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Abstract. Knowledge management research focuses on concepts, methods, and tools support-
ing the management of human knowledge. The main objective of this paper is to survey ba-
sic concepts that have been used in computer science for the representation of knowledge and
summarize some of their advantages and drawbacks. A secondary objective is to relate these
techniques to information science theory and practice.

The survey classifies the concepts used for knowledge representation into four broad onto-
logical categories. Static ontologies describe static aspects of the world, i.e., what things exist,
their attributes and relationships. A dynamic ontology, on the other hand, describes the chang-
ing aspects of the world in terms of states, state transitions and processes. Intentional ontolo-
gies encompass the world of things agents believe in, want, prove or disprove, and argue about.
Finally, social ontologies cover social settings – agents, positions, roles, authority, permanent
organizational structures or shifting networks of alliances and interdependencies.

Keywords: Ontologies; Knowledge management; Knowledge representation; Information sci-
ence; Information systems

1. Introduction

Knowledge management is concerned with the representation, organization, acquisi-
tion, creation, use and evolution of knowledge in its many forms. To build effective
technologies for knowledge management, we need to further our understanding of
how individuals, groups and organizations use knowledge. Given that more and more
knowledge is represented in computer-readable forms, we also need to build tools
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that can effectively search databases, files, web sites and the like to extract infor-
mation, capture its meaning, organize and analyze it, and make it useful. This paper
focuses on the concepts used in computer-based information systems to capture and
exploit the meaning of information.

Information science, as it exists today, already provides many of the foundations
for knowledge management. After all, the documentation tradition has a long his-
tory of developing methods and practices for organizing the vast expanses of human
knowledge so that it is accessible by diverse users. The computational side of infor-
mation science has developed powerful techniques for retrieving documents through
different forms of computer-based processing and search (Buckland 1999). Informa-
tion science has also been building on the technologies of information systems to
manage the vast amounts of information – initially for catalogues and bibliographic
information, then for full-text documents, and most recently for distributed, hetero-
geneous information sources. Nevertheless, many significant challenges remain.

Historically, information science has focused on the document as the primary unit
of information. Documents have traditionally been paper based, consisting primarily
of published books and articles. The contents of such documents have been individ-
ually meaningful, at least at a literal, surface level. Deeper meanings, however, do
require interpretation in relation to interconnected documents as well as social and
cultural contexts. These connections are usually relatively sparse (e.g., a few dozen
references in an academic article) and have little built-in semantics. For instance,
a reference simply leads to another document, much like untyped hypertext links
that dominate today’s World Wide Web (WWW). Moreover, documents have tradi-
tionally been fairly stable, and new ones took considerable time and effort to create.
Finally, documents were primarily used by humans, who read, interpreted and acted
on them.

The digital media have changed all that. Documents can now be arbitrarily large,
as they can be composites of volumes or even libraries of material. More importantly,
they can be arbitrarily small – paragraphs, text fragments, pieces of data, video or
audio clips, etc. They are documents not so much in the common sense usage of
the term, but rather logically identifiable and locatable packages of information. This
change in the granularity of information units has increased the number of units that
need to be managed by many orders of magnitude. In addition, today’s documents
tend to be much more densely connected, referring or relating to each other in mul-
tiple ways. Moreover, documents are continuously created and revised, post-it notes
are attached, detached, reattached in a different context, or discarded. Documents
can even be active, with embedded software code (e.g., applets and software agents)
that exhibit dynamic or even self-activating behavior. Today’s knowledge work relies
heavily on digital media. This means that research on knowledge management must
deal with this new, much more demanding notion of a document.

In contrast, the field of information systems has historically started off from
the other end of the information unit spectrum. Information in information systems
comes in small chunks – e.g., bank account balances, ticket reservations, etc. Such
information can change quickly and frequently, so the management of dynamic in-
formation has always been fundamental to information systems. Information items
usually need to be interpreted in relation to other items, e.g., London by itself on
a ticket is quite meaningless unless you know that it is a departure or destination city,
on what date, what airline, for which passenger, etc. These relationships need to be
formally defined so that the network of connected information can be navigated and
operated on by automated procedures in order to produce a ticket within seconds.
Now that fast and reliable information processing has become commonplace, people
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have come to expect equally powerful technologies for managing much more com-
plex knowledge structures. As in the case of information science, some foundations
have been laid in information systems for managing knowledge, but there are consid-
erable challenges too. Perhaps the most important among these is the development
of techniques for exploiting meaning to produce computationally useful results.

Section 2 of the paper discusses basic approaches to capture the meaning of
information, while Sect. 3 introduces ontologies and discusses four categories of
ontological elements. In Sect. 4, we discuss applications of ontologies in medicine.
Section 5 includes discussion and summarization of the main points of the paper.

2. Exploiting Meaning in Information Systems

Interestingly, within the field of computer science, there has been a gradual move-
ment toward what one might call knowledge orientation or semantic processing. This
has been taking place over the past 20–30 years, long before the term or concept
of knowledge management became fashionable. Although there is no consensus on
a notion of knowledge or knowledge-based processing in computer science, the terms
are used usually in contradistinction with data or data processing to highlight the
need to clarify the relationship between symbols stored in computers and what they
represent in the world outside. The terms also imply technologies that deal explicitly
and formally with the semantics of such representations and their manipulations.

