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Attractor networks, which map an input space to a discrete output space,
are useful for pattern completion—cleaning up noisy or missing input
features. However, designing a net to have a given set of attractors is no-
toriously tricky; training procedures are CPU intensive and often produce
spurious attractors and ill-conditioned attractor basins. These dif�culties
occur because each connection in the network participates in the encoding
of multiple attractors. We describe an alternative formulation of attractor
networks in which the encoding of knowledge is local, not distributed.
Although localist attractor networks have similar dynamics to their dis-
tributed counterparts, they are much easier to work with and interpret. We
propose a statistical formulation of localist attractor net dynamics, which
yields a convergence proof and a mathematical interpretation of model
parameters. We present simulation experiments that explore the behavior
of localist attractor networks, showing that they yield few spurious attrac-
tors, and they readily exhibit two desirable properties of psychological
and neurobiological models: priming (faster convergence to an attractor
if the attractor has been recently visited) and gang effects (in which the
presence of an attractor enhances the attractor basins of neighboring at-
tractors).

1 Introduction

Attractor networks map an input space, usually continuous, to a sparse
output space. For an interesting and important class of attractor nets, the
output space is composedof a discrete set of alternatives. Attractor networks
have a long history in neural network research, from relaxation models in
vision (Marr & Poggio, 1976; Hummel & Zucker, 1983), to the early work of
Hop�eld (1982, 1984), to the stochastic Boltzmann machine (Ackley, Hinton,
& Sejnowski, 1985; Movellan & McClelland, 1993), to symmetric recurrent
backpropagation networks (Almeida, 1987; Pineda, 1987).
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Figure 1: (a) A two-dimensional space can be carved into three regions (dashed
lines) by an attractor net. The dynamics of the net cause an input pattern (the X)
to be mapped to one of the attractors (the O’s).The solid line shows the temporal
trajectory of the network state, Oy. (b)The actualenergy landscape during updates
(equations de�ned below) of a localist attractor net as a function of Oy, when the
input is �xed at the origin and there are three attractors, with a uniform prior.
The shapes of attractor basins are in�uenced by the proximity of attractors to
one another (the gang effect). The origin of the space (depicted by a point) is
equidistant from the attractor on the left and the attractor on the upper right,
yet the origin clearly lies in the basin of the right attractors.

Attractor networks are often used for pattern completion,which involves
�lling in missing, noisy, or incorrect features in an input pattern. The initial
state of the attractor net is determined by the input pattern. Over time,
the state is drawn to one of a prede�ned set of states—the attractors. An
attractor net is generally implemented by a set of visible units whose activity
represents the instantaneous state and, optionally, a set of hidden units that
assist in the computation. Attractor dynamics arise from interactions among
the units and can be described by a state trajectory (see Figure 1a).

Pattern completion can be accomplished using algorithms other than
attractor nets. For example, a nearest-neighbor classi�er will compare the
input to each of a set of prede�ned prototypes and will select as the com-
pletion the prototype with the smallest Mahalanobis distance to the input
(see, e.g., Duda & Hart, 1973). Attractor networks have several bene�ts
over this scheme. First, if the attractors can be characterized by composi-
tional structure, it is inef�cient to enumerate them as required by a nearest-
neighbor classi�er; the compositional structure can be encoded implicitly
in the attractor network weights. Second, attractor networks have some
degree of biological plausibility (Amit & Brunel, 1997; Kay, Lancaster, &
Freeman, 1996). Third, in most formulations of attractor nets (e.g., Golden,
1988; Hop�eld, 1982), the dynamics can be characterized by gradient de-
scent in an energy landscape, allowing one to partition the output space
into attractor basins (see Figure 1a). In many domains, the energy land-
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scape and the corresponding structure of the attractor basins are key to
obtaining desirable behavior from an attractor net. Consider a domain
where attractor nets have proven to be extremely valuable: psychologi-
cal models of human cognition. Instead of homogeneous attractor basins,
modelers often sculpt basins that depend on the recent history of the net-
work (priming) and the arrangement of attractors in the space (the gang
effect).

