
2 THE NFR FRAMEWORK IN ACTION

Consider the design of an information system, such as one for managing credit
card accounts. The system should debit and credit accounts, check credit limits,
charge interest, issue monthly statements, and so forth.

During the development process of requirements elaboration, systems
design and implementation, a developer needs to make decisions such as:

How frequently will account information be updated?

How will customer identity be validated | e.g., by using personal identi�-
cation numbers (PIN codes) or biometrics?

Will a certain group of data be stored locally or replicated over multiple
sites?

These development decisions have important implications for the secu-
rity, performance, accuracy, cost and other aspects of the eventual system. The
signi�cance of these non-functional requirements (or software quality attributes)
are widely recognized. Attaining software quality attributes can be as crucial
to the success of the system as providing the functionality of the system. For
example, inaccurate credit account information can lead to monetary loss and
damage to the reputation of a �nancial institution, while poor response time
could lead to poor morale and eventually loss of customers.

Most conventional approaches to system design are driven by functional
requirements. Developers focus their e�orts primarily on achieving the desired

15

16 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

functionality of the system { calculating account interest, issuing monthly state-
ments, etc. Although decisions about how to achieve functionality are made
along the way, usually with non-functional requirements (such as cost and per-
formance) in mind, these considerations may not be systematic, and may often
not be documented. Furthermore, these software quality attributes may of-
ten be viewed as consequences of the decisions, but not something that the
developer can strive for in a coherent, well thought-out way.

Note that in this section we are not using the terms \design" or \devel-
opment" to refer to a particular phase of development. Rather, they are used
in the broad sense of the process of developing a target artifact by starting with
a source speci�cation and producing constraints upon the target artifact. This
could occur at various phases of development (e.g., requirements speci�cation,
conceptual design, or implementation).

2.1 USING THE NFR FRAMEWORK

In contrast to functionality-driven approaches, the NFR Framework uses non-
functional requirements such as security, accuracy, performance and cost to
drive the overall design process. The Framework aims to put non-functional
requirements foremost in the developer's mind.

There are several major steps in the design process:

acquiring or accessing knowledge about:

{ the particular domain and the system which is being developed,

{ functional requirements for the particular system, and

{ particular kinds of NFRs, and associated development techniques,

identifying particular NFRs for the domain,

decomposing NFRs,

identifying \operationalizations" (possible design alternatives for meeting
NFRs in the target system),

dealing with:

{ ambiguities,

{ tradeo�s and priorities, and

{ interdependencies among among NFRs and operationalizations,

selecting operationalizations,

supporting decisions with design rationale, and

evaluating the impact of decisions.

These are not necessarily sequential steps, and one may also need to iterate
over them many times during the design process. A developer may choose

THE NFR FRAMEWORK IN ACTION 17

re�nements, having operationalizations in mind; thus the development process
may move up and down, rather than being strictly top-down.

It would be extremely helpful, if at each step in the process, the developer
could draw on available knowledge that is relevant to that step in the process.
This is precisely what the NFR Framework aims to provide. The Framework
o�ers a structure for representing and recording the design and reasoning pro-
cess in graphs, called softgoal interdependency graphs (SIGs). The Framework
also o�ers cataloguing of knowledge about NFRs and design knowledge, includ-
ing development techniques. By providing SIGs and drawing on catalogues,
the contextual information at each step can be used to trigger and bring forth
previously-stored knowledge to help the developer carry out that step.

Softgoal Interdependency Graphs

The operation of the Framework can be visualized in terms of the incremental
and interactive construction, elaboration, analysis, and revision of a softgoal
interdependency graph (SIG). The graph records the developer's consideration
of softgoals, and shows the interdependencies among softgoals.

Major concepts of the Framework appear in the graphical form in SIGs.
Softgoals, which are \soft" in nature, are shown as clouds. Main requirements
are shown as softgoals at the top of a graph. Softgoals are connected by inter-
dependency links, which are shown as lines, often with arrowheads. Softgoals
have associated labels (values representing the degree to which a softgoal is
achieved) which are used to support the reasoning process during design. In-
terdependencies show re�nements of \parent" softgoals downwards into other,
more speci�c, \o�spring" softgoals. They also show the contribution (impact)
of o�spring softgoals upwards upon the meeting of other (parent) softgoals.