An assortment of techniques for representing and managing codified knowledge
has emerged from several areas in computer science, notably artificial intelligence,
databases, software engineering, and information systems. This movement toward
knowledge orientation has not been organized into a coherent research methodology,
as it has come about for a variety of reasons. From a practical standpoint, the grow-
ing complexity of application domains and the increasing intertwining of machine
and human processes have all contributed to the recognition of knowledge orienta-
tion as a promising research direction that can address open knowledge-management
problems. However, the movement has also been motivated by the search for solid
foundations in various computing disciplines (Bubenko 1980; Newell 1982; Ullman
1988).

Artificial Intelligence has developed techniques for representing knowledge in
forms that can be exploited by computational procedures and heuristics. Research on
databases has produced techniques that support the representation and management
of large amounts of relatively simple information. Supporting mechanisms include
relational databases and associated technologies. Software engineering has developed
elaborate techniques for capturing knowledge that relates to the requirements, design
decisions and rationale for a software system. The area of information systems has
benefited directly or indirectly from these developments.

In computer-based information systems, the meaning of information is usually
captured in terms of conceptual information models that offer semantic terms for
modeling applications and structuring information (Mylopoulos 1998). These models
build on primitive concepts such as entity, activity, agent and goal. In addition, the
models support mechanisms for organizing information along generic abstraction di-
mensions, such as generalization, aggregation and classification (Mylopoulos et al.
1998). Defining terms and mechanisms for information modeling and organization
in conceptual models requires assumptions about the applications to be modeled.
For example, if we assume that our applications will consist of interrelated entities,
it makes sense to build terms such as entity and relationship into our conceptual
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model, and to allow computation based on the semantics of those terms, i.e., to
support navigation, search, retrieval, update and inference that are consistent with
the meaning of those terms. The identification of the right concepts for modeling
a world for which one would like to do computations (or knowledge management
operations) has come to be known as an ontology within computer science.

3. Ontologies

Ontology is a branch of philosophy concerned with the study of what exists. Formal
ontologies have been proposed since the 18th century, including recent ones such
as those by Carnap (1967) and Bunge (1977). In computer science, ontologies have
come in a variety of forms, ranging from lexicons, to dictionaries and thesauri or
even first order logical theories. Lexicons provide a standardized dictionary of terms
for use during, for example, indexing or retrieval. Dictionaries can be organized
according to specific relations to form hierarchies (taxonomies, meronomies, etc.).
Thesauri add related terms to any given term. In any of these forms, ontologies
are useful because they encourage standardization of the terms used to represent
knowledge about a domain. When ontologies are formalized in first-order logic or
a subset thereof, they can also support inference mechanisms. For a given collection
of facts, these mechanisms can be used to derive new facts or check for consistency.
Such computational aids are clearly useful for knowledge management, especially
when one is dealing with large amounts of knowledge.

For example, if one is interested in health care-related knowledge, then patient,
disease, symptom, diagnosis, and treatment might be among the primitive concepts
upon which one might want to describe the application domain. These concepts
and their meanings together define an ontology for health care. Such an ontology
can be used as common knowledge that facilitates communication among health
workers. It can also be used during development of hospital information systems
or decision-support systems. Similarly, an ontology for manufacturing may include
the concepts of (industrial) process, resource, schedule, product and the like (Verna-
dat 1996). Brazma et al. (2001) proposes a flexible and open specification language
called MIAME (Minimum Information About Microarray Experiments) to represent
microarray experiments. Although details for particular experiments may be different,
MIAME aims to define the core that is common to most experiments. MIAME is
not a formal specification language, but a set of guidelines, which encourages users
to provide their own qualifiers and values identifying the source of their terminology.
It promotes the use of controlled vocabularies and external ontologies.

Early work in computational ontologies includes the Cyc project (Lenat and Guha
1990) and the ARPA knowledge sharing effort (Neches et al. 1991). The knowledge
interchange format effort provides a declarative language for describing knowledge
(Genesereth 1991). Research within artificial intelligence has formalized interesting
specialized ontologies and has developed techniques for using them to represent and
analyze knowledge. Well-designed ontologies need to be addressed as properly deep
and long-standing problems in philosophy, such as the problems of identity and unity.
The designer of ontologies needs to provide answers to questions such as:
• Do entities have any essential properties?
• Does a change of parts affect identity?
• When does an entity count as one?

Guarino and Welty (2000) offer an elegant account of how such issues can be
taken into consideration in the design of taxonomies of concepts. Along a very differ-
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ent path, Wand (1989, 1990) studied the adequacy of conceptual models to describe
applications based on a general ontology, such as that proposed by Bunge (1977).