Priming is the situation where a network is faster to land at an attractor
if it has recently visited the same attractor. Priming is achieved by broaden-
ing and deepening attractor basins as they are visited (Becker, Moscovitch,
Behrmann, & Joordens, 1997; McClelland & Rumelhart, 1985; Mozer, Sitton,
& Farah, 1998; Plaut & Shallice, 1994). This mechanism allows modelers to
account for a ubiquitous property of human behavior: people are faster to
perceive a stimulus if they have recently experienced the same or a closely
related stimulus or made the same or a closely related response.

In the gang effect, the strength or pull of an attractor is in�uenced by
other attractors in its neighborhood. Figure 1b illustrates the gang effect:
the proximity of the two right-most attractors creates a deeper attractor
basin, so that if the input starts at the origin, it will get pulled to the right.
This effect is an emergent property of the distribution of attractors. The
gang effect results in the mutually reinforcing or inhibitory in�uence of
similar items and allows for the explanation of behavioral data in a range of
domains including reading (McClelland & Rumelhart, 1981; Plaut, McClel-
land, Seidenberg, & Patterson, 1996), syntax (Tabor, Juliano, & Tanenhaus,
1997), semantics (McRae, de Sa, & Seidenberg, 1997), memory (Redish &
Touretzky, 1998; Samsonovich & McNaughton, 1997), olfaction (Kay et al.,
1996), and schizophrenia (Horn & Ruppin, 1995).

Training an attractor net is notoriously tricky. Training procedures are
CPU intensive and often produce spurious attractors and ill-conditioned
attractor basins (e.g., Mathis, 1997; Rodrigues & Fontanari, 1997). Indeed,
we are aware of no existing procedure that can robustly translate an ar-
bitrary speci�cation of an attractor landscape into a set of weights. These
dif�culties are due to the fact that each connection participates in the speci-
�cation of multiple attractors; thus, knowledge in the net is distributed over
connections.

We describe an alternative attractor network model in which knowledge
is localized—hence, the name localist attractor network. The model has
many virtues, including the following:

� It provides a trivial procedure for wiring up the architecture given an
attractor landscape.

� Spurious attractors are eliminated.

� An attractor can be primed by adjusting a single parameter of the
model.
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� The model achieves gang effects.

� The modelparameters have a clear mathematical interpretation, which
clari�es how the parameters control the qualitative behavior of the
model (e.g., the magnitude of gang effects).

� We offer proofs of convergence and stability.

A localist attractor net consists of a set of n state units and m attractor
units. Parameters associated with an attractor unit i encode the center in
state-space of its attractor basin, denoted wi, and its pull or strength, denoted
p i . For simplicity, we assume that the attractor basins have a common width
s. The activity of an attractor at time t, qi(t), re�ects the normalized distance
from its center to the current state, y(t), weighted by its strength:

qi(t) D
p ig(y(t), wi, s (t))P
j pjg(y(t), wj, s(t))

(1.1)

g(y, w, s ) D exp(¡|y ¡ w |2 /2s2). (1.2)

Thus, the attractors form a layer of normalized radial-basis-function units.
In most attractor networks, the input to the net, E , serves as the initial

value of the state, and thereafter the state is pulled toward attractors in
proportion to their activity. A straightforward expression of this behavior is

y(t C 1) D a(t)E C (1 ¡ a(t))
X

i
qi (t)wi, (1.3)

where a trades off the external input and attractor in�uences. We will refer
to the external input, E , as the observation. A simple method of moving the
state from the observation toward the attractors involves setting a D 1 on
the �rst update and a D 0 thereafter. More generally, however, one might
want to reduce a gradually over time, allowing for a persistent effect of the
observation on the asymptotic state.

In our formulation of a localist attractor network, the attractor width s is
not a �xed, free parameter, but instead is dynamic and model determined:

s2
y (t) D

1
n

X

i
qi(t)|y(t) ¡ wi |

2. (1.4)

In addition, we include a �xed parameter sz that describes the unreliability
of the observation; if sz D 0, then the observation is wholly reliable, so
y D E . Finally, a(t) is then de�ned as a function of these parameters:

a(t) D s2
y (t)/ (s2

y (t) C s2
z ). (1.5)

Below we present a formalism from which these particular update equations
can be derived.
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The localist attractor net is motivated by a generative model of the ob-
served inputbased onthe underlying attractor distribution, and the network
dynamics corresponds to a search for a maximum likelihood interpretation
of the observation. In the following section, we derive this result and then
present simulation studies of the architecture.

