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Abstract

An important source of evidence concerning rapid adaptation and learn-
ing in the brain is the phenomenon ofrepetition suppression—the lon-
glasting and item-specific decrease in neural responsivity with repeated
exposure to an item, yielding a sparser representation. Existing accounts
are informal and do little more than describe the phenomenon. In this
paper, explore the hypothesis that repetition suppression can be charac-
terized as the result of adaptation of the neural code with the rational
goal of maximizing information transmission. Our work is based on two
assumptions. First, in naturalistic environments, when an organism en-
counters some object, the object is more likely to be encountered again
in the near future; consequently a probabilistic model of the environment
must be updated following each experience. Second, neural codes are
continually optimized to transmit information efficiently. Through sim-
ulation studies, we show that our model can explain the key phenomena
of repetition suppression, and therefore serves as a framework for inter-
preting changes in cortical information processing with experience.

1 Introduction

A widespread and robust finding in primate electrophysiology is that neural responses de-
crease over repeated exposure to an item (e.g., [4, 10, 14]). Decreased activation is also
observed in human imaging studies (e.g., [7]) and a reduction of waveform amplitude is
observed in ERP studies [11]. Thisrepetition suppression effect likely mediates the psycho-
logical phenomenon of repetition priming [14, 7]. The effect has been observed throughout
cortex, from inferior temporal to prefrontal cortex, and the areas showing suppression are
task specific. Roughly one quarter of inferior temporal neurons show repetition suppres-
sion. Some key findings to be explained concerning suppression include [4, 10, 14]: (1)
Suppression is item specific, not general habituation. (2) Suppression does not depend
on retinal size or location of an object, suggesting that it operates on a relatively abstract
representation. (3) Suppression is observed even when the two repetitions are separated
by 150 intervening items and delays up to 24 hours. (4) Suppression is graded, showing
a continual reduction in firing rate with each presentation, plateauing at 40% of the ini-
tial firing rate. (5) Suppression depends merely on repetition, not behavioral significance.



(6) Suppression involves sharpening the neural representation—reducing the overall neural
activity, decreasing the number of neurons involved in representing the item, and narrow-
ing the tuning of neural receptive fields. (7) Suppression results in representations more
resistant to stimulus degradation [9].

Existing accounts of repetition suppression are little more than descriptions of the data.
Desimone suggests that cells unnecessary for identifying an item are suppressed, yielding
a sparser and more selective representation, which presumably leads to a more efficient or
rapid response [4]. Ringo proposes that suppression of familiar items may contribute to
automatic orientation to novel items [10].

In this paper, we propose a preliminary account of repetition suppression based on the
hypothesis that neural codes are optimally adapted to the statistical structure of the envi-
ronment. Specifically, we conjecture that an encounter with an item leads to the expectation
that the item will be more prevalent in the future. Because the item has a higher probabil-
ity of being encountered in the future, it must be encoded more efficiently. Efficiency is
characterized in terms of the rate at which information about the item is communicated.

2 Formal model

We formalize our analysis in a neural model. The model consists of a pool ofn spiking
neurons which encode one ofm distinct items orsymbols at a time, wherem andn are
roughly of the same order. Assuming a rate coding scheme, the neural activity for each
symbol is specified by the vector of mean firing rates over the neurons; then-dimensional
firing rate vector for symbols is denotedf(s), and thecodebook F is defined as the set of
firing rate vectors,F = ff(s1); f(s2); : : : ; f(sm)g.

We assume that the pool of neurons is activated by an external environment that randomly
selects symbols from a prior distribution,P(s) = fP (s1); P (s2); : : : ; P (sm)g, whereP (s) is the probability of symbols. The chosen symbol is instantiated on the pool by
setting the mean firing rate of each neuroni to f i(s), causing the neuron to generate spikes
according to a noise model, e.g., independent Poisson noise with mean interspike interval1=fi(s).
In this paper, we argue that the repetition suppression phenomena fall out of two additional
assumptions. These assumptions arerational in that they characterize the cognitive system
as being well-designed, efficient, and adaptive.

