error func-
tion (Jacobs et al., 1991):

Ek 5 2log(
x

Sk~x!expF2
1
2 7Dk~x! 2 Lk~x!72G (4)

whereEk represented the error on a single case for the output unit
tuned to disparityk, Sk~x! was the output of the selection network
for spatial locationx and disparityk, Lk~x! was the output of the
local disparity network for locationx and disparityk, andDk~x!
was the target output. The learning rule for each pathway was
formed by taking the derivative of this error function with respect
to the activities in the local disparity and selection pathways [see
Nowlan & Sejnowski (1994) for further details].

Comparison models

For comparison with the mixture-of-experts model, a single-
pathway model trained with backpropagation (Rumelhart et al.,
1986) and a cross-correlation model were developed. The single-
pathway model had 32 hidden units between the same input filters
as in the mixture-of-experts and the same output layer. Units in the
hidden layer had localized receptive fields identical to those in the
mixture-of-experts model; weights were shared across the different
receptive-field locations. In addition, each output unit received
connections only from those hidden units that became tuned to the
same disparity. All units in the hidden and output layers had lo-
gistic activation functions:

ai 5
1

1 1 exp~2neti !
(5)

The cross-correlation (Stevenson et al., 1991; Cormack et al.,
1991; Gonzalez & Woods, 1992) of a particular stimulus was
defined for the four integral pixel disparity values (d5 0, 1, 2, and
3 pixels):

CL,R~d! 5
(
x51

M2d

IL~x 1 d!IR~x!

M 2 d (6)

whered was the disparity (in pixels) between the left imageIL and
the right imageIR, x indexed the spatial locations in the image, and
M was the length of the image in pixels. This correlation was
unbiased—it was normalized by the number of terms that contrib-
uted to the sum. This normalization was important for obtaining
accurate disparity estimates. The four resulting cross-correlation
values,CL,R~d! for d 5 0,1,2,3, were then linearly normalized to
sum to 1.0. These four values typically did not differ greatly in
magnitude because most of the image (82 pixels in length) was
constant luminance background, which contributed a constant value
to the sum in the numerator of eq. (6). To make this disparity signal
more salient, a soft-max operation [eq. (2)] was performed on these
four output values. Disparity estimates were obtained by fitting
these outputs with a Gaussian using the procedure described in
Disparity estimation.

Disparity estimation

To compare the model’s outputs with the known disparities of the
objects present in the input, the model’s estimate of disparity needs
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to be computed from the four output activation values (labeled
“Actual Output” in figures illustrating the model). For stimuli con-
taining a single object, a Gaussian was fit to these outputs using a
least-squared-error minimization procedure in MATLAB. A Gauss-
ian was chosen because the disparity tuning curves of the outputs
were Gaussian. The mean and variance of the Gaussian were iter-
atively adjusted to find the least-squares fit with the four data
points in the output. The initial value of the mean was 1.0, and the
initial value of the variance was 1.0. An example of this fitting
procedure is illustrated in the upper panel of Fig. 4. For this par-
ticular stimulus, the input disparity was 1.45 pixels. The model’s
estimate of disparity, as indicated by the mean of the Gaussian,
was 1.42 pixels. Through the remainder of this paper, references to
the model’s disparity estimate are based on this Gaussian-fitting
procedure. When two objects were present in the input, the four

activation values of the output were fit with the sum of two Gaus-
sians, as shown in the lower panel of Fig. 4. In this case, the means
were initialized to 1.0 and 2.0 pixels, and the variances were
initialized to 1.0. In this example, the input stimulus disparities of
the two objects were 0.24- and 2.69-pixel disparity. The model
estimates of disparity for this stimulus, based on the sum of Gaus-
sians fit of the output activations, were 0.21- and 2.70-pixel dis-
parity. There is no mechanism in the current model to indicate
whether one object or two objects are present in the input. This
Gaussian-fitting procedure is, of course, subject to local minima.
However, given the accuracy of disparity estimation exhibited by
the model (as described below), local minima were not believed to
be a problem, and no precautions were taken to avoid them.

Using the mean of the Gaussian obtained from this least-
squared error-fitting procedure, the model’s ability to discriminate
between different disparities can be determined. The discrimina-
tion threshold, which can be measured both psychophysically in
primates and computationally in a model, is defined as the dispar-
ity difference at which one can correctly detect a difference in
depth 75% of the time. The disparity-discrimination threshold for
the model was determined using signal-detection theory (Green &
Swets, 1966). An alternative, more physiologically plausible way
to estimate the disparity from a noisy population code is to use a
network with lateral interactions and a separate inhibitory popu-
lation (Pouget & Zhang, 1997).

Data sets

Five data sets were used to train and test the stereo models de-
scribed in this paper. In this section, each of these data sets is
described in detail. In each data set, a single training pattern con-
sisted of a right eye image, a left eye image, and desired output
values. Sample images from each of the different data sets are
shown in Table 1. There are training and test stimuli for each data
set. The number of training stimuli is indicated in the description
below. All test stimuli data sets contained 100 exemplars, unless
otherwise indicated.