2 A Maximum Likelihood Formulation

The starting point for the statistical formulation of a localist attractor net-
work is a mixture-of-gaussians model. A standard mixture-of-gaussians
consists of m gaussian density functions in n dimensions. Each gaussian is
parameterized by a mean, a covariance matrix, and a mixture coef�cient.
The mixture model is generative; it is considered to have produced a set
of observations. Each observation is generated by selecting a gaussian with
probability proportional to the mixture coef�cients and then stochastically
selecting a point from the corresponding density function. The model pa-
rameters (means, covariances, and mixture coef�cients) are adjusted to max-
imize the likelihood of a set of observations. The expectation-maximization
(EM) algorithm provides an ef�cient procedure for estimating the param-
eters (Dempster, Laird, & Rubin, 1977). The expectation step calculates the
posterior probability qi of each gaussian for each observation, and the max-
imization step calculates the new parameters based on the previous values
and the set of qi. The operation of this standard mixture-of-gaussians model
is cartooned in Figure 2a.

The mixture-of-gaussians model can provide an interpretation for a lo-
calist attractor network in an unorthodox way. Each gaussian corresponds
to an attractor, and an observation corresponds to the state. Now, how-
ever, instead of �xing the observation and adjusting the gaussians, we �x
the gaussians and adjust the observation. If there is a single observation,
a D 0, and all gaussians have uniform spread s, then equation 1.1 corre-
sponds to the expectation step and equation 1.3 to the maximization step in
this unusual mixture model. The operation of this unorthodox mixture-of-
gaussians model is cartooned in Figure 2b.

Unfortunately, this simple characterization of the localist attractor net-
work does not produce the desired behavior. Many situations produce par-
tial solutions, or blend states, in which the observation does not end up at
an attractor. For example, if two gaussians overlap signi�cantly, the most
likely value for the observation is midway between them rather than at the
center of either gaussian.

We therefore extend this mixture-of-gaussians formulation to character-
ize the attractor network better. We introduce an additional level at the
bottom containing the observation. This observation is considered �xed, as
in a standard generative model. The state, contained in the middle level, is
an internal model of the observation that is generated from the attractors.
The attractor dynamics involve an iterative search for the internal model
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Figure 2: A standard mixture-of-gaussians model adjusts the parameters of the
generative gaussians (elliptical contours in upper rectangle, which represents
an n-dimensional space) to �t a set of observations (dots in lower rectangle,
which also represents an n-dimensional space). (b). An unorthodox mixture-of-
gaussians model initializes the state to correspond to a single observation and
then adjusts the state to �t the �xed gaussians. (c) A localist attractor network
adds an extra level to this hierarchy—a bottom level containing the observation,
which is �xed. The middle level contains the state. The attractor dynamics can
then be viewed as an iterative search to �nd a single state that could have been
generated from one of the attractors while still matching the observation.

that �ts the observation and attractor structure. These features make the
formulation more like a standard generative model, in that the internal as-
pects of the model are manipulated to account for a stable observation. The
operation of the localist attractor model is cartooned in Figure 2c.

Formulating the localist attractor network in a generative framework
permits the derivation of update equations from a statistical basis. Note
that the generative framework is not actually used to generate observations
or update the state. Instead, it provides the setting in which to optimize and
analyze computation.

In this new formulation, each observation is considered to have been
generated by moving down this hierarchy:

1. Select an attractor x D i from the set of attractors.

2. Select a state (i.e., a pattern of activity across the state units) based on
the preferred location of that attractor: y D wi C N y.

3. Select an observation z D yG C N z.
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The observation z produced by a particular state y depends on the generative
weight matrix G. In the networks we consider here, the observation and
state-spaces are identical, so G is the identity matrix, but the formulation
allows for the observation to lie in some other space. N y and N z describe
the zero-mean, spherical gaussian noise introduced at the two levels, with
deviations sy and sz, respectively.