To determine whether softgoals are achieved, an evaluation procedure
(labelling algorithm) is used, which considers labels and contributions, and,
importantly, decisions by the developer.

It is important to note that the developer has control over what softgoals
are stated, how they are re�ned, and the extent to which they are re�ned.
The design process and evaluation procedure are interactive. Evaluation is
also \semi-automatic," i.e., assisted by a procedure (algorithm), but with the
developer in control.

Cataloguing Design Knowledge

A very important aspect of the Framework is that developers are able to draw
on an organized body of design knowledge (including development techniques)
that has been accumulated from previous experience. This type of knowledge
can be arranged in knowledge catalogues.

There are three kinds of catalogues used. One kind of catalogue rep-
resents knowledge about the particular types NFRs being considered, such
as security and performance, and their associated concepts and terminology.
Another kind of catalogue is used to systematically organize development tech-

18 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

niques (methods), which are intended to help meet requirements, and are avail-
able to developers. The third type of catalogue shows implicit interdependen-
cies (correlations, tradeo�s) among softgoals.

The design knowledge in catalogues may come from many sources. Gen-
eral knowledge for various areas (e.g., performance, security, usability) are typ-
ically available in textbooks, developer guides and handbooks. More special-
ized knowledge may be accumulated by specialists in industry and academia, or
within an organization. Individual developers and teams also build up knowl-
edge from their experiences over a number of projects that can be reused. By
making this knowledge available in a single design framework, developers can
draw on a broad range of expertise, including those beyond their own immedi-
ate areas of speciality, and can adapt them to meet the needs of their particular
situations.

These catalogues, such as those o�ered in Part II, provide a valuable
resource for use and re-use during development of a variety of systems. This
was our experience in the case studies of Part III, where catalogued knowledge
of domain information and NFRs was used throughout the design process. Thus
other steps in the process can be aided by gathering and cataloguing knowledge
early in the process.

Now we consider the various steps of the process of using the Framework.

2.2 ACQUIRING DOMAIN KNOWLEDGE

During the process, the developer will acquire and use information about the
domain and the system being developed. This includes items such as functional
requirements, expected organizational workload, and organizational priorities.

For a credit card system, for example, the functional requirements in-
clude operations to authorize purchases, update accounts and produce state-
ments. Organizational workload includes the number of cardholders and mer-
chants, and the expected daily volume of purchases. The credit card organi-
zation will have some priorities, such as emphasizing the fast cancellation of
stolen cards, and the provision of fast authorization.

Of course the developer will need to acquire a source speci�cation of the
system, before moving towards a target. For example, the source might be a
set of requirements, and the target might be a conceptual design. As another
example, the developer might start with a conceptual design and move towards
an implementation of the system.

The case studies of Part III include descriptions of the domains studied.

2.3 ACQUIRING AND CATALOGUING NFR KNOWLEDGE

The developer will be drawing on catalogues of knowledge of NFRs and asso-
ciated development techniques.

To provide a terminology and classi�cation of NFR concepts, NFR type
catalogues are used. Figure 2.1 shows a catalogue of NFRs. The NFR types
are arranged in a hierarchy. More general NFRs are shown above more speci�c

THE NFR FRAMEWORK IN ACTION 19

ones. For example, performance has sub-types time and space, which in turn
have their own sub-types. The NFRs shown in bold face are considered in detail
in this book.

NFR Types

Cost User-Friendliness

Integrity

Accuracy Completeness

Time Space

Performance Security

AvailabilityConfidentiality

Main
Memory

Secondary
Storage

Response
Time

Process
Management
Time

Throughput

NFR Type Catalogue

Informal Legend

IsA (sub-type) relationship

Figure 2.1. A catalogue of some NFR Types.

The NFR types provide a terminology to express requirements. For
example, we can speak of the security of an account, or the response time for
sales authorization.

Standard development techniques, along with methods of decomposing
NFRs, are also organized into method catalogues. Interdependencies among
NFRs (for example, stating that auditing helps security) are also organized
into correlation catalogues. We will give examples of methods and correlations
in this chapter, and will discuss these two types of catalogues in more detail in
Section 2.12.