(1) Optimality of representation. We assume that neural learning mechanisms produce a
codebook that is in some sense optimized given the symbol probabilities,p. One might de-
fine an optimization criterion in terms of how effectively the pool of neurons triggers an ap-
propriate response in other pools of neurons, but this approach requires additional explicit
assumptions concerning the mechanisms of neural signal propagation and transformation.
Instead, we formulate a simple optimization criterion in terms of how well the neural spike
train conveys information about the symbol being represented; formally, the measure is the
mutual information between the symbol identity and the spike count observed in a given
time window for each of then neurons. Optimization is achieved via search in them� n
firing-rate space of the codebook. The optimality assumption is not meant to imply that the
search finds a global optimizer, or even a local optimizer; for the sake of our arguments,
we can rely on a weaker assumption that codebooks with higher mutual information are
more likely to result than codebooks with lower mutual information. For example, consis-
tent with this assumption is a search that produces codebooks with probability given by a
Boltzmann distribution in which the negative mutual information serves as the free energy.
Because our weak assumption suffices for this work, we need not propose specific search
algorithms or speculate on their underlying neurobiological implementation.



(2) Characteristics of environment. We assume that in naturalistic environments, when
an organism encounters some object, the object is more likely to be encountered again in
the near future. This characteristic of the environment is reflected in an update rule that
increases the probabilityps of symbols, following experience withs. In accordance with
assumption (1), when the symbol distribution is altered, the codebook is reoptimized.

To summarize, our hypothesis for explaining repetition suppression is as follows: per-
ceptual experience leads to revision of a probabilistic model of the environment, which
in turn necessitates adaptation of the neural code to preserve its efficiency. Intuitively,
the optimization criterion yields a codebook in which the highest frequency symbols are
transmitted most efficiently. A symbol is transmitted efficiently when its neural code is
distinct from other symbols. One way to ensure distinctiveness is with a more localist rep-
resentation, the sort of representation implied by the phenomena of repetition suppression.
Although distinctiveness does not directly imply local representations, we will show that
standard coding assumptions naturally produce this relationship.

3 Related research

Coding efficiency has long been suggested as a first principle governing neural representa-
tions.Past theoretical and experimental research have used this principle to produce parsi-
monious explanations of neural response properties. Wainwright also starts with the ratio-
nal assumption that neural response properties are adjusted to the changing statistics of the
environment to optimize information transmission; via this assumption, he explains phe-
nomena of visual adaptation in orientation, spatial frequency, and motion [13]. Optimal
coding accounts have also explained response properties of neurons in primary sensory
cortex [12] and tuning function widths [5, 8, 15]. The tuning-function accounts have been
based on Fisher information, which has limited validity for measuring the precision of a
population code [2, 3].

Our work is distinguished from earlier efforts in several respects. First, prior research has
not addressed repetition suppression. Second, because repetition suppression is obtained
in higher regions of the brain (inferior temporal cortex and association areas), we are con-
cerned with representing abstract object-identity information; in contrast, previous work
has focused on primitive visual features of the sort encountered in primary visual cortex.
Third, the objects with which we are concerned may be quite complex, and thus must be
modeled in a high-dimensional, discrete representational space; in contrast, most previ-
ous research has focused on low-dimensional, continuous spaces (e.g., line orientation).
Fourth, we require neurons whose response functions are arbitrary and symbol dependent,
as embodied in the codebook; neurons with unimodal tuning functions are inadequate for
our domain. Given these properties of our domain, Fisher information is not a useful mea-
sure because it requires a neural response function that is differentiable w.r.t. a stimulus
(feature or symbol) space. Instead, we optimize mutual information directly.