Under this model, one can �t an observation E by �nding the pos-
terior distribution over the hidden states (X and Y) given the observa-
tion:

p(X D i, Y D y |Z D E ) D
p(E |y, i)p(y, i)

p(E )
D

p(E |y)p ip(y |i)R
y p(E |y)

P
i p ip(y |i)dy

, (2.1)

where the conditional distributions are gaussian: p(Y D y |X D i) D G (y |wi ,
sy) and p(E |Y D y) D G (E |y, sz). Evaluating the distribution in equation 2.1
is tractable, because the partition function (the denominator) is a sum of a
set of gaussian integrals. This posterior distribution for the attractors cor-
responds to a distribution in state-space that is a weighted sum of gaus-
sians.

During inference using this model, this intermediate level can be consid-
ered as encoding the distribution over states implied by the attractor pos-
terior probabilities. However, we impose a key restriction: at any one time,
the intermediate level can represent only a single position in state-space
rather than the entire distribution over states. This restriction is motivated
by the fact that the goal of the computation in the network is to settle on
the single best state, and furthermore, at every step of the computation,
the network should represent the single most likely state that �ts the at-
tractors and observation. Hence, the attractor dynamics corresponds to an
iterative search through state-space to �nd the most likely single state that
was generated by the mixture-of-gaussian attractors and in turn generated
the observation.

To accomplish these objectives, we adopt a variational approach, approx-
imating the posterior by another distribution Q(X, Y|E ). Based on this ap-
proximation, the network dynamics can be seen as minimizing an objective
function that describes an upper bound on the negative log probability of the
observation given the model and its parameters. In a variational approach,
one is free to choose any form of Q to estimate the posterior distribution,
but a better estimate will allow the network to approach a maximum likeli-
hood solution (Saul, Jaakkola, & Jordan, 1996). Here we select a very simple
posterior: Q(X, Y) D qid(Y D Oy), where qi D Q(X D i) is the responsibility
assigned to attractor i, and Oy is the estimate of the state that accounts for the
observation. The delta function over Y implements the restriction that the
explanation of an input consists of a single state.
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Given this posterior distribution, the objective for the network is to min-
imize the free energy F, described here for a particular observation E :

F(q, Oy |E ) D
X

i

Z
Q(X D i, Y D y) ln

Q(X D i, Y D y)
P (E , X D i, Y D y)

dy

D
X

i
qi ln

qi

p i
¡ ln p(E | Oy) ¡

X

i
qi ln p( Oy |i),

where p i is the prior probability (mixture coef�cient) associated with attrac-
tor i. These priors are parameters of the generative model, as are sy, sz, and
w. Thus, the free energy is:

F(q, Oy |E ) D
X

i
qi ln

qi

p i
C

1
2s2

z
|E ¡ Oy |2

C
1

2s2
y

X

i
qi | Oy ¡ wi |

2 C n ln(sysz) (2.2)

Given an observation, a good set of parameters for the estimated poste-
rior Q can be determined by alternating between updating the generative
parameters and these posterior parameters. The update procedure is guar-
anteed to converge to a minimum of F, as long as the updates are done
asynchronously and each update step minimizes F with respect to that pa-
rameter (Neal & Hinton, 1998).

The update equations for the various parameters can be derived by min-
imizing F with respect to each of them. In our simulations, we hold most
of the parameters of the generative model constant, such as the priors p ,
the weights w, and the generative noise in the observation, sz. Minimizing
F with respect to the other parameters—qi, y, sy, a—produces the update
equations (equations 1.1, 1.3, 1.4, and 1.5, respectively) given above.

3 Running the Model

The updates of the parameters using equations 1.1 through 1.5 can be per-
formed sequentially in any order. In our simulations, we initialize the state
Oy to E at time 0, and then cycle through updates of fqig, sy, and then Oy.

Note that for a given set of attractor locations and strengths and a �xed
sz, the operation of the model is solely a function of the observation E .
Although the model of the generative process has stochasticity, the process
of inferring its parameters from an observation is deterministic. That is,
there is no randomness in the operation of the model.