1. Single Object. This data set contained 100 stimuli generated
in the following manner. The images all started with a zero-
disparity background (of constant luminance 0.5). Then, a
randomly chosen object between 10 and 25 pixels in size was
included in the image at a real-valued location with a real-
valued (nonintegral) disparity between 0.0 and 3.0 pixels. At
the edge of the object, that is, between integral pixel loca-
tions, luminance values were linearly interpolated. The lu-
minance values in this single object were randomly chosen
from a uniform distribution, and were either in the range
[0.0, 0.1] or [0.9, 1.0]. This object always appeared in the
fronto-parallel plane; that is, the disparity did not change at
any point on the object.

2. Multiple Objects. This data set contained 250 stimuli. Half
of the patterns contained a single object in the image, while
the other half contained two objects. The single object stim-
uli were generated as described above in the Single Object
data set. The training patterns with two objects also had a
constant luminance (0.5) zero-disparity background and
the objects had a size that was randomly chosen between 10
and 25 pixels. One object had luminance values in the range
[0.0, 0.1], while the other had luminance values from [0.9,
1.0]. The differences in luminance were for visualization

Fig. 4. Upper panel: The Gaussian fit for a stimulus containing a single
object. The plus symbols (‘1’) indicate the activation values of the four
output units tuned to 0-, 1-, 2-, and 3-pixel disparity. For this particular test
stimulus, the input disparity was 1.45 pixels; the model’s estimate (the
mean of the Gaussian) was 1.42 pixels. Lower panel: The sum of Gaussians
fit for a stimulus containing two objects. The test stimulus disparities
were 0.24 and 2.69 pixels. The model estimates of disparity were 0.21 and
2.70 pixels.
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purposes—model performance did not depend on this. The
locations of the two objects in the image were real-valued
and were randomly chosen subject to the constraint that they
differed by at least 6 pixels. Because the locations were
chosen independently, often one of the two objects occluded
the other one. The disparities of the two objects were also
randomly and independently chosen, but were included in
the data set only if the disparities of the two objects differed
by at least 1.5 pixels. The psychophysical finding of dispar-
ity averaging (Parker & Yang, 1989) was the primary moti-
vating factor for requiring this disparity difference between
the two objects.

3. Noise. This data set contained 250 stimuli. First, a uniform
random background (in the range [0.0, 1.0]) was written on
both the left and right eye images. This background was
uncorrelated between the left and right eyes. Then, an object
(10–25 pixels in length) was generated from the same uni-
form random distribution (in the range [0.0, 1.0]). This ob-
ject was written in the image at a randomly chosen real-
valued location with a real-valued disparity in the range [0.0,
3.0]. This data set differed from the Single Object data set in
that it had an uncorrelated noise background, and the lumi-
nance edge between the object and the background was dif-
ficult to detect. Extracting disparity information from stimuli
in this data set was an especially difficult task.

4. Binary. This data set had binary random-dot stereograms
(40% dot density) that included transparent surfaces. Lumi-
nance values were limited to the integral values of 0 and 1.
Transparent random-dot stimuli were particularly challeng-
ing for models of stereopsis so this data set contained 1400
stimuli. 40% of the stimuli contained a single integral dis-
parity shift of 0, 1, 2, or 3 pixels. The remaining stimuli
represented transparent stimuli and consisted of dots at two
different disparities. Specifically, 50% of the dots were shifted
by an integral disparity value (0, 1, 2, or 3 pixels) while the
remaining dots were shifted by a different disparity. The
disparity difference between the two surfaces was always at
least 2 pixels. Thus, the following three combinations of
disparity (for the two transparent surfaces) were present in
the data set: (1) 0- and 2-pixel disparity, (2) 0- and 3-pixel
disparity, and (3) 1- and 3-pixel disparity. Dots at different
disparities were not separated spatially; they were inter-
leaved across space. Psychophysically, these stimuli corre-
sponded to transparent fronto-parallel surfaces at different
depths.

5. Real. This data set contained 16 stimuli from real-world
stereoscopic images. These were obtained from the Cali-

brated Imaging Laboratory (www.cs.cmu.edu0afs0cs.cmu.
edu0project0cil 0ftp0html0cil-ster.html) at Carnegie Mellon
University, and contain ground truth information for the pixel
location of specific features in the images. The data set used
was the “Planar texture” files (data set CIL-0002).

The desired values for all training patterns (with real-valued
disparities) were generated under the assumption that each of four
output units had a fixed-variance Gaussian disparity tuning curve,
centered at a disparity of 0.0, 1.0, 2.0, and 3.0 pixels, respectively.
This resulted in a distributed representation for each output. It
should be noted that this output representation was space indepen-
dent. In other words, during training the error signal indicated only
what disparities were present in the image. The network received
no information as to where those particular disparities were located
in the image. It had to extract this spatial information through
learning.