4 Details of approach

We formulate the problem of optimizing codes in terms of the mutual information (MI)
between the population responsesr and the symbolss:MI =Xr;s P (r; s) log P (rjs)P (r) (1)

MI is difficult to calculate exactly, first because knowledge ofP (rjs) is required for each
symbols. We assume knowledge of the codebook, which describes the expected values
of these conditional firing rate distributions. We also assume that the noise model, which



describes the variability inr for a givens, is also known. Standard forms for this noise
model are independent Poisson noise, and independent or correlated Gaussian noise. We
discuss these further below.

Even if we have estimates for the population firing rate distributions, computing MI entails
summing over all possible combinations ofr ands, which quickly becomes intractable
for reasonable-sized populations with large dynamic ranges encoding several symbols. We
have explored two approaches to optimizing the codebook with respect to MI.

The hypothesis underlying the first approach is that not all values ofr need be considered,
but instead that MI can be approximated using samples ofr. We adopt this approach to
approximate MI with samples, and optimize the codebook by hill-climbing in this quantity.
Under a standard independent Poisson noise model, where a neuron’s response variance
equals its mean response to a symbol, the gradients for the codebook are:�MI�f(s) = P (s)f(s) �Xr P (rjs) log P (rjs)P (r) (r� f(s))�
Intuitively, hill-climbing in MI using these gradients moves the codebook towards each
population response in proportion to the information provided by that response abouts.
We also explored a second approach to optimizing the codebook, which entails op-
timizing an upper bound to MI, which we term MIU. Applying Jensen’s inequality
(logE[P (rjs)℄ � E[logP (rjs)℄) to the denominator in MI (Equation 1), we obtain:MI �MIU = Xs;s0 P (s)P (s0)Xr P (rjs) log P (rjs)P (rjs0)= Xs;s0 P (s)P (s0)KL[P (rjs);P (rjs0)℄
Under the standard Poisson noise model, MIU simplifies to this form:Ps;s0<s P (s)P (s0)[Pi(fi(s) � fi(s0))(log fi(s) � log fi(s0))℄. Optimizing MI un-
der this bound and noise model clearly involves simply separating the codebook entries.

We have also explored a more complicated noise model in which the noise between neurons
is correlated. A multiplicative correlated Gaussian noise model produces not only variances
that increase as a function of firing rate (as in the Poisson noise model), but also larger
correlations for neurons with similar tuning functions, as is seen in neurophysiological data
[6]. Under this model, whereQij(s) = �2[Æij + (1� Æij)℄fi(s)fj(s) describes the noise
covariance in neuroni andj’s response tos, and0 �  � 1 is a correlation coefficient,MIU = Xs;s0<sP (s)P (s0)�N � 1=2 NXi;j=1Kij(s; s0)�Kij(s; s0) = Q�1ij (s0)Qij(s) +Q�1ij (s)Qij(s0) +(Q�1ij (s) +Q�1ij (s0))(fi(s0)� fi(s))(fj(s0)� fj(s))
Under both of these noise models, independent Poisson and correlated Gaussian, the code-
book can be optimized by hill-climbing in MIU.

5 Simulation experiments

5.1 MI versus MIU

To provide intuitions concerning our approach, we explore a small domain consisting of
two neurons encoding three symbols. The firing rate of each neuron is allowed to range
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Figure 1: (a) Contour map of MI as a function ofx andy for a 3-symbol codebook with
uniform priors and codes at (10, 10), (100, 100), and (x, y); (b) the upper bound on mutual
information (MIU) for the same system.