The energy landscape changes as a function of the attractor dynamics.
The initial shapes of the attractor basins are determined by the set of wi,
p i , and sy. Figure 3 illustrates how the free energy landscape changes over
time.
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Figure 3: Each �gure in this sequence shows the free energy landscape for the
attractor net, where the three attractors (each marked by O) are in the same
locations as in Figure 1, and the observation is in the location marked by an E .
The state (marked by Oy) begins at E . Each contour plot shows the free energy
for points throughout state-space, given the current values of sy and fqig, and
the constant values of E , sz, fwig, and fp ig. In this simulation, sz D 1.0 and the
priors on the attractors are uniform. Note how the gang effect pulls the state Oy
away from the nearest attractor (the left-most one).

This generative model avoids the problem of spurious attractors for the
standard gaussian mixture model. Intuition into how the model avoids spu-
rious attractors can be gained by inspecting the update equations. These
equations have the effect of tying together two processes: moving Oy closer
to some wi than the others, and increasing the corresponding responsibility
qi. As these two processes evolve together, they act to decrease the noise sy,
which accentuates the pull of the attractor. Thus, stable points that do not
correspond to the attractors are rare.

This characterization of the attractor dynamics indicates an interesting
relationship to standard techniques in other forms of attractor networks.
Many attractor networks (e.g., Geva & Sitte, 1991) avoid settling into spuri-
ous attractors by using simulated annealing (Kirkpatrick, Gellat, & Vecchi,
1983), in which a temperature parameter that controls the gain of the unit ac-
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tivation functions is slowly decreased. Another common attractor-network
technique is soft clamping, where some units are initially in�uenced pre-
dominantly by external input, but the degree of in�uence from other units
increases during the settling procedure. In the localist attractor network, sy
can be seen as a temperature parameter, controlling the gain of the state
activation function. Also, as this parameter decreases, the in�uence of the
observation on the state decreases relative to that of the other units. The key
point is that as opposed to the standard techniques, these effects naturally
fall out of the localist attractor network formulation. This obviates the need
for additional parameters and update schedules in a simulation.

Note that we introduced the localist attractor net by extending the gener-
ative framework of a gaussian mixture model. The gaussian mixture model
can also serve as the basis for an alternative formulation of a localist attrac-
tor net. The idea is straightforward. Consider the gaussian mixture density
model as a negative energy landscape, and consider the search for an at-
tractor to take place via gradient ascent in this landscape. As long as the
gaussians are not too close together, the local maxima of the landscape will
be the centers of the gaussians, which we designated as the attractors. Gang
effects will be obtained because the energy landscape at a point will depend
on all the neighboring gaussians. However, this formulation has a serious
drawback: if attractors are near one another, spurious attractors will be in-
troduced (because the point of highest probability density in a gaussian
mixture will lie between two gaussian centers if they are close to one an-
other), and if attractors are moved far away, gang effects will dissipate. Thus,
the likelihood of spurious attractors increases with the strength of gang ef-
fects. The second major drawback of this formulation is that it is slower to
converge than the model we have proposed, as is typical of using gradient
ascent versus EM for search. A third aspect of this formulation, which could
also be seen as a drawback, is that it involves additional parameters in spec-
ifying the landscape. The depth and width of an attractor can be controlled
independently of one another (via the mixture and variance coef�cients, re-
spectively), whereas in the model we presented, the variance coef�cient is
not a free parameter. Given the drawbacks of the gradient-ascent approach,
we see the maximum-likelihood formulation as being more promising, and
hence have focused on it in our presentation.

4 Simulation Studies

To create an attractor net, learning procedures could be used to train the
parameters associated with the attractors (p i, wi) based on a speci�cation
of the desired behavior of the net, or the parameters could be hand-wired
based on the desired structure of the energy landscape. The only remaining
free parameter, sz, plays an important role in determining how responsive
the system is to the observation.
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Figure 4: (a) The number of spurious responses increases as sz shrinks. (b) The
�nal state ends up at a neighbor of the generating attractor more frequently
when the system is less responsive to the external state (i.e., high sz). Note that
at sz D 0.5, these responses fall when spurious responses increase.

We conducted three sets of simulation studies to explore properties of
localist attractor networks.