Results

Qualitative overview of model performance

In Fig. 5, the activation of the model is shown in response to a
stimulus with two objects in the image. The object on the left in the
image (the lighter one) was at a disparity of approximately zero
pixels, while the darker object on the right was at a disparity of
around 2 pixels. The darker object was at a closer crossed disparity
than the lighter object, and occluded it. In the disparity energy
layer of the model, the two outside edges of each object produced
a visible localized signal of moderate amplitude (as indicated by
the grayscale values). The strongest signal in the disparity energy
layer, however, came at the position where the dark object oc-
cluded the lighter object. This edge (at the left side of the dark
object) produced essentially the same pattern of activation in the
disparity energy layer as the right edge of the dark object. The
difference was that the left edge of the dark object produced a
stronger amplitude signal because the response of the binocular
complex cells was a function of contrast in addition to disparity. At
the left edge of the dark object, the contrast was greater than at the
right edge.

The pattern of activation in the local disparity networks in
response to this two object stimulus appears complicated, but can
be examined systematically. In the leftmost local disparity net-
work, activation was strongest for a disparity of zero pixels. Based
on the topographic mapping of the energy filters onto the local
disparity networks (and the selection networks), it is apparent that
this activation in the leftmost local disparity network was due to

Table 1. Sample stimuli for each of the data sets
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the left edge of the lighter object. The next local disparity network
to the right was more confused—activation was shared between
the unit for 0-pixel disparity and the unit for 2-pixel disparity. In
the next local disparity network (third from the left), activation was
strongest for a 2-pixel disparity. This signal was due to the left
edge of the darker object. On the right side of the local disparity
pathway, the networks that were second and third from the right
edge were most active at a disparity of 2 pixels, corresponding to
the right edge of the dark object.

The activity in the selection networks reveals much about how
the network solved the disparity-estimation task. In the top row
(tuned to 0-pixel disparity), activation was concentrated in the
leftmost unit, corresponding to the left edge of the lighter object.
The next row down (tuned to find evidence for a 1-pixel disparity)
showed a more diffuse pattern of activation. The 2-pixel disparity
network (second row from the bottom) showed strong activation at
the position that is close to the right edge. One interesting aspect
about the activation in this row is that looking in the disparity

energy layer, the left edge of this darker object had a much stronger
amplitude signal. However, in the selection network, this pattern of
activation from the left edge of the object was apparently not as
reliable as the information from the right edge of the object. The
proximity between the left edge of the lighter object and the left
edge of the darker object may account for the lack of strong acti-
vation in the left part of the 2-pixel disparity selection network.
That is, the two left edges have contaminated each other in the
disparity energy output, and thus did not provide reliable informa-
tion for disparity estimation. The bottom row (for disparity of 3
pixels), like the row for 1-pixel disparity, also showed a more
diffuse activation pattern.

At the space output level, there was strong activation at only the
two locations where the selection network indicated reliable evi-
dence for a disparity, and the local disparity net confirmed that that
disparity was present in its receptive field. At the leftmost position,
the unit responsive for a disparity of 0 pixels was highly active,
corresponding to the lighter object on the left part of the retina. At

Fig. 5. The activity in the mixture-of-experts model in response to an input stimulus containing two objects—the lighter one on the
left at a disparity of approximately 0 pixels and the darker one on the right at a disparity of approximately 2 pixels. This figure is
identical in layout to the previous figure. In this example, the dark object on the right was at a crossed disparity (closer than the fixation
plane) and occluded the lighter object on the left. The object on the left was approximately at the plane of fixation—that is, at zero-pixel
disparity.
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the second location from the right, there was high activation for a
disparity of 2 pixels. This corresponded to the right edge of the
dark object. Comparing the global output to the desired output,
there was a close match. For each output unit, the actual value was
within 0.05 of its desired value. A quantitative comparison of the
performance of the network to two objects across a range of dis-
parities is given in Fig. 6 (lower left panel).

Stereo hyperacuity and performance on stereograms

Stereo hyperacuity
Humans can discriminate differences in depth stereoscopically

in the range of a few arc seconds. This discrimination threshold is
much smaller than both the width of a photoreceptor and the width

of the narrowest disparity tuning curves, but it can be accounted
for in a distributed population of statistically independent neurons
(Lehky & Sejnowski, 1990).

After training the model on the Multiple Objects data set, it was
tested to see if it also demonstrated stereo hyperacuity. Using the
disparity-estimation procedure (described in Disparity estimation),
the disparity threshold was 0.23 pixels on the Single Object data
set (Fig. 6, upper left panel). This value is substantially less than
the input resolution of the model (1 pixel) and is thus indicative of
stereo hyperacuity. In addition, the model had a fairly low bias in
its estimates of20.05 pixels, determined as they-intercept of the
best-fitting line through the model disparity estimates. Because the
Gaussian-fitting procedure can result in disparity estimates that are
outside the input range of 0.0 to 3.0 pixels, estimates were clipped

Fig. 6.Upper left: Mixture-of-experts model performance for the Single Object data set. The model’s estimates are plotted as a function
of the input disparity. Using signal detection theory, the disparity threshold was 0.23 pixels. The bias (they-intercept of the best-fitting
line) was20.05. Lower left: Model performance in estimating disparity of double-object stimuli. The test set contained 50 stimuli, each
with two objects. This figure shows disparity estimates for all 100 individual objects in this set of 50 double-object stimuli. Lower right:
Mixture-of-experts model performance on 100 novel Noise stereograms.
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at 0.0 and 3.0 pixels when this occurred. The data appear to ap-
proximate a step function (with steps at 0-, 1-, 2-, and 3-pixel
disparity) because the tuning curves for the output units are cen-
tered at these values. This caused the model to estimate, for ex-
ample, a disparity of 1.0 pixels when the input was in the range of
0.8–1.2 pixels. It is also apparent from this figure that the model
overestimated at high disparities and underestimated at low dis-
parities. This is likely due to the fact that the Gaussian-fitting
problem is severely underconstrained when there are only four
output units (preferred disparity values). With a more dense map of
disparity (10–20 output units), this problem should be substantially
reduced.