To characterize and classify current work on ontologies, we propose four broad
ontological categories, which, respectively, deal with static, dynamic, intentional and
social aspects of the world. Our claim is that, for a large class of applications, the
representation of relevant knowledge can be based on primitive concepts derived
from these four ontological categories. For example, if we want to model a univer-
sity environment, we may choose entities and relations to model static aspects of
the domain and processes to model dynamic aspects. For a multiagent system, on
the other hand, we may want to use concepts such as agent, team, goal and social
dependency to model social and intentional aspects of the application. Of course,
agents and goals could be represented simply as entities. Such representations, how-
ever, miss important properties of agency (e.g., an agent’s intentionality and auton-
omy) and lead to incomplete forms of inference. For example, representations that
use elements of dynamic ontologies are amenable to simulation, a special form of
inference not supported by static ontologies. Likewise, formal goal models support
their own special forms of reasoning – e.g., Giorgini et al. (2002) – that go beyond
inference mechanisms for entities and relationships. Our classification of ontologi-
cal concepts into four categories has been derived from a broad survey of modeling
techniques in computer science (Mylopoulos 1998).

The rest of the section briefly reviews the four categories. A static ontology de-
scribes things that exist, their attributes and relationships. A dynamic ontology de-
scribes the world in terms of states, state transitions and processes. An intentional
ontology encompasses the world of agents, things agents believe in, want, prove or
disprove, and argue about. Finally, a social ontology covers social settings, permanent
organizational structures or shifting networks of alliances and interdependencies.

3.1. Static Ontologies

A static ontology describes static aspects of the world, i.e., what things exist, their
attributes and relationships. Most knowledge representation frameworks assume that
the world is populated by entities that are endowed with a unique and immutable
identity, a lifetime, a set of attributes, and relationships to other entities. Basic as this
ontology may seem, it is by no means universal. For instance, Hayes (1985) offers an
ontology for different classes of applications modeling of material substances where
entities (say, a liter of water and a pound of sugar) can be merged resulting in
a different entity. Also note that some successful models, such as statecharts (Harel
1987), do not support elements from a static ontology because they are intended for
real-time systems. Static ontologies are not trivial. For certain applications, it is useful
to distinguish between different modes of existence for entities, including physical
existence, such as that of the authors of this paper, abstract existence, such as that
of the number 7, nonexistence, characteristics of Santa Claus or John’s canceled trip
to Japan, and impossible existence, such as that of the square root of −1 or the
proverbial square circle (Hirst 1989).

As an example, a partial static ontology for a hospital expressed in the KAOS
modeling language (Dardenne et al. 1993) is presented in Fig. 1. According to the
example, an entity hospital is defined with associated attributes admitted, released,
registered, available and specialty. The first three attributes take as values sets of in-
stances of patient, available takes as values sets of instances of doctor, and specialty
takes as values sets of instances of subject. The definition includes one set-theoretic
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Fig. 1. An example of a partial static ontology for a hospital in KAOS modeling language (Dardenne et al.
1993).

invariant constraint, which states that admitted is a subset of registered for every
instance hosp of hospital. In addition, admitted and released are mutually exclusive
sets at one instance of time. Next we define the relationship class treating, which
relates a patient to a hospital entity, has associated cardinality constraints and an in-
variant. The invariant states that if a patient is treated in the hospital and the patient
is in the hospital, then the patient is eventually released.

Many domains require support for description and analysis of image data. For
example, an ontology for an in vitro fertilization (IVF) clinic needs concepts for
patient, diagnosis, treatment and morphological characteristics of sperms, oocytes
and embryos (Jurisica et al. 1998).

Spatial information is also important for applications that involve the physical
world, such as geographic information systems, e.g., Croner et al. (1996). Spatial in-
formation has been modeled in terms of two-dimensional (2D) and three-dimension
(3D) points or larger units, such as spheres, cubes or pyramids. Formal spatial ontolo-
gies enable computational and reasoning operations such as rotation and occlusion to
be provided. One such class of applications deals with representing 2D and 3D for-
mations of proteins. Proteins are large, complex molecules composed of long chains
of molecules, called amino acids. They provide the structural components of cells and
enzymes for essential biochemical reactions. The subcellular localization of proteins
specifies where they are and determines their ability to interact with other proteins
and small metabolites in their local environment. One can then define an ontology
for biological function using molecular interactions (Karp 2000), which then enables
computation with biological function. Subcellular localization of proteins is another
key functional characteristic. Gene ontology addresses this issue at the cellular level
by providing a hierarchy of cellular component concepts such as organelles, mem-
branes and protein complexes (Ashburner et al. 2000). These concepts are used to
annotate the location of gene products (Xie et al. 2002).

3.2. Dynamic Ontologies

Dynamic ontologies describe changing aspects of the world. Typical primitive con-
cepts include state, state transition and process. Various flavors of finite-state ma-
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Fig. 2. ConGolog (Levesque et al. 1997) specification of the process of IVF action after successful oocyte
fertilization. The physician has to, in Parallel, consider patient’s characteristics and morphological properties
of embryos.

chines and Petri nets have been offered since the 1960s as appropriate modeling
tools for dynamic discrete processes. Such models are well understood and have been
used extensively to describe real-time applications in telecommunications and other
fields. Statecharts constitute a more recent proposal for specifying large, finite-state
machines (Harel 1987). A statechart is also defined in terms of states and transitions,
but more than one state may be on at any one time, and states can be defined as
AND or OR compositions of other statecharts. As a result, statecharts have been
proven much more effective in defining and simulating large, finite-state machines
compared with conventional modeling methods. The statecharts model is supported
by a popular CASE tool called Statemate.