4.1 Random State-Space. We have simulated the behavior of a network
with a 200-dimensional state-space and 200 attractors, which have been
randomly placed at corners of the 200-D hypercube. For each condition we
studied, we ran 100 trials, each time selecting one source attractor at ran-
dom, corrupting it to produce an input pattern, and running the attractor
net to determine its asymptotic state. The conditions involve systematically
varying the value of sz and the percentage of missing features in the input,
º. Because the features have (1,–1) binary values, a missing feature is indi-
cated with the value zero. In most trials, the �nal value of Oy corresponds to
the source attractor. Two other types of responses are observed: spurious
responses are those in which the �nal state corresponds to no attractor, and
adulterous responses are those in which the state ends up not at the source
attractor but instead at a neighboring one. Adulterous responses are due
to gang effects: pressure from gangs has shrunk the source attractor basin,
causing the network to settle to an attractor other than the one with the
smallest Euclidean distance from the input.

Figure 4a shows that the input must be severely corrupted (more than
85% of an input’s features are distorted) before the net makes spurious
responses. Further, the likelihood of spurious responses increases as sz in-
creases, because the pull exerted by the input, E , is too strong to allow the
state to move into an attractor basin. Figure 4b also shows that the input
must be severely corrupted before adulterous responses occur. However, as
sz increases, the rate of adulterous responses decreases.

Gang effects are mild in these simulations because the attractors popu-
lated the space uniformly. If instead there was structure among the attrac-
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Figure 5: Experiment with the face localist attractor network. Right-tilted im-
ages of the 16 different faces are the attractors. Here the initial state is a left-tilted
image of one of these faces, and the �nal state corresponds to the appropriate
attractor. The state is shown after every three iterations.

tors, gang effects are more apparent. We simulated a structured space by
creating a gang of attractors in the 200-D space: 20 attractors that are near to
one another and another 20 attractors that are far from the gang and from
each other. Across a range of values of sz and º, the gang dominates, in that
typically over 80% of the adulterous responses result in selection of a gang
member.

4.2 Faces. We conducted studies of localist attractor networks in the do-
main of faces. In these simulations, different views of the faces of 16 different
subjects comprise the attractors, and the associated gray-level images are
points in the 120£128 state-space. The database contains 27 versions of each
face, obtained by varying the head orientation (left tilt, upright, or right tilt),
the lighting, and the scale. For our studies, we chose to vary tilt and picked
a single value for the other variables.

One aim of the studies was to validate basic properties of the attractor
net. One simulation used as attractors the 16 right-tilted heads and tested
the ability of the network to associate face images at other orientations with
the appropriate attractor. The asymptotic state was correct on all 32 input
cases (left tilted and upright) (see Figure 5). Note that this behavior can
largely be accounted for by the greater consistency of the backgrounds in
the images of the same face. Nonetheless, this simple simulation validates
the basic ability of the attractor network to associate similar inputs.

We also investigated gang effects in face space. The 16 upright faces were
used as attractors. In addition, the other 2 faces foroneof the 16 subjects were
also part of the attractor set, forming the gang. The initial observation was
a morphed face, obtained by a linear combination of the upright face of the
gang member and one of the other 15 subjects. In each case, the asymptotic
state corresponded to the gang member even when the initial weighting
assigned to this face was less than 40% (see Figure 6). This study shows that
the dynamics of the localist attractor networks makes its behavior different
from a nearest-neighbor lookup scheme.
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Figure 6: Another simulation study with the face localist attractor network.
Upright images of each of the 16 faces and both tilted versions of one of the
faces (the “gang member” face shown above) are the attractors. The initial state
is a morphed image constructed as a linear combination of the upright image
of the gang member face and the upright image of a second face, the “loner ”
shown above, with the loner face weighted by .65 and the gang member by
.35. Although the initial state is much closer to the loner, the asymptotic state
corresponds to the gang member.