The model was also tested on a novel set of 50 Multiple Object
stimuli (Fig. 6, lower left panel). The sum of two Gaussians was fit
to the output activation values, as described in Disparity estima-
tion. The disparity threshold calculated using the model’s disparity
estimate for each of the 100 objects (50 stimuli3 2 object0stimuli)
was 0.41 pixels, and relatively unbiased. The paucity of objects
with input disparities roughly between 1.0 and 2.0 pixels (see
Fig. 6, lower left panel) is due to the constraint, in generating the
stimuli, that the disparities must differ by 1.5 pixels. This tended to
push the input disparities out toward the limiting values of 0- and
3-pixel disparity.

Stereogram performance

Noise stereograms.In the experiments described thus far, all
stimuli contained objects, defined as a contiguous array of similar
luminance values that were significantly different from the back-
ground luminance. The model was also trained and tested on two
kinds of stereograms (Julesz, 1971): the Noise data set and the
Binary data set. In the Noise data set, as noted in the description in
Data sets, the strong luminance edge between the object and the
background (found in the Multiple Objects data set) was no longer
present. The disparity signal of the object remained, but it was
much more difficult to detect because of the variation in luminance
values and the uncorrelated random background (see Fig. 7).

The model’s response to a novel set of 100 noisy random-dot
stereograms is shown in Fig. 6 (lower right panel). The model’s
disparity threshold was 0.55 pixels, and still demonstrated stereo
hyperacuity. The increased threshold may be attributed to the dis-
tracting uncorrelated noise background, as well as to the loss of the
strong luminance edge at the border of the object and the back-
ground.

Binary random-dot stereograms.After training the model on a
data set of 1400 binary random-dot stereograms (40% dot density)
that included transparent surfaces, the model was tested on novel

Fig. 7. The response of a model trained on noisy stereograms to a novel noisy stereogram.
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stimuli—100 standard single-disparity random-dot stereograms and
50 transparent stimuli that defined two surfaces at different dis-
parities. The model performed well on the standard random-dot
stereograms, with a disparity threshold of 0.36 pixels. For the
stimuli containing two transparent surfaces, the threshold rose sub-
stantially to 0.83 pixels. An example of the model’s response to a
test stimulus after training is shown in Fig. 8.

Real-world images

The results described thus far for the stereo model are based on a
variety of synthetic stimuli. Although these stimuli differ in a
number of ways (e.g. luminance profile, spatial-frequency content,
and contrast), they may still contain certain statistical regularities
that are not representative of natural visual stimuli found in the
world.

Using the parameters obtained after optimizing the model on
the Multiple Objects data set, the model was tested on real-world
stereoscopic image pairs (Real data set described in Data sets). The
disparity threshold for these real-world stimuli was 0.30 pixels,
with a bias of20.02 pixels (Fig. 9, upper left panel). Thus, the

model generalized well from the statistics of the synthetic images
to the real-world images.

Ensemble performance on a varied set of stimuli

The simulations that we have described thus far in the paper are the
result of training and testing on a single kind of stimulus (with the
exception of Real-world images). But it is not clear how well the
model would generalize when trained on several different kinds of
stimuli. In this section, we describe how the mixture-of-experts
model performs when trained on a set of stimuli containing: (1)
150 single objects, (2) 150 double objects, (3) 150 Noise stereo-
grams (from the Noise data set), and (4) 150 stereograms from the
Binary data set. These stimuli were generated in the same way as
described in Data sets, and illustrated in Table 1.

After training on this ensemble of stimuli, we computed dis-
parity thresholds for four testing sets—one for each of the four
kinds of stimuli. For single-object stimuli, the model performed
extremely well, with a disparity threshold of 0.16 pixels. This
performance is even better than when the model is trained ononly
single and double objects. It may be that the added diversity of this

Fig. 8. Model response to a novel binary stereogram with two transparent surfaces—at 0-pixel and 3-pixel disparity.
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training set (with many different kinds of objects) accounts for the
model’s outstanding generalization ability. This disparity threshold
rose to 0.45-pixel disparity for stimuli containing two objects. For
the Noise stereograms, the threshold increased substantially to
1.09-pixel disparity with a bias of 0.55 pixels. This is nearly dou-
ble the threshold of the model when trained on Noise stimuli alone
(see Stereogram performance). The poor performance on these
stimuli is likely due to the fact that they are, statistically, a difficult
disparity signal to estimate, and that they only account for 25% of
the stimuli in the training set. In a similar manner, the model did
not generalize well to novel stimuli containing two transparent
surfaces. The threshold for these stimuli was 0.84 pixels, with a
bias of 0.41 pixels. Discovering the kinds of energy filter responses
that are indicative of two transparent surfaces is difficult, espe-
cially when these kind of stimuli also comprise only 25% of the
stimuli on which the model is trained.