To take another example from the reproductive-medicine domain, an IVF proced-
ure consists of patient selection by diagnosis of infertility, controlled ovarian stimu-
lation for multiple oocyte recruitment and maturation, close monitoring of follicular
development by ultrasound and hormonal assessment, oocyte retrieval, insemination
of oocytes in vitro, determination of fertilization, assessment of embryo develop-
ment and quality, assessment of endometrial quality, and intrauterine transfer of one
or more cleaved embryos (Jurisica et al. 1998). During the treatment, decisions at
a particular state depend on results of previous states. To describe such a process, we
could use the ConGolog language (Levesque et al. 1997). ConGolog is a high-level
specification language for defining concurrent processes. Primitive actions can be de-
fined in terms of pre- and postconditions. Primitive actions can be composed into
procedures using modeling constructs such as sequencing (‘;’), conditional (if-then),
iteration (while <condition> do), concurrent activity (‘||’), nondeterministic choice
(choose), etc. Although ConGolog offers programming language-like structures for
describing processes, its distinctive feature is that the underlying logic is designed to
support reasoning with respect to process specifications and simulations, even when
the initial state for the process is only partially specified.

Figure 2 shows how one could use ConGolog to define a process for determining
IVF action after successful oocyte fertilization. During the process, the physician has
to consider the patient’s characteristics (her response to hormonal therapy, treatment
history, age, etc.) and morphological properties of embryos. These two actions are
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to be carried out in parallel. Because the quality of individual embryos varies, one
has to consider them iteratively to decide on the action.

Temporal information is often needed when describing dynamic worlds. A tem-
poral ontology can be based on time points and associated relations. An event can be
represented as a single time point or multiple time points. Relations such as before
or after can be used to relate individual points. Allen (1984) proposes a different
ontology for time based on intervals, with 13 associated relations such as overlap,
meet, before and after.

Causality is a concept that is closely related to time. Causality imposes existence
constraints on events: if event A causes event B and A has been observed, B can be
expected as well, possibly with some time delay. For example, if a patient has an
oocyte of lower quality, it is expected that it will develop into an embryo of a lower
quality. In this context, one may need to explore properties such as probability and
transitivity.

3.3. Intentional Ontologies

Intentional ontologies encompass the world of motivations, intents, goals, beliefs,
alternatives, choices, etc. Typical primitive concepts include issue, goal, supports,
denies, subgoalOf, agent, etc. An intentional ontology enables alternate realities to
be expressed and reasoned about. The subject of agents having beliefs and goals
and being capable of carrying out actions has been studied extensively. For example,
Maida (1982) addresses the problem of representing propositional attitudes, such as
beliefs, desires and intentions for agents.

Modeling the issues that arise during complex decision making is discussed in
Conklin and Begeman (1988). The application of such a framework to software de-
sign, intended to capture the arguments pro and con, and the decisions they result
in, has been a fruitful research direction since it was first proposed in Potts and
Bruns (1988), with notable refinements described in MacLean et al. (1991), Lee and
Lai (1991). For example, MacLean et al. (1991) models design rationale in terms of
questions (Q), options (O) and criteria (C). Figure 3 shows the structure of a deci-
sion space concerning the design of an automated teller machine (ATM). The four
questions raised have associated options. Choice among them will be done by using
an associated list of criteria. For example, for the question of what range of services
will be offered (by the ATM under design), there are two options, full range and
cash only, and two criteria for choosing among them. The cash-only option raises
an auxiliary question, whether services can be restricted by having switchable ma-
chines, where services can be masked out, or by having machines that are inherently
limited in the services they offer. On a complementary front, Gotel and Finkelstein
(1995) study the types of contributions a stakeholder can make to an argumentation
structure such as the one shown in Fig. 3.

The importance of the notion of goals and agents, especially for situations in-
volving concurrent actions, has a long tradition in requirements modeling, beginning
with Feather (1987) and continuing with influential proposals, such as Dardenne et
al. (1993) and Chung (1993).

Software nonfunctional requirements (NFRs), such as software usability, secu-
rity, reliability, user friendliness, performance, etc., can be modeled using softgoals
(Chung 1993; Mylopoulos et al. 1999). Softgoals are goals whose criteria for sat-
isfaction are not crisply defined a priori. The softgoal concept extends intentional
ontologies for capturing design rationale (Potts and Bruns 1988). Making available
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Fig. 3. Modeling design rationale in terms of questions (Q), options (O) and criteria (C).

intentional information such as pro and con arguments and resulting decisions can
be very useful during design and maintenance of information systems. It has been
shown that softgoals can play an important role in many design tasks by guiding the
designer through alternative design choices. Jurisica and Nixon (1998) show how one
would use softgoals to build quality into complex medical decision-support systems.

Consider an example of an information system for an IVF clinic, with the aim to
fulfill both clinical and research purposes. Suppose potential users rate performance
as an important factor for the system. Further assume that good performance is char-
acterized as fast response time when accessing patient records, for reasoning as well
as patient record updates. This requirement is represented as a softgoal: Time[Patient
Records and Reasoning], as shown at the top of Fig. 4. Time is the type of the soft-
goal and [Patient Records and Reasoning] is the topic. This goal may be synergistic
or competing with other goals, such as Time[Research Reasoning], which requires
fast response time for inference operations done by researchers. Using methods and
catalogues of knowledge (for performance, case-based reasoning, IVF, etc.), goals
can be refined into more specialized goals. Here the developer uses knowledge of
the IVF domain to refine the time goal for patient information into two subgoals,
one for good response time for updating patient records and the other for good re-
sponse time for the retrieval and decision-making process. These two subgoals are
connected by an And relationship to the parent goal. This means that if both sub-
goals are satisficed, then the parent goal is satisficed as well. Because, by nature,
softgoals are not formalizable, we say that they are satisficed rather than satisfied.
Satisficing implies good enough rather than complete solutions to a given problem.