from 10 to 100 spikes/second. We assume the three symbols have equal priors. We assign
codes to two symbols,f(s1) = (10; 10) andf(s2) = (100; 100), and vary the encoding
of the third symbol. Figure 1a shows a contour plot of the codebook mutual informa-
tion as a function of the third symbol’s firing rate vector,f(s 3). Placings3 nears1 or s2
results in low MI. In the constrained space, the MI maxima are obtained in the corners,f(s3) = (100; 10) and f(s3) = (10; 100), where the MI—to four significant digits—is
1.5850. The maximum possible MI, the entropy of the prior distribution, is also 1.5850;
thus, the symbols lie enough apart in the space so as to have little overlap in their firing
rate distributions. Although placings3 in one of the empty corners yields maximum MI,
MI barely varies along the upper-left to lower-right diagonal. For example, the MI forf(s3) = (55; 55) is 1.5849. Thus, by our weak optimality-of-representation assumption,
all points along the diagonal are likely codes fors3.
The contour map hints at a key property of our model: MI drops whens 3 is placed in
the neighborhood around either (10, 10) or (100, 100), but the (100, 100) neighborhood is
larger than the (10, 10) neighborhood. This difference reflects the fact that the variance of
a Poisson neuron is equal to its mean. Because a neuron with a higher firing rate will have
greater variance, a coding cost is incurred to assigning high firing rates in the codebook.
Thus, the pressure for coding efficiency results in sparse codes—codes that minimize the
number of neurons active and the activity of neurons. Van Vreeswijk established this con-
sequence of the Poisson noise model analytically for short time windows [12], although
his argument was framed specifically in terms of V1 cortical neurons: MI was measured
between input images and V1 neurons, where a particular nonlinear response function of
V1 neurons was assumed.

Figure 1b shows the same example as Figure 1a panel with the MIU measure instead of
MI. Although the optima of the two functions are the same—the (10, 100) and (100, 10)
corners— MIU is not a good proxy for MI in that the two functions have little in common,
and the MIU has local optima at (10, 10) and (100, 100). Based on many experiments
utilizing MIU, we have unfortunately concluded that MIU is not a useful measure. In
retrospect, it is not altogether surprising that using an upper bound to search for maxima
would lead to failure.

5.2 Integration time window

Computation of MI involves a summation over every possible neural response vector. A
neural response vector consists of spike counts for each neuron. Spikes counts are obtained
by sampling the pool for a time window of! msec. In Figure 1,! = 1000. Figure 2
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Figure 2: Contour maps of MI based on a sampling time window! of 1000 msec (left
panel), 250 msec (middle panel), and 100 msec (right panel). Each map depicts the MI as
a function ofx andy for a 3-symbol codebook with uniform priors and codes at (40, 100),
(100, 40), and (x, y). White indicates high MI values.

shows the dependence of MI on!. The example is similar to the previous one:s 1 is
fixed at (40, 100) ands2 is fixed at (100, 40), and the location ofs3 is allowed to vary
in the (40, 40) to (100, 100) region.1 Each contour map depicts MI for the codebook as
a function off(s3), with black and white being low and high MI, respectively. The three
contour maps are for! = 1000, ! = 250, and! = 100, from left to right. With a long
integration time,s3 can be placed along the main diagonal and not be confused withs 1 ands2. However, as the integration time is reduced, the coarser spike count information makes
it difficult to discriminates3 from s1 ands2 (as well ass1 ands2 from one another). Short
integration times are the most informative when the aim is to achieve efficient information
transmission [12]; at asymptotically long integration times, any two symbols with distinct
codebook entries can be discriminated. Thus, the remainder of our simulations will explore
a short (100 msec) integration time.

5.3 Varying symbol priors

We now move on to simulations that address the core of our hypothesis: that repetition
suppression can be explained in terms of updating symbol priors and the reoptimization of
the codebook. We continue with a simple 3 symbol example in a two-dimensional neu-
ral activation space. Figure 3 shows the MI contour map for the cases where the three
symbols have uniform priors (left panel), and where the prior ofs 3 is 15 times that ofs1 ands2, respectively (right panel). For the uniform priors, MI(40; 40)—that is, MI withs3 at (40, 40)—is about the same as MI(100; 100), whereas whens3 has a higher prior,
MI (40; 40) > MI (100; 100). Figure 4 shows this effect more quantitatively. Note that the MI
ratio is always greater than 1, indicating that the code with low firing rates is preferred to
the code with high firing rates, and that this preference increases with the prior. Thus, we
have illustrated the essential feature of repetition suppression: that repetition of an item,
through the increase in its prior and reoptimization of the codebook, leads to a sparser rep-
resentation. Another central feature of repetition suppression is that the effect diminishes
with each repetition and reaches a plateau. We also find this feature in Figure 4, as the