Normally, system developers can access existing catalogues from the start
of development. The catalogues can be extended during development, to deal
with additional or more re�ned concepts or development techniques which sub-
sequently need to be addressed.

2.4 IDENTIFYING NFRs

In using the NFR Framework, one constructs an initial softgoal interdependency
graph by identifying the main non-functional requirements that the particular

20 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

system under development should meet. In the credit card system example,
these may include security of account information, and good performance in the
storing and updating of that information. These non-functional requirements
(NFRs) are then treated as softgoals to be achieved, i.e., they are goals which
need to be clari�ed, disambiguated, prioritized, elaborated upon, etc. This
particular kind of softgoal is called an NFR softgoal. As we will soon see, NFR
softgoals are one of three kinds of softgoals.

The developer will identify speci�c possible development techniques.
From among them, the developer will choose solutions in the target system
that meet the source requirements speci�cation. Thus the developer begins by
systematically decomposing the initial NFR softgoals into more speci�c sub-
softgoals (or subgoals).

Let us consider the requirements to \maintain customer accounts with
good security" and \maintain customer accounts with good performance."

Secure
accounts

� Developer states top performance and security softgoals
� NFR Tool displays relevant catalogues

of methods.

Informal SIG

Informal Legend

NFR Softgoal

Good Performance
for accounts

Figure 2.2. An initial Softgoal Interdependency Graph with NFR softgoals representing

requirements for performance and security of customer accounts.

We are considering two non-functional requirements here, one for good
performance for accounts, the other for good security of accounts. These non-
functional requirements are represented as NFR softgoals Good Performance for
accounts and Secure accounts. The NFR softgoals are represented by clouds,
shown in the softgoal interdependency graph (SIG) of Figure 2.2.

Softgoals have an NFR type, which indicates the particular NFR, such
as security or performance, addressed by the softgoal. In this chapter, the NFR
types of some top-level softgoals are underlined in �gures. Softgoals also have
a subject matter or topic, here, accounts.

In this chapter, we use a syntax for SIGs which conveys the main points
but is somewhat informal. Here the �gure is an \informal" softgoal interdepen-

THE NFR FRAMEWORK IN ACTION 21

dency graph (informal SIG). A more precise syntax is introduced in Chapters 3
and 4, and is used in the remainder of the book.

Figures in this book have a logo in the top left corner (such as Informal
SIG) indicating the kind of �gure. A list of the di�erent kinds of logos for
�gures is given in Figure 0.1.

Some �gures also have legends to describe new symbols. A collected
Legend for Figures appears at the front of this book.

Figures in this chapter also have an informal description of the process of
developing SIGs. A diamond introduces an action by the developer. A right-
arrow introduces a response to the developer, done by consulting catalogues
and executing algorithms (procedures).

Responding to a developer's decisions, along with the drawing of SIGs,
can be provided by an interactive design support tool, or can be done \by
hand" by the developer using \pencil and paper." The responses in the �gures
of this chapter are suggestive of how a tool, such as the \NFR Tool" [Chung93a,
94c], could be used. In this book, however, we do not assume that a particular
method is used to draw graphs or respond to developers' decisions. Rather, the
presentation below will focus on the usage of the NFR Framework's concepts.
This is done to o�er some evidence that the Framework is useful. However, we
do not make a claim about the ease of handling large SIGs for large systems

The following steps of using the NFR Framework can be viewed as an
analysis of requirements, followed by a synthesis of operationalizations to meet
the requirements. First, softgoals are broken down into smaller softgoals. We
deal with ambiguities, and also consider domain information and priorities.
Throughout the analysis we consider interdependencies among softgoals. Then
we synthesize solutions to build quality into the system being developed. We
consider possible alternatives for the target system, then choose some, and state
reasons for decisions. Finally we see how well the main requirements have been
met.

Interestingly, the NFR Framework is able to deal with di�erent NFRs in
one graph at the same time, even when the NFRs have di�erent natures (here,
performance and security). As we shall see, the NFR Framework can deal with
interactions among these di�erent NFRs.

2.5 DECOMPOSING NFR SOFTGOALS

In decomposing an NFR softgoal, the developer can choose to decompose its
NFR type or its topic. In the example, the two softgoals share the same topic,
accounts, but address di�erent NFRs, performance and security.