4.3 Words. To test the architecture on a larger, structured problem, we
modeled the domain of three-letter English words. The idea is to use the
attractor network as a content-addressable memory, which might, for exam-
ple, be queried to retrieve a word with P in the third position and any letter
but A in the second position—a word such as HIP. The attractors consist
of the 423 three-letter English words, from ACE to ZOO. The state-space
of the attractor network has one dimension for each of the 26 letters of the
English alphabet in each of the three positions, for a total of 78 dimensions.
We can refer to a given dimension by the letter and position it encodes;
for example, P3 denotes the dimension corresponding to the letter P in the
third position of the word. The attractors are at the corners of a [–1, +1]78

hypercube. The attractor for a word such as HIP is located at the state hav-
ing value –1 on all dimensions except for H1, I2, and P3, which have value
+1. The observation E speci�es a state that constrains the solution. For ex-
ample, one might specify “P in the third position” by setting E to +1 on
dimension P3 and to –1 on dimensions a3, for all letters a other than P. One
might specify “any letter but A in the second position” by setting E input
to –1 on dimension A2 and to 0 on all other dimensions a2, for all letters
a other than A. Finally, one might specify the absence of a constraint in
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Figure 7: Simulation of the three-letter word attractornetwork, queried with E2 .
Each frame shows the relative activity of attractor units at a given processing
iteration. Activity in each frame is normalized such that the most active unit is
printed in black ink; the lighter the ink color, the less active the unit is. All 54
attractor units for words containing E2 are shown here; the other 369 attractor
units do not become signi�cantly active because they are inconsistent with the
input constraint. Initially the state of the attractor net is equidistant from all E2

words, but by iteration 3, the subset containing N3 or T3 begins to dominate.
The gang effect is at work here: 7 words contain N3 and 10 contain T3 , the two
most common endings. The selected word—PET—contains the most common
�rst and last letters in the set of three-letter E2 words.

a particular letter position, r , by setting E to 0 on dimensions ar , for all
letters a.

The task of the attractor net is to settle on a state corresponding to one
of the three-letter words, given soft constraints on the letters of the word.
McClelland and Rumelhart’s (1981) interactive-activation model of word
perception performs a similar computation, and our implementation ex-
hibits the key qualitative properties of their model.

If the observation speci�es a word, of course the attractor net will select
that word. The interesting queries are those in which the observation under-
constrains or overconstrains the solution. We illustrate with two examples
of the network’s behavior.

Suppose we provide an observation that speci�es E2 but no constraint on
the �rst or third letter of the word. Fifty-four three-letter words contain E2,
but the attractor net lands in the state corresponding to one speci�c word.
Figure 7 shows the state of the attractor net as PET is selected. Each frame
of the �gure shows the relative activity at a given processing iteration of
all 54 attractor units for words containing E2. The other 369 attractor units
do not become signi�cantly active, because they are inconsistent with the
input constraint. Activity in each frame is normalized such that the most
active unit is printed in black ink; the lighter the ink color, the less active the
unit is. As the �gure shows, initially the state of the attractor net is equally
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Figure 8: Simulation of the three-letter word attractor network, queried with
DEG. Only attractor units sharing at least one letter with DEG are shown. The
selection, BEG, is a product of a gang effect. The gangs in this example are
formed by words sharing two letters. The most common word beginnings are
PE– (7 instances) and DI– (6); the most common word endings are –AG (10) and
–ET (10); the most common �rst-last pairings are B–G (5) and D–G (3). One of
these gangs supports B1, two support E2 , and three support G3; hence BEG is
selected.

distant from all E2 words, but by iteration 3, the subset containing N3 or T3
begins to dominate. The gang effect is at work here: 7 words contain N3 and
10 contain T3, the two most common endings. The selected word—PET—
contains the most common �rst and last letters in the set of three-letter E2
words. The gang effect is sensitive to the set of candidate alternatives, not
the entire set of attractors: A, B, and S are the most common �rst letters in
the corpus, yet words beginning with these letters do not dominate over
others.

Consider a second example in which we provide an observation that
speci�es D1, E2, and G3. Because DEG is a nonword, no attractor exists
for that state. The closest attractor shares two letters with DEG. Many such
attractors exist (e.g., PEG, BEG, DEN, and DOG). Figure 8 shows the relative
activity of attractor units for the DEG query. Only attractor units sharing
at least one letter with DEG are shown. The selection—BEG—is again a
product of a gang effect. The gangs in this example are formed by words
sharing two letters. The mostcommonword beginnings are PE– (7 instances)
and DI– (6); the most common word endings are –AG (10) and –ET (10);
the most common �rst-last pairings are B–G (5) and D–G (3). One of these
gangs supports B1, two support E2, and three support G3—the letters of the
selected word.