The figure also shows an example of recording design rationale – the reasons
behind design decisions – using NFR framework claims (Chung et al. 2000). As
part of the development graph, recorded claims are available when making further
decisions and changes. It is important to note that the developers use their expertise
to determine what to refine, how to refine it, to what extent to refine it, as well as
when to refine it. The NFR framework and its associated tool can help the developer
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Fig. 4. Representing performance requirements for an IVF decision-support system using softgoals from the
NFR framework (Chung et al. 2000). Nonfunctional requirements (initially represented as NFR softgoals) are
refined until implementable solutions are identified (represented as operationalizing softgoals). Subgoals may
contribute positively or negatively, to different extents, toward higher goals – MAKE means sufficiently pos-
itive, BREAK means sufficiently negative, HELP and HURT denote partial contributions. The contribution
types are used to propagate the evaluation of solution alternatives toward the higher goals.

do consistency checking and keep track of decisions, but it is the developer who
controls the development process (Chung et al. 2000).

3.4. Social Ontologies

A social ontology covers social settings, organizational structures or shifting networks
of alliances and interdependencies (Galbraith 1973; Mintzberg 1979; Scott 2002). Tra-
ditionally, social ontologies have been characterized in terms of concepts such as ac-
tor, position, role, authority, commitment, etc. Speech acts theory offers an ontology
for modeling communication among actors (Medina-Mora et al. 1992). Social ontolo-
gies are also of interest in distributed artificial intelligence. Some of the concepts have
been formalized using a specialized logic (Castelfranchi and Mueller 1993).

A set of concepts that focus on strategic dependencies between actors is pro-
posed by Yu in the i* framework for organization modeling (Yu 1993, 1995a). Such
a dependency exists when an actor is committed to satisfying a goal or softgoal,
carrying out a task, or delivering a resource. Using these concepts, one can create
organizational models that provide answers to questions such as “Why does a fertil-
ity specialist work within a clinic rather than as an independent operator?” Creating
these models enables the analysis of an organizational setting, which is an import-
ant step in the redesign of business processes and the subsequent development of
information systems (Yu, Mylopoulos, and Lesperance 1996). Reasoning about the
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Fig. 5. Strategic dependencies between actors.

interdependency relationships among strategic actors is also important for enterprise
modeling and analysis (Yu 1999).

Health care involves some of the most complex social and organizational struc-
tures and processes in our society. In developing systems to support health care, it
is important to understand the social context in order to identify and select appro-
priate technical solutions. Although the social issues can be very complex, adopting
a suitable social ontology can provide assistance in organizing and discerning the
many issues, and to support analysis and argumentation.

Figure 5 shows a simple example of a strategic dependency graph involving three
actors: an IVF patient, a clinic, and a fertility specialist. The patient depends on the
specialist to achieve the goal of pregnancy. The clinic depends on the specialist to
perform procedures and also to uphold and enhance its good reputation. The spe-
cialist depends on the clinic for facilities and remuneration, while the latter depends
on the patient for the payment of fees.

One can use this kind of social ontology to model and explore alternative ap-
proaches to health care delivery. Figure 6 shows alternative arrangements by which
health care costs may be covered. The patient’s goal Health Costs Be Covered may
be met by paying the clinic directly, by buying private insurance or by having the
government pay for it via public health insurance. The patient ultimately pays for
health costs because every patient is also a taxpayer. The three methods of payment
are modeled as tasks in the i* framework. While each task can meet the functional
goal that Health Costs Be Covered, they contribute differently to the patient’s non-
functional goals. A prominent goal in this context is that the clinic’s services be
affordable at the time the need arises. Both insurance approaches provide timely af-
fordability, whereas this is a main drawback of the pay direct approach. The public
insurance approach contributes negatively to the tax burden, while the other alterna-
tives are positive. This type of modeling can help generate the space of alternatives
to be considered. Goals can be refined into subgoals by elaborating on the network
of means-ends relationships, as illustrated in Fig. 4. The patient may look for other
ways to achieve timely affordability (e.g., by maintaining personal savings) and to
reduce tax burden (e.g., take advantage of tax incentive schemes). In elaborating
on the reasoning structure of intentional relationships, the nature of the contribution
may not be known initially. In the example of Fig. 6, the contributions of the three
payment methods toward reducing overall health costs for the patient are initially



Ontologies for Knowledge Management: An Information Systems Perspective 391

Fig. 6. Strategic rationale for patient payment alternatives.