Comparison to the single-pathway model

A single-pathway model (trained with backpropagation) was used
for comparison with the two pathway (local disparity and selec-
tion) mixture-of-experts model. A difference in performance be-
tween these two models provides an estimate of the contribution
made by the selection pathway (Table 2). The single-pathway model
(described in Comparison models) was trained using several dif-
ferent data sets. The first training set was the Multiple Objects data
set. Disparity estimates were computed for the Single Object data
set using the Gaussian-fitting technique described in Disparity es-
timation. This test set is the same as the one used for the mixture-
of-experts disparity threshold results shown in Fig. 6 (upper left
panel). The disparity threshold was 0.74-pixel disparity in this
single-pathway model (Fig. 9, lower left panel), compared to 0.23
for the mixture-of-experts model. When tested on a set of 50

Fig. 9. Upper left: Disparity estimates for the Real data set using the model trained on the Multiple Objects data set. Lower
left: Performance of the single-pathway model for the Single Object data set after training on the Multiple Objects data set. Lower
right: Performance of the single-pathway model for 50 novel stimuli each containing two objects, after training on the Multiple Objects
data set.
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Multiple Object stimuli (100 objects altogether), the threshold of
the model was 0.66 pixels (Fig. 9, lower right panel).

The single-pathway model was also trained on the Single Ob-
ject data set, and tested on a different set of 100 Single Object
stimuli. The computed disparity threshold of the single-pathway
network for these novel stimuli was 0.33 pixels (see Fig. 10, upper
left), substantially lower than when multiple objects were present
in the training set.

Comparison to the cross-correlation model

The disparity estimates for the Single Object data set using the
cross-correlation model are shown in Fig. 10 (upper right panel).
The disparity threshold was 0.46 pixels. When tested on 100 stim-
uli from the Noise data set, the threshold rose to 1.28 pixels of
disparity, with a large bias (Fig. 10, lower left panel). The disparity
signal in these Noise stimuli was much more difficult to detect

Table 2. Disparity thresholds (in pixels) for each data set for
the mixture-of-experts model (ME), the single-pathway model
(SP), and the cross-correlation model (CC)a

Stimulus type ME SP CC

Single 0.23 0.74 0.46
Double 0.41 0.66 NT
Noise 0.55 NT 1.28
Random dot 0.36 NT NT
Transparent 0.83 NT NT
Real 0.30 NT 0.28

aNT means the model was not tested on that data set. For all data sets, the
model was tested and trained on the same kind of stimuli, with one ex-
ception:Double-object stimuli were tested after training on the Multiple
Objects data set, which included Single Object and Double Object stimuli.
The cross-correlation model was not trained.

Fig. 10.Upper left: Single-pathway model performance for 100 different single-object test stimuli after training on the Single Object
data set. Upper right: Cross-correlation model performance on the Single Object data set. Lower left: Cross-correlation model
performance on 100 stimuli from the Noise data set. Lower right: Cross-correlation model performance on the data set of real images.
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with the cross-correlation approach. Because the background lu-
minance was no longer constant (as it was for the Single Object
data set), the background did not contribute a constant value to the
sum in eqn. (6). Instead, the background contributed a different
amount for each disparity valued. So, although the object in the
stimulus contained a well-defined disparity signal, this information
was swamped by the noisy disparity cues in the background. The
cross-correlation model was also tested on the Real data set, a set
of real-world images with known (ground truth) disparities. The
disparity threshold was 0.28 pixels (Fig. 10, lower right panel). For
performance comparisons with the mixture-of-experts and single-
pathway models, see Table 2.

Analysis of model phenomena

Receptive-field properties

The receptive-field properties of units in the local disparity and
selection pathways were examined to gain insight into the function
of the mature network. As noted in Qualitative overview of model
performance, the model became sensitive to the disparity edges of
the objects as a result of the optimization of model parameters. To
further explore how the model responded to edges, the receptive
field of a unit in each pathway was mapped systematically.

The receptive-field response of a unit depended on the archi-
tecture, receptive-field layout, and weight-sharing properties of
the model. The receptive field of a unit in either the local disparity
or the selection pathway covered nine spatial locations (horizon-
tally in the figures) in the disparity energy filters. At each of these
nine spatial locations there were 30 disparity energy outputs
(vertically—10 at each of three spatial frequencies). Weights in
each pathway were sharedacross space. For example, the weights
to each of the eight local disparity units tuned to 3-pixel disparity
(the bottom row of the local disparity pathway) were the same. The
same was true for other rows (disparities) of the local disparity
pathway, and for the selection pathway. Thus, all units tuned to the
same disparity in the same pathway computed the same function of
the input.