1The lower bound of 40 spikes/sec on the mean firing rate may seem uncharacteristic of corti-
cal neurons, but the effects we obtained did not qualitatively depend on either the lower or upper
bound. By limiting the range, we observe more interactions among symbols in the codebook, which
reduces the effective capacity of each neuron and allows us to explore smaller ensembles of neurons—
important given the computation intensive nature of computing MI. Further, we are interested in rapid
information transmission, say in a time window of 50 or 100 msec. With low firing rates (say 10 Hz)
and a narrow time window, the variability of the neural response is limited due to quantization effects
(a neuron will most likely produce 0 or 1 spikes).
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Figure 3: Each contour map depicts the MI as a function ofx andy for a 3-symbol code-
book with codes at (40, 100), (100, 40), and (x, y). In the left panel, the priors are uniform;
in the right panel the prior of the symbol 3 is 15 times that of symbols 1 and 2.
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Figure 4: The ratio MI(40; 40)=MI (100; 100) as
a function of the relative prior ofs3 (along the
x-axis) and the time window! (the distinct
curves).

curves are negatively accelerated.

We are confident that our results can be extrapolated to larger symbol sets and and higher
dimensional neural activity spaces, for the following reason. We can view our simple exam-
ple as being embedded in a much larger domain, where the other symbols are sufficiently
distant in neural activity space from the three we consider that interactions do not arise.
That is, in the subspace we consider, MI is not affected by the exact locations of the other
symbols, nor do small changes to their locations affect MI.

The notion of a large virtual symbol set also addresses the question of what is a plausible
change to the priors as a result of a single experience. With three symbols, altering a
uniform prior distribution to achieve one in which one symbol is 15 times more likely than
the others (as in Figure 3) would involve massive changes to the distribution, i.e., increasing
the experienced symbol’s prior from .33 to .88. However, with a large symbol set, the
magnitude of the change to the prior distribution is much smaller, e.g., with 1000 symbols
the change would be from .001 to .014. One can envision many simple learning rules that
produce small incremental updates to the prior distribution as items are experienced.

In a final and slightly larger simulation, we searched for the optimal codebook for a three
neuron, three symbol problem with a biased distribution that makes ones symbol ten times
as likely as the other two—theprimed symbol. The search began with a random initializa-
tion of the codebook entries to values in [40, 100]. A gradient search was conducted for
twenty steps, which pushed the symbols apart, but not necessarily to corners of the space.
Four thousand replications of the search were run, and the mean firing rate of neurons was
computed for the primed and unprimed symbols. Neurons encoding the primed symbol
had reliably lower firing rates than neurons encoding the unprimed symbol (by an analysis
of variance,F (1; 3999) = 6:48, p < :02).



6 Discussion and conclusions

In this paper, we explored the hypothesis that repetition suppression can be characterized as
the result of adaptation of the neural code with the rational goal of maximizing information
transmission. We demonstrated the plausibility of this hypothesis via simulation studies.
The hypothesis and our simulation studies are consistent with the first six properties of
repetition suppression listed in the Introduction. Although the present work is neutral with
regard to the seventh property, we plan to explore a model in which similarity structure is
imposed in the symbol space, allowing us to examine sharpening of tuning functions and
greater noise robustness due to repetition.

Although repetition suppression is a widespread and robust phenomenon in neurophysiol-
ogy, it has not been explained in a coherent formal framework. Our work is a first cut at
establishing such a framework, one that characterizes the efficiency of information trans-
mission in neocortex and its change with experience.
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