Now we will decompose the two NFR softgoals of the example, starting
with the security requirement.

The initial security requirement is quite broad and abstract. To e�ec-
tively deal with such a broad requirement, the NFR softgoal may need to be
broken down into smaller components, so that e�ective solutions can be found.

22 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

In addition, the requirement may be ambiguous. Di�erent people may
have di�erent conceptions of what \security" constitutes in the context of credit
card account information.

Secure
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

� Developer focusses on security and selects method
� NFR Tool creates and links sub-goals.

Informal SIG

Informal Legend

AND contribution

Figure 2.3. Decomposing NFR softgoals into more speci�c non-functional requirements.

By treating this high-level requirement as a softgoal to be achieved, we
can decompose it into more speci�c subgoals which together \satis�ce" (should
meet) the higher-level softgoal. Thus the Secure accounts NFR softgoal can be
decomposed into sub-softgoals for the

integrity,

con�dentiality, and

availability.

of the accounts. This is shown in Figure 2.3, which is an extension (downwards)
of part of Figure 2.2. Such series of �gures are used throughout this book to
show the development of SIGs, where one �gure builds on earlier ones.

In the graphical notation, clouds denote softgoals and lines represent
interdependencies among softgoals.

Softgoals contribute, positively or negatively, to ful�lling other softgoals.
There are di�erent types of contributions. When all of several sub-softgoals
are needed together to meet a higher softgoal, we say it is an AND type of
contribution. Here, we say that if integrity, con�dentiality and availability

THE NFR FRAMEWORK IN ACTION 23

are all met, then as a group their contribution will be to achieve the security
softgoal. This is an AND contribution. It is shown with lines grouped by an
arc.

Typically, softgoals are shown as being re�ned downwards into sub-
softgoals (subgoals), and subgoals contribute upwards to parent softgoals.

It is interesting to note that steps used in constructing SIGs can draw on
catalogues, such as the NFR Type catalogue of Figure 2.1. In Figure 2.3, for ex-
ample, an entry (Security) in the type catalogue has specialized types (Integrity,
Con�dentiality and Availability). And in the SIG we see the same pattern, where
inter-connected (interdependent) softgoals have these same types.

If patterns are be expected to be re-used when building SIGs, methods
can be de�ned and entered in a catalogue. Here, for example, a method can
be de�ned which takes a parent softgoal of a particular type, and produces
o�spring softgoals which have sub-types of the parent's type. This SubType
method is used in the SIG.

Complete
accounts

Secure
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

Accurate
accounts

� Developer focusses on security and selects method
� NFR Tool creates and links sub-goals.

� Further security refinement

Informal SIG

Figure 2.4. Further decomposition of a security softgoal.

The NFR softgoal that accounts will have integrity can be further decom-
posed into the subgoals that account information be complete, and accurate.
This is shown in Figure 2.4. This is another application of the SubType method.
Here, it considers the sub-types of Integrity from the catalogue of Figure 2.1.

In the descriptions at the bottom of �gures in this chapter, solid dia-
monds and right-arrows represent new actions and responses, while outlined

24 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

� Developer states top performance and security softgoals
� NFR Tool displays relevant catalogues of methods.

� Developer focusses on security and selects method
� NFR Tool creates and links sub-goals.

� Further security refinement

� Developer focusses on performance softgoal for accounts
� NFR Tool displays catalogue of performance methods.

Secure
accounts

Complete
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

Accurate
accounts

Good Performance
for accounts

Informal SIG

Figure 2.5. Considering a performance softgoal.

ones provide context by repeating actions and responses which were shown in
earlier �gures.

Recall that we started with two mainNFRs, for security and performance
of accounts. Figure 2.5 shows these initial NFRs from Figure 2.2, along with
the security development of Figure 2.4.

Having re�ned the security requirement, the developer now focusses on
the performance requirement.

The developer decides to decompose the performance softgoal with re-
spect to its NFR type. This results, in Figure 2.6 (an extension of Figure 2.5),
in two subgoals:

one for good space performance for accounts, and

one for good time performance for accounts.