unknown. This is because the model has not been sufficiently refined. In this case,
the refinement can also be done by considering specialization on the classes of so-
cial actors – e.g., patients as belonging to high or low health care usage groups and
taxpayers according to tax brackets. The model needs to be elaborated sufficiently
to differentiate among alternatives, thus guiding what areas to further explore, until
satisfactory solutions are found. In a social context, the exploration and considera-
tion of alternatives need to be done from the viewpoint of each of the stakeholders.
Their choices and reasoning may influence each other. For example, the government
may have to balance many competing goals such as assuring a healthy citizenry, eq-
uitable access and cost containment. Again, classification and specialization may be
used to differentiate how different governments and societies make different tradeoffs
among goals, and thus focus on different branches when exploring alternatives. More
detailed evaluation (e.g., quantitative metrics) may be introduced once the range of
alternatives has been narrowed down to a manageable number. The use of a social
ontology aids in identifying the right set of issues to address. The social ontology
from i* modeling concepts has been applied to requirements engineering (Yu 1997),
business process analysis (Yu et al. 1996), manufacturing (Petit 1999), software pro-
cesses (Briand et al. 1998), data warehouse management processes (Vassiliadis et al.
2001), analyzing trust (Yu and Liu 2001; Gans et al. 2003) and intellectual property
management (Yu et al. 2001).

As an example for another social ontology intended for a different level of an-
alysis, we may consider the action workflow approach to business process modeling
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Fig. 7. An action workflow model.

(Flores et al. 1988; Medina-Mora et al. 1992; Agostini et al. 1993; Denning and
Medina-Mora 1995). The focus here is on the coordination among social actors in-
teracting in a collaborative work process. The primary unit for modeling is the cycle
of events that take place between someone who wants to get something done (the
customer) and the person who provides that service or product (the performer). The
cycle is taken to consist of four phases: requesting, committing, performing and ac-
ceptance. Diagrammatically, a four-phased loop is drawn between the names of the
customer and the performer, with the work to be done identified in the middle. Del-
egation and other auxiliary processes can occur at any of the four phases, depicted
as branching and returning arrows from the loop. Figure 7 shows an example of an
action workflow model for a dental treatment that involves a preauthorization from
the insurance company during the agreement phase in the main loop and a delegation
to the lab for part of the work during the performance phase.

The analysis focuses on identifying who are the relevant actors involved in a work-
flow, who is the customer and who is the performer for each relationship, whether
the four phases are properly attended to in each customer-performer relationship and
what breakdowns might occur and where. This approach differs from more conven-
tional workflow modeling techniques that provide basically dynamic ontologies, e.g.,
activity sequences, synchronization, and information flow. The action workflow ap-
proach focuses instead on social mechanisms such as negotiation, commitment, coor-
dination, and evaluation and satisfactory achievement of results. On the other hand,
constructs from intentional ontologies such as goals or decision criteria, means-ends
relationships and alternatives are not explicitly incorporated. A more detailed com-
parison with the i* approach may be found in Yu (1995b).

4. Development and Application of Ontologies in Medicine

For a given domain, the representation of relevant knowledge can be based on primi-
tive concepts derived from any one or all of the proposed four ontological categories.
Regardless of which category is used to cover a particular application domain, infor-
mation system development benefits from using tools that support ontology design
and integration processes. For example, DAML and OIL define a semantic markup
language for Web resources (Connolly et al. 2001; Horrocks et al. 2002). DAML
(the DARPA agent markup language) has been designed as an extension of XML
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(extended markup language) and RDF (resource description framework). It offers
a language and tools developed to facilitate the concept of the semantic web. OIL (an
Ontology Interface Layer) provides classification using constructs from frame-based
AI, combined with the expressiveness and reasoning power of description logics.
DAML+OIL provides modeling primitives similar to ones defined in frame-based
languages and a set of constructs for creating ontologies (Fensel and Rousset 1998).
Ontolingua supports authoring ontologies by providing tools for assembling and en-
hancing a library of modular, reusable ontologies (Gruber 1992). Once ontologies are
defined for one or several domains, they may be organized into libraries, thereby en-
hancing their reusability (Van Heijst et al. 1995). Such libraries can be used to build
information systems by supporting requirements acquisition and design (Tu et al.
1995).

When ontologies get large, tools must be used for their management. Analysis
tools can help with ontology verification and validation. Verification checks whether
an ontology (or any formal model, for that matter) satisfies particular constraints. For
example, verification tools can check cardinality constraints for entity-relationship
models or semantic consistency of rules and constraints such as “patient cannot have
more embryos than she had oocytes.” Validation checks the consistency of a model
with respect to its application. Because the application is informal, validation has
to be done manually or, at best, semiautomatically. Other supporting tools include
ontology editors, viewers and servers to support creation, maintenance and use of
ontologies (Cimino 2000; Kahn 1998). For example, NEON (networked-based editor
for ontologies) has been designed to standardize radiology appropriateness criteria
(Kahn 1998). Individual concepts are represented in a semantic network and the
system supports import and export of ontologies using SGML. Individual entities
include concept name, abbreviation, synonym, and links such as affectedBy, hasPart,
partOf and imagedBy. This approach can help to not only standardize terminology
but also organize existing vocabularies.