For an ambiguous input like DEG, the competition is fairly balanced. BEG
happens to win out due to its neighborhood support. However, the balance
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Figure 9: Simulation of the three-letter word attractor network, queried with
DEG, when the attractor LEG is primed by setting its prior to 1.2 times that of
the other attractors. Priming causes the network to select LEG instead of BEG.

of the competition can be altered by priming another word that shares two
letters with the input DEG. In the simulations reported above, the priors,p i,
were uniform. We can primea particular attractor by slightly raising its prior
relative to the priors of the other attractors. For example, in Figure 9, DEG is
presented to the network after setting the relative prior of LEG to 1.2. LEG
has enough of an advantage to overcome gang effects and suppress DEG.
However, with a relative prior of 1.1, LEG is not strong enough to win out.
The amount of priming required to ensure a word will win the competition
depends on the size of its gang. For example, DOG, which belongs to fewer
and smaller gangs, requires a relative prior of 2.3 to beat out DEG. By this
simple demonstration, we have shown that incorporating mechanisms of
priming into the localist attractor network model is simple. In contrast,
implementing priming in distributed attractor networks is tricky, because
strengthening one attractor may have broad consequences throughout the
attractor space.

As a �nal test in the three-letter word domain, we presented random
values of E to determine how often the net reached an attractor. The random
input vectors had 80% of their elements set to zero, 10% to +1, and 10% to
¡1. In presentation of 1000 such inputs, only 1 did not reach an attractor—
the criterion for reaching an attractor being that all state vector elements
were within 0.1 unit from the chosen attractor—clearly a demonstration of
robust convergence.
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5 Conclusion

Localist attractor networks offer an attractive alternative to standard attrac-
tor networks, in that their dynamics are easy to specify and adapt. Local-
ist attractor network use local representations for the m attractors, each of
which is a distributed, n-dimensional state representation. We described a
statistical formulation of a type of localist attractor net and showed that
it provides a Lyapunov function for the system as well as a mathematical
interpretation for the network parameters.

A related formulation of localist attractor networks was introduced by
Mathis and Mozer (1996) and Mozer et al. (1998). These papers described
the application of this type of network to model psychological and neural
data. The network and parameters in these earlier systems were motivated
primarily on intuitive grounds.

In this article, we propose a version of the localist attractor net whose
dynamics are derived not from intuitive arguments but from a formal math-
ematical model. Our principled derivation provides a number of bene�ts,
including more robust dynamics and reliable convergence than the model
based on intuition and a clear interpretation to the model parameters. In
simulation studies, we found that the architecture achieves gang effects
and accounts for priming effects, and also seldom ends up at a spurious
attractor.

This primary drawback of the localist attractor approach is inef�ciency
if the attractors have componential structure. This can be traced to the lack
of spurious attractors, which is generally a desirable property. However,
in domains that have componential structure, spurious attractors may be
a feature, not a drawback. That is, one may want to train an attractor net
on a subset of the potential patterns in a componential domain and ex-
pect it will generalize to the remainder, for example, train on attractors
AX, BX, CX, AY, and BY, and generalize to the attractor CY. In this situa-
tion, “generalization” comes about by the creation of spurious attractors.
Yet it turns out that traditional training paradigms for distributed attrac-
tor networks fare poorly on discovering componential structure (Noelle &
Zimdars, 1999).

In conclusion, a localist attractor network shares the qualitative dynam-
ics of a distributed attractor network, yet the model is easy to build, the
parameters are explicit, and the dynamics are easy to analyze. The model is
one step further from neural plausibility, but is useful for cognitive model-
ing or engineering. It is applicable when the number of items being stored
is relatively small, which is characteristic of pattern recognition or asso-
ciative memory applications. Finally, the approach is especially useful in
cases where attractor locations are known, and the key focus of the network
is the mutual in�uence of the attractors, as in many cognitive modeling
studies.
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