The responses of a single unit were mapped at each of four
disparities in each pathway as a function of space and disparity. A
single high-contrast edge was moved systematically across the
receptive field of the unit in increments of approximately 0.5 pix-
els. At each of these spatial locations, the disparity of the edge was
varied between 0.0 and 3.0 pixels in increments of approximately
0.15 pixels. In this way, a dense response map was generated as a
function of space (within the receptive field) and disparity for each
of the four disparities in both the local disparity and selection
pathways.

Local disparity units
The response of a unit in the local disparity pathway tuned to

0-pixel disparity is shown in the upper left part of Fig. 11. The unit
responded strongly when the edge was at a 0-pixel disparity in the
middle of its receptive field. The response decreased when moved
away from 0-pixel disparity (vertically, in the figure), and when
the edge was moved toward the side of the receptive field. Similar
responses were found for units tuned to 1-, 2-, and 3-pixel disparity
in the local disparity pathway (Fig. 11). Within each spatial loca-
tion in the local disparity pathway, there was a soft-max compe-
tition across the four disparities. The responses in Fig. 11 reflect
this competition.

Selection units
The responses of units in the selection pathway as a function of

space and disparity, shown in Fig. 12, were not as stereotyped as
those of units in the local disparity pathway. The selection unit
tuned to 0-pixel disparity (upper left part of Fig. 12) responded
strongly to a change in disparity (from approximately 0- to 1-pixel
disparity) moving from left to right across the receptive field. The
selection unit tuned to 1-pixel disparity (upper right) showed a
more complex response pattern. Note, however, that it shared (with
selection unit 0) the property that it responded to changes in dis-
parity across space. This pattern also held for the selection unit
tuned to a pixel disparity of 2 (lower left). Unlike the units in the
local disparity pathway, the selection pathway units werenot trained
to find the best disparity estimate within their local receptive field.
Instead, units in the selection pathway were trained to find reliable
patterns in the disparity energy layer that were indicative of a given
disparity, regardless of spatial location. This selection was en-
hanced by competition across space in the selection pathway.

The spatial receptive-field structure of these selection units
suggests that they may be sensitive todisparity contrast. In other
words, the selection units have learned that a reliable indicator for
a given disparity was a change in disparity across space. These
units responded only at the edge of an object (not in the middle),
even when there was a disparity signal present in the middle of the
object. This selection-unit activity can be interpreted as indicating
where thecontinuity constrainthas been violated (Marr & Poggio,
1976). Thecontinuity constraintsuggests that surfaces generally
change smoothly in depth except at object boundaries. The oper-
ation of the selection units occurred not only across space, but in
depth as well. These selection units could thus provide valuable
information in the construction of a three-dimensional (3-D) model
of the world.

Recent neurophysiological data from von der Heydt et al. (1995)
is consistent with selection-unit activity. They found that neurons
of awake, behaving monkeys in area V2 responded to edges of
random-dot stereograms. Because random-dot stereograms have
no monocular form cues, these neurons must be responding to
edges in depth. This behavior is analogous to that observed in the
selection pathway of the model. The units were responsive to
changes in disparity across space—in other words, they were sen-
sitive to edges in a depth map.

Psychophysics

The model was tested on a psychophysical task for which human
experimental data were available for comparison. Disparity sensi-
tivity is affected by the spatial-frequency content of an image.
Westheimer and McKee (1980) found, in human psychophysical
experiments, that disparity thresholds increased for any kind of
spatial-frequency filtering of line targets, although disparity sen-
sitivity was more adversely affected by high-pass filtering than by
low-pass filtering. The disparity-estimation performance of the
model was assayed after manipulations of the spatial-frequency
content of the input. The effects of this spatial-frequency filtering
on model performance depended on the frequency responses of the
disparity energy filters that pre-process the input to the model.
These frequency responses (of simple cells in the energy filters)
are shown in Fig. 13a. The specific amplitude values of the fre-
quency response are not important because these simple cell re-
sponses were normalized and combined to generate the complex
cell (disparity energy) response. In addition, the soft-max opera-
tion across disparities within each spatial location of each filter
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bank normalized responses by boosting the highest signal. (See
Retina and disparity energy filters and Ohzawa et al. (1990) for
more details).

Westheimer and McKee (1980) filtered their line targets with
low-pass and band-pass filters. When their stimuli were low-pass
filtered, the disparity thresholds increased by a factor of 1.1–1.4,
relative to the unfiltered stimuli. After band-pass filtering, dispar-
ity thresholds had increased by a factor of 1.7–3.5. The low-pass
filtering of Westheimer and McKee was matched using filter A, as
shown in Fig. 13b, and filter B for the band-pass filter. Filter A
retained most of the information in the low and medium SF filters,
while losing some of the signal in the high SF filters. Relative to
filter A, filter B lost much of the low SF information.

With the weights obtained during training on the Multiple Ob-
jects data set, the model’s estimates of disparity for the Single
Object data set filtered using filters A (low-pass) and b (band-pass)
were determined. Consistent with Westheimer and McKee (1980),
the disparity threshold of low-pass filtered images had risen to
0.33-pixel disparity (a factor of 1.46) relative to unfiltered test
stimuli (with a threshold of 0.23 pixels). The disparity threshold of
band-pass filtered images (filter B) rose to 0.60-pixel disparity, a
factor of 2.64 relative to unfiltered stimuli. This result is also
consistent with Westheimer and McKee (1980).