On the application side, the most prevalent ontology-based activity is developing
static ontologies, such as taxonomies or controlled vocabularies (Ashburner et al.
2000; Gennari and Oliver 1995; Godfray 2002; Musen 1998, 2002; Oliver 1998).
The goal is to standardize terminology and taxonomically organize concepts in spe-
cific domains to enable information sharing and system cooperation. For example,
an agent in a system for medical diagnosis may use an ontology of clinical con-
cepts, both during structured data entry and decision support (Falasconi et al. 1997).
A diagnostic agent may need to cooperate with a bibliographic agent that uses an
ontology for bibliographies to associate literature references with particular diseases.

Over the years, many of these static ontologies turned into standard medical vo-
cabularies, such as the International Classification of Diseases (ICD-9-CM), Sys-
tematized Nomenclature of Human and Veterinary Medicine (SNOMED), Medical
Subject Headings (MeSH), Read Codes of clinical terms, Current Procedural Termi-
nology (CPT), Unified Medical Language System (UMLS), Generalized Architecture
for Languages, Encyclopedia and Nomenclatures in medicine (GALEN), etc. How-
ever, none of these standards is sufficiently comprehensive and accepted to meet the
full needs of the electronic health record (Shortliffe 1998; Langlotz and Caldwell
2002; Strang et al. 2002).

Despite standardization efforts, combining and synchronizing individual versions
of existing medical vocabularies remains an open problem (Oliver 1998). For this
reason, the National Library of Medicine has created a UMLS (Humphreys and Lind-
berg 1998), which is a composite of about 60 vocabularies that contain 870,853 con-
cepts and 2.27 million concept names in its source vocabularies (UMLS 2002 AC).
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UMLS is available via a UMLS knowledge source server (UMLSKS) that provides
a set of web-based interaction tools as well as an API to access the UMLS biomedi-
cal terminologies. The current UMLSKS release comprises three knowledge sources:
UMLS Metathesaurus (UMLS-MT), Semantic Network (UMLS-SN) and Specialist
Lexicon (UMLS-SL). UMLS-MT comprises information about biomedical concepts
from diverse controlled vocabularies, as well as classifications used in patient records,
administrative health data, bibliographic and full-text databases and decision-support
systems. A consistent categorization of all concepts from UMLS-MT is supported by
semantic types defined in UMLS-SN. The links between the semantic types represent
relationships in the biomedical domain and thus provide the structure for the Net-
work. UMLS-SL is an English language lexicon containing syntactic, morphological
and orthographic information for biomedical concepts.

The Medical Ontology Group of the Italian National Research Council has been
working on integrating and reusing existing terminological ontologies in medicine
(Steve et al. 1997). Steve et al. have designed an ontology library, ON9, which is
written in Ontolingua (Gruber 1992) and Loom (MacGregor 1993). It includes thou-
sands of medical concepts and organizes them into domain, generic and meta-level
theories. They use a methodology called ONIONS to aid construction of ontologies
starting from existing, contextually heterogeneous terminologies. This work led to
a successful integration of five medical terminology systems: the UMLS-SN (about
170 semantic types and relations, and their 890 defined combinations), SNOMED-III
(about 600 most general concepts), Gabrieli Medical Nomenclature (about 700 most
general concepts), ICD10 (about 250 most general concepts) and the Galen Core
Model-5g (about 2,000 items).

Another problem that must be addressed is complexity of controlled medical vo-
cabularies. It is important to provide tools and techniques to facilitate the design
and organization of such vocabularies. Earlier models, such as ICD-9-CM, DSM,
SNOMED and Read codes Version 2 (CTV2 – Clinical Terms Version 2 of the
Read Codes) use the code not only to identify a concept uniquely but also to in-
dicate where a concept lies in the hierarchy, which thus has a tree structure. As
a result, a particular concept can be associated only with one node of the hierar-
chy. In addition, the number of levels in the hierarchy is usually limited because
existing codes have a fixed number of alphanumeric characters and each character
indicates a level. For example, A specifies infectious and parasitic diseases, A1 spec-
ifies tuberculosis, A130 specifies tuberculosis meningitis, while F00, in a different
part of the hierarchy, specifies bacterial meningitis, and F004 meningitis-tuberculous.
This results in duplication where the same concepts are represented by two different
codes. Alternatively, some systems do not use codes to indicate hierarchical loca-
tion, e.g., Read codes Version 3 (CTV3), the MED (Medical Entities Dictionary) and
SNOMED-RT. The alphanumeric codes are a label for the concept and no longer
represent the hierarchical relationship. Li et al. (2002) describes a DAG structure
enrichment of the tree-structured semantic network of the UMLS. Gu et al. (1999)
proposes a methodology to partition vocabularies into contexts where each context
contains an isA tree hierarchy. Liu et al. (1999, 2002) shows how to partition an
existing MED dictionary, which comprises 48,000 concepts, over 61,000 isA links
and over 71,000 additional links (e.g., categoryOf, roleOf ). Based on the partitioning
into sets of concepts with the same sets of properties, MED has been implemented
using a commercial object-oriented database management system (ONTOS).