Good time performance here means fast response time, and good space perfor-
mance means using little space. Here the subgoals make an AND contribution
to the performance softgoal.

THE NFR FRAMEWORK IN ACTION 25

� Developer focusses on performance softgoal for accounts
� NFR Tool displays catalogue of performance methods.

� Developer refines performance softgoal

Secure
accounts

Complete
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

Accurate
accounts

Good Performance
for accounts

Space for
accounts

Response
time for
accounts

Informal SIG

Figure 2.6. Decomposing a performance softgoal.

This is another use of the SubType method. It draws on the subtypes of
Performance in the NFR type catalogue of Figure 2.1.

As well as their NFR type, softgoals can also be decomposed by their
topic. For example, a performance softgoal for credit card accounts could be
decomposed into performance softgoals for gold accounts and for regular ac-
counts.

2.6 DEALING WITH PRIORITIES

Softgoal interdependency graphs can grow to be quite large and complex. How
can a developer focus on what is important?

One way is to identify priorities. Extra attention can then be put towards
meeting the priority softgoals.

Priorities can arise from consideration of several factors. These include
domain information such as organizational priorities (e.g., a bank may consider
security very important) and organizational workload (e.g., a credit card system
may have a large number of sales to authorize each day). In addition, require-
ments can be identi�ed as priorities during various phases of development.

26 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

� Developer focusses on performance softgoal for accounts
� NFR Tool displays catalogue of performance methods.

� Developer refines performance softgoal

� Developer identifies accurate accounts as a priority

Secure
accounts

Complete
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

Accurate
accounts

Good Performance
for accounts

Space for
accounts

Response
time for
accounts

Informal SIG

Accurate
accounts!

+

Informal Legend

Priority softgoal!

Figure 2.7. Identifying a softgoal as a priority.

Some priority softgoals will be identi�ed as critical, as they are vital to
the success of the system or organization. Other softgoals will be noted as
being dominant, as they deal with a signi�cant portion of the organization's
workload. Priority softgoals are identi�ed by an exclamation mark (!).

Figure 2.7 identi�es Accurate accounts as being a priority softgoal. This
is shown by producing an o�spring with the same type and topic, but noted as
a priority by \!".

The priority o�spring contributes positively to the parent, and this is
indicated by \+". This positive contribution is an example of a contribution
type, which shows the impact of o�spring softgoals upon their parent softgoal.

The reasons for prioritizing a softgoal can be noted as design rationale,
discussed in Section 2.9 below. Now that the priority is identi�ed, it can be
analyzed and dealt with.

THE NFR FRAMEWORK IN ACTION 27

For example, priorities may be used to make appropriate tradeo�s among
softgoals. As an example, fast authorization of credit card sales may be given
higher priority than fast determination of travel bonus points to be given to
gold cardholders. Here, the developer may perform the authorization before
the bonus calculation.

Knowledge of tradeo�s can be captured in catalogues, and made available
for re-use in dealing with softgoal synergy and conicts. Thus throughout the
development process, various tradeo� considerations can be made.

2.7 IDENTIFYING POSSIBLE OPERATIONALIZATIONS

While the re�nement process so far provides more speci�c interpretations of
what the initial NFRs of \secure" and \good performance" mean, it does not
yet provide means for actually accomplishing security and performance for ac-
counts.

At some point, when the non-functional requirements have been su�-
ciently re�ned, one will be able to identify possible development techniques for
achieving these NFRs (which are treated as NFR softgoals) and then choose
speci�c solutions for the target system. The development techniques can be
viewed as methods for arriving at the \target" or \destination" of the design
process.

However, it is important to note that there is a \gap" between NFR
softgoals and development techniques. To get to the destination, one must
bridge the gap. This involves performing analysis, and dealing with a number
of factors. These include ambiguities, priorities, tradeo�s, and other domain
information such as the workload of the organization. These factors will have
to be addressed at various steps in the process.

We show how development techniques are identi�ed here, and how they
are selected in Section 2.10.

Let us consider the challenge of providing good Response time for ac-
counts. One possible alternative is to use indexing (Figure 2.8). In this case,
Use indexing is a development technique that can be implemented. It is a can-
didate for the task of meeting the response-time NFR. But it is no longer a
non-functional requirement. This is contrasted with Response time, which is
still a software quality attribute, i.e., a non-functional requirement, since it is
not something that can be implemented directly.