Discussion

The difficulty in disparity estimation under less than ideal circum-
stances (e.g. transparency, occlusion, noise) is knowing which dis-
parity cues are reliable and should be integrated. The approach to
this problem taken here was to model the disparity estimation
process that would be needed to account for asmall patchof the
image. A multiscale neurophysiologically realistic implementation
of binocular cells was used for the input, combined with a neural
network model to learn reliable cues for disparity estimation. This
integration of neurally realistic modeling and a sophisticated sta-
tistical learning model represents a powerful framework for ap-
proaching other open problems in computational neuroscience. A
number of related computational models have also emphasized the
importance of data reliability for estimation tasks (Derin & Elliot,
1987; Földiák & Young, 1995; Grzywacz et al., 1995). The per-
formance of the model, its relationship to neurophysiology and
behavior, and the limitations of the model are discussed below.

Performance

The mixture-of-experts model performed well overall on a variety
of disparity-estimation tasks, compared to the single-pathway and

Fig. 11.The activation of units in the local disparity pathway tuned to 0-, 1-, 2-, and 3-pixel disparity (starting in upper left) in response
to a single edge, as a function of space and disparity.
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cross-correlation models. The performance of these models for a
variety of data sets is summarized in Table 2. One explanation for
the poorer performance of the mixture-of-experts model on the
Double Object stimuli (relative to the Single Object stimuli) may
be the difficulty in fitting the sum of two Gaussians using only four
data points. More data points (i.e. a larger number of output units)
would improve this fitting process substantially. Disparity thresh-
olds for the mixture-of-experts model rose as the data sets became
more complicated. Especially challenging was the Transparent data
set, where the threshold rose to 0.83 pixels. For all data sets,
however, the mixture-of-experts model achieved stereo hyperacu-
ity performance.

In addition to the Multiple Objects data set, the single-pathway
model was also trained and tested on Single Object stimuli (not
shown in Table 2). In this case, the disparity threshold improved to
0.33 pixels. This low threshold for single-object stimuli suggests
that a selection mechanism was not necessary when only one dis-
parity was present in the image, and when there were high-contrast
disparity edges at the object boundaries. The lack of a selection
mechanism in the single-pathway model, however, limited perfor-
mance when more than object was present (Table 2). The selection
pathway of the mixture-of-experts model, on the other hand, per-

formed the crucial task of selecting reliable energy filter output
when multiple objects were present, and avoided averaging over
depth discontinuities. This comparison with a single-pathway net-
work illustrated the advantages of an architecture that separated
the disparity-estimation and selection (integration) tasks into two
separate pathways.

The cross-correlation model had no mechanism for estimating
the disparity of more than one object, and so could not be tested on
several of the data sets. Without a means tospatially selectreliable
disparity information (like the single-pathway model), the cross-
correlation approach fared poorly, relative to the mixture-of-
experts model, on both the Single Object stimuli and the Noise
stimuli. It estimated accurately, however, the disparities present in
the Real data set.

Another model using the multiscale approach was developed
by Marr and Poggio (1979). The strategy in this model is often
described as “coarse-to-fine.” Spatial filters with low spatial fre-
quencies were presumed to trigger vergence eye movements. When
the eyes verged to within a quarter-cycle disparity of the smaller
(high-frequency) receptive fields, disparity estimates would be
computed by summing disparities from all spatial scales. There are
two important differences between the model developed by Marr

Fig. 12. The activation of units in the selection pathway tuned to 0-, 1-, 2-, and 3-pixel disparity (starting in upper left) in response
to a single edge, as a function of space and disparity.
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and Poggio (1979) and the current model. First, Marr and Poggio
(1979) matched disparities at each scale sequentially (in time). The
current model had only a single time step. Information from all
scales (high, medium, and low spatial frequencies) was integrated
simultaneously. Since these computations could be performed in
parallel, the current model might be expected to compute more
quickly than Marr and Poggio (1979). In addition, the selection
pathway allowed the disparity to be robustly estimated. Psycho-
physical evidence against the coarse-to-fine strategy (Smallman,
1995; Mallot et al., 1996; Mowforth et al., 1981) would also favor
a parallel architecture like the present one.

The disparity energy filtering of the input image was a fixed
computation in the model—no adaptation or learning was in-
volved. In subsequent stages (the local disparity and selection
pathways), however, parameters were adjusted according to an
error signal. The mixture-of-experts model was optimized,by ex-
ample, to determine what features in the disparity energy layer
were important. The advantage of this particular network architec-
ture was that it dissociated the disparity-estimation process (local
disparity pathway) from the task of determining which cues in the

disparity energy output are likely to be reliable for estimating
disparity (selection pathway). The selection pathway determined
what patterns of activity in the complex cell output were consistent
indicators of disparity and should be selected. The response prop-
erties of units in the selection pathway qualitatively matched re-
sponses of binocular cells in monkey visual cortex area V2 (von
der Heydt et al., 1995), which also were selectively activated by
disparity gradients. Although it was not cleara priori what re-
sponse properties these selection units should have, after learning
it was found that units that responded to disparity contrast were
particularly valuable. The hard-coding of these response charac-
teristics is a clear next step for future models.