Ontologies are also becoming an integral part of bioinformatics because they en-
courage common terminology for describing complex and evolving biological know-
ledge (Schulze-Kremer 1998; Stevens et al. 2002). Ontologies can be used to sup-
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port a common access to diverse information repositories. One such example from
biology is called TAMBIS (transparent access to multiple bioinformatics information
sources; Baker et al. 1998). In this work, a uniform global schema and query interface
is achieved by using an ontology (called TaO) that describes diverse bioinformatics
tasks and resources (Baker et al. 1999). The TaO schema does not have materialized
instances. Instead, instances are extracted from several distributed databases. Along
similar lines, Boulos et al. (2002) describes the use of Doublin Core for creating
a semantic medical web, to link medical web resources in a novel way to support
enhanced retrieval and navigation. A step further in this direction is PharmaGKB,
a frame-based ontology for pharmacogenomics (Hewett et al. 2002; Oliver et al.
2002), which was designed to support heterogeneous data integration and data acqui-
sition. Automating data acquisition and ontology creation further requires text mining
and natural language processing (Hahn et al. 2002). The trend is slowly moving into
automating the process of ontology creation and using the existing ontologies during
reasoning and simulation. This trend will result in development of new ontologies,
especially dynamic and intentional. Application of reasoning systems in medicine
will require introduction of social ontologies.

5. Discussion

Current literature on knowledge management generally agrees that the main chal-
lenges ahead lie in the realm of organizational culture and practices (Ruggles 1998).
However, the impact and potential of advanced information technologies, both pos-
itive and negative, should not be underestimated. Given today’s vast, complex and
dynamic information environments, the potential for using information technology
to help discover, deliver and manage knowledge is enormous (Jurisica et al. 2001).
Unfortunately, the pitfalls are also plentiful. This is why the complementary use of
concepts and techniques from information science and information systems is crucial.

The ontological approach with an information modeling bias described in this
paper derives its power from formal models of domain knowledge. Such models can
be formally analyzed and processed for useful purposes. However, many domains
resist precise formalization. In such domains, formalization can become a straitjacket.
For this reason, formal modeling techniques need to be integrated with informal
ones. For instance, the Unified Modeling Language (UML) has gained a foothold in
software engineering practice, even though parts of it are informal. Informal models
can help understanding a domain and bring consensus among collaborating software
engineers. The challenge is therefore to blend the two approaches so that they can
be used together in a seamless way.

For example, consider the design of a form. If the content of the form fields
can be arbitrary text strings, then there is little to be formalized. Consequently, lit-
tle computational leverage can be derived from the formalization. At the same time,
such a format is highly flexible and can accommodate a broad range of inputs. How-
ever, if a field content is restricted to a finite set of predefined values, which obey
specific rules, these rules can facilitate automated consistency checking, albeit at
a loss in flexibility. In an e-mail message, the format of the address and date fields
is formally defined and can be operated on by automated procedures, such as those
for routing and sorting. One can hardly imagine an e-mail system that requires hu-
man intervention to interpret addresses to manually sort and route the mail through
the Internet. To gain the benefit of speedy communication, we have learned to live
with the inflexibility of formally defined e-mail addresses. The message body, how-
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ever, is arbitrary text that requires human interpretation. When one is faced with
thousands of messages week after week, some kind of technology support becomes
desirable.

There can be many shades in between full formalization (and the computational
support it entails) and no formalization, as well as many forms of interactive, semi-
automated support. One can do string-based retrieval, filter out unwanted messages
or file them automatically into predefined folders. To do more powerful process-
ing, one would need to attribute more meaning to the content. For example, one
could define patterns, which would be recognized as dates within a message body.
One could define concepts related to meetings so as to recognize meeting announce-
ments. One could then have reminders automatically inserted into an appointments
calendar. In order to achieve this, one needs to define an ontology of appointment
dates (the concept of dates and available time slots in the context of appointments),
and perhaps also an ontology of meeting scheduling – what constitutes a scheduling
conflict, when is a meeting room available, who can approve or cancel a scheduled
meeting and the like.

This example illustrates that ontologies are often not about an objective world,
but are based on social conventions and agreements. Concepts, meanings and inter-
pretations are relative to some community and can change over time. Community
boundaries and identities can also be dynamic. Here again, the experience and exper-
tise in information science for dealing with much more open-ended kinds of human
knowledge can be invaluable. Technical frameworks are increasingly paying atten-
tion to these factors, as exemplified in the intentional and social ontologies outlined
above. However, technological support for dealing with these issues, such as con-
textual mechanisms for knowledge scoping and sharing, multiple perspectives and
meanings, negotiation support, knowledge evolution, etc., can only be partial – again
due to inherent limits to the formalization of human knowledge.

6. Conclusions

The technologies of information systems have been progressing at a rapid pace. In-
formation systems are now being called upon to support knowledge management
and not just to process data or information. Many advances contribute to taking in-
formation systems beyond mere data into the realm of knowledge. These include
cooperative query processing (Chu et al. 1996), similarity-based retrieval and brows-
ing (Jurisica et al. 2000), data mining and knowledge discovery (Jurisica et al. 2001),
text understanding (Hahn et al. 2002; Riloff 1996), data translation services (Gruber
1993), and knowledge sharing (Orthner et al. 1994), to name a few.

However, the key to providing useful support for knowledge management is
founded on how meaning is embedded in information models as defined in terms of
ontologies. In this paper, we have surveyed some of the basic concepts found under
four ontological categories. We outlined the benefits and limitations of the ontology-
based approach and argued for the need to combine techniques from information
science and information systems.
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