We call the development techniques operationalizations of the NFR soft-
goals.

We say that indexing operationalizes response time. We also say that
the response time NFR is operationalized by indexing.

Operationalizing softgoals are drawn as thick (dark) clouds, and are an-
other kind of softgoal.

Note that operationalizations are not limited to operations and functions.
Instead, operationalizations can correspond to data, operations and constraints
in the target system.

28 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

� Developer identifies accurate accounts as a priority

� Developer focusses on response time, confidentiality and security
� NFR Assistant displays catalogue of possible techniques

and trade-offs.

� Developer selects possible techniques
� NFR Assistant creates and links techniques.

Informal SIG

Informal Legend

+Operationalization OR contribution Positive
contribution

Secure
accounts

Authorize
access to
account
information Authenticate

user access

Identify
users

Validate access
against eligibility rules

Use
P.I.N.

Compare
Signature Require

additional
ID

Complete
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

Accurate
accounts

Good Performance
for accounts

Space for
accounts Response

time for
accounts

Use
indexing

Use uncompressed
format

+

+

+

Accurate
accounts!

+

Figure 2.8. Identifying possible operationalizations for NFR softgoals.

THE NFR FRAMEWORK IN ACTION 29

Like other softgoals, operationalizing softgoals make a contribution, pos-
itive or negative, towards parent softgoals. Here, the use of indexing helps meet
the NFR softgoal for good response time. This positive contribution is shown
by \+" in Figure 2.8. There are several contribution types. Earlier, we saw the
AND contribution type.

In addition, the use of an uncompressed format makes a positive con-
tribution towards meeting the response time requirement. However, as we will
see later, it has a negative impact on space performance.

Note that we have not yet chosen which operationalizations will be used
in the target system. What we can say now is that the use of either indexing
or an uncompressed format, or both, will make a positive contribution towards
achieving good response time.

Let us now consider how to meet the security requirement, particularly
Con�dentiality of accounts. One development technique is to allow only autho-
rized access to account information. Authorize access to account information is
an operationalizing softgoal which makes a positive contribution to con�den-
tiality.

The operationalizations can be drawn from catalogues of development
techniques, based on expertise in security, performance, and information system
development. Catalogues can aid the search for possible operationalizations.

The transition from NFR softgoals to operationalizing softgoals is a cru-
cial step in the process, because NFRs need to be converted into something
that can be implemented. However, one may not be able to convert initial
requirements into a concrete operationalization in one step, i.e., the initial op-
erationalization (development technique) may not be speci�c enough. Often,
there needs to be further re�nements and elaborations. Furthermore, there
can be di�erent ways for re�ning or elaborating these general operationaliz-
ing softgoals, i.e., one needs to continue to identify other possible development
techniques and choose among them. In the NFR Framework, we continue to
treat these operationalizing softgoals { both general ones as well as increasingly
specialized and speci�c ones { as softgoals to be addressed. This allows us to
use the same systematic framework to decompose operationalizing softgoals
into more speci�c ones.

For example, the operationalizing softgoal Authorize access to account
information can be detailed (further operationalized) in terms of a combination
of:

identifying users,

authenticating user access, and

validating access against eligibility rules.

The AND contribution joining operationalizing softgoals means that all
three o�spring have to be achieved, in order to achieve the parent softgoal,
Authorize access to account information. If any one is not achieved, the parent
softgoal will not be achieved.

30 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

In turn, authenticating user access can be decomposed into any one of
several options: using a personal identi�cation number (PIN code), comparing
signatures, or requiring additional ID. Here, the contribution type is OR, since
any one of the o�spring can be used to meet the parent. That is, Authentication
can be accomplished by using a PIN code, by comparing signatures, or by
requiring additional identi�cation.

Catalogues also show possible decompositions of operationalizations into
more specialized operationalizations. The catalogues also show the contribu-
tions of specialized operationalizations towards their parents.