Comparison to psychophysical data

The performance of the model matched psychophysical data of
Westheimer and McKee (1980) on the effects of spatial-frequency
filtering on disparity thresholds in humans. These results can be
understood in terms of the frequency response of the model. Con-
sider the dynamic range of the disparity energy filters for the
different spatial frequencies. As described in the caption of Fig. 3,
the phase differences of the low spatial-frequency filters covered a
range of 0- to 4-pixel disparity, while the medium and high spatial-
frequency filters had a much narrower response range. Because the
test stimuli included disparities between 0 and 3 pixels, it is un-
derstandable that the network performed better with low-frequency
information present. It should be noted, however, that although the
low-frequency information did lead to reasonable stereoacuity, per-
formance of the network was much improved if information from
all spatial-frequency bands was present.

The sensitivity to depth contrast that was found in the selection
units in the model may be a general mechanism for segmenting
objects in depth. This response profile is consistent with a Laplacian-
like center-surround operating on a depth map (Mitchison, 1993),
and may explain psychophysical results reported by Westheimer
(1986). Westheimer studied stereoscopic depth contrast, in which
disparity estimates of vertical line targets presented psychophysi-
cally are modulated by the disparity of neighboring features. This
modulation depended on the spatial separation between targets.
When targets were closely spaced, they were perceived at a similar
depth—this is often referred to as disparity pooling. At larger
spatial separations, however, the line targets were perceived as
separated in depth, called arepulsion effect. These phenomena
could be explained by neurons with short-range excitatory con-
nections and long-range inhibitory ones, as suggested by Lehky
and Sejnowski (1990).

Limitations

The model was designed to selectively integrate reliable patterns
of activation in the local disparity pathway which are combined to
produce a space-independent measure of the disparities present in
a small local patch of an image. One limitation of the current
model is this focus on only a small region of space. The integration
of the local disparity estimates (produced at the output level of our
model) across a whole image scene is beyond the scope of the
current model. In practice, the visual field would be tiled with
networks performing local operations similar to those performed
by our model, in a columnar organization as found in visual cortex.

A related limitation of the model is that there is no represen-
tation ofsurfacespresent in a visual scene, as may be found in the
brain (see Nakayama & Shimojo, 1992). This surface representa-

Fig. 13. Frequency response of simple cells and spatial filters. (a) Fre-
quency response of simple cells (in each frequency band) that were the
basis of the disparity energy filters. (b) Spatial-frequency filters analogous
to those used by Westheimer and McKee (1980). ‘A’ is the low-pass filter,
‘B’ is the band-pass filter. The units of frequency were cycles0pixel.
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tion can be interpreted as a form of segmented depth map across
space. Such a representation did not explicitly exist in the model.
However, the disparity estimates at the output level of the model
could serve as a good initial estimate for an algorithm that smoothed
and segmented surfaces in depth. The Bayesian model developed
by Yuille et al. (1991) would work well in this regard.

The model can only accurately represent the disparity of fronto-
parallel surfaces. The representation of slanting surfaces (tilted in
depth) would require an interpolation mechanism (Mitchison &
McKee, 1985) such as that suggested above to account for smooth
changes in depth across space.

Finally, the model does not attempt to include temporal dynam-
ics of stereopsis. Thus, it cannot account for the results of Norcia
and Tyler (1984), who found temporal processing limits for the
binocular percepts of apparent depth motion and depth pulsation.
Related work by McKee and colleagues (1997) has shown that
binocular disparity information is most valuable for static images,
but the slow response of the system makes it less useful for de-
tecting moving targets. Nonetheless, the model has provided evi-
dence that assessing the reliability of local disparity estimates can
improve the performance of feedforward networks in a way that is
compatible with the physiological properties of neurons in the
visual cortex and psychophysical results from humans. A selection
mechanism along the lines studied here could be included in more
sophisticated models that incorporated spatial integration and tem-
poral dynamics.

Conclusions

The problem of estimating disparity under less than ideal circum-
stances, such as those that occur under conditions of transparency,
occlusion, and noise, is knowing which disparity cues are reliable
and should be integrated, and which are unreliable and should be
ignored. This problem was approached here with a feedforward

network model using a multiscale neurophysiologically realistic
implementation of binocular cells for the input, combined with a
method for discovering the properties of reliable cues for disparity
estimation. The gradient of the disparity, which is computed in the
visual cortex, emerged as an important variable in an intermediate
stage of the model that was responsible for selecting the most
reliable disparity estimates. This is illustrated in Fig. 14 which
provides a schematic summary of the current model. The model
achieved excellent performance on a range of different input stim-
uli. This same approach could be used to integrate motion with
disparity information, and could be combined with further stages
of processing that dynamically represent surfaces and boundaries
of objects.
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