AND and OR contributions are drawn with arcs, and the direction of
contribution is towards the arcs. However the other contribution types (such
as \+" in the �gure) are drawn with arrowheads on the lines, showing the
direction of contributions toward parent softgoals. Note that the direction of the
arrows is typically the opposite of the sequence in which softgoals are generated.
Contribution types a�ect how the graph is evaluated, and are explained in full
in Chapter 3.

We use the term decomposition when the parent and o�spring have the
same kinds of softgoals. We have alread seen decomposition of NFR softgoals
to other NFR softgoals, as well as decompositions of operationalizing softgoals
into other operationalizing softgoals.

2.8 DEALING WITH IMPLICIT INTERDEPENDENCIES AMONG

SOFTGOALS

At each step in the process, when we make choices in order to achieve a par-
ticular non-functional requirement (say, security of account information), it is
very likely that some other non-functional requirements (e.g., user-friendly ac-
cess, dealing with ease of use of the interface to a system) may be a�ected,
either positively or negatively, at the same time. These interactions are very
important because they have an impact on the decision process for achieving
the other NFRs.

These interactions include positive and negative contributions. These
di�erent interactions can be dealt with in di�erent ways.

We have already seen how developers can explicitly state interdependen-
cies among softgoals, by using re�nements. We call these explicit interdepen-
dencies. They are shown as solid lines in �gures.

Now we consider interdependencies which are detected by comparing a
portion of a SIG with a catalogue of relationships among softgoals. These
implicit interdependencies (correlations among softgoals) are shown as dashed
lines in �gures.

Figure 2.9 shows some correlations (implicit interdependencies) among
softgoals. These include positive and negative contributions.

Using an uncompressed format is negative (shown as \{") for space (be-
cause compressed formats are more space-e�cient), but positive (\+") for re-
sponse time (because we don't need to uncompress the data before processing
it). The positive contribution was stated explicitly. Now the negative part of

THE NFR FRAMEWORK IN ACTION 31

Secure
accounts

Authorize
access to
account
information Authenticate

user access

Identify
users

Validate access
against eligibility rules

Use
P.I.N.

Compare
Signature Require

additional
ID

Complete
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

Accurate
accounts

Good Performance
for accounts

Space for
accounts Response

time for
accounts

Use
indexing

+
–

Use uncompressed
format

� Assistant automatically detects Accuracy-Confidentiality
synergy (+).

 � Assistant detects negative (-) impact of Validation on
Response time.

� Assistant detects negative (-) impact of Uncompressed
format on Space.

–

Informal SIG

+

+

+

+ –Detected positive contribution Detected negative contribution

Informal Legend

Accurate
accounts!

+

Figure 2.9. Detecting implicit interdependencies among existing softgoals.

32 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

this time-space tradeo� is detected using a correlation. By showing positive
and negative contributions, correlations are one way of recording tradeo�s.

� Assistant automatically detects Accuracy-Confidentiality
synergy (+).

 � Assistant detects negative (–) impact of Validation on
Response time.

� Assistant detects negative (–) impact of Uncompressed
format on Space.

� Assistant warns against possible omission of
User-friendliness based on correlation rules

Secure
accounts

Authorize
access to
account
information

Authenticate
user access

Identify
users

Validate access
against eligibility rules

Use
P.I.N.

Compare
Signature Require

additional
ID

Complete
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

Accurate
accounts

User-friendly
access to accounts

Good Performance
for accounts

Space for
accounts

Response
time for
accounts

Use
indexing

–

–

Use uncompressed
format

–

Informal SIG

+
+

+

+

Accurate
accounts!

+

Figure 2.10. Detecting implicit interdependencies among existing and other softgoals.

As another example, Validate access against eligibility rules is one com-
ponent of Authorize access to account information, which operationalizes the
Con�dentiality of accounts NFR softgoal. However, besides contributing to con-

THE NFR FRAMEWORK IN ACTION 33

�dentiality, validation also happens to have a positive e�ect on the accuracy of
accounts, since ill-intentioned users can be denied access and prevented from
committing forgery. On the other hand, Validate access against eligibility rules
has a negative contribution to Response time for accounts, since validation in-
duces extra overhead.

Implicit interdependencies can be detected as the graph is being devel-
oped. This is done by consulting (\by hand," or with tool support) catalogues
of positive and negative interdependencies among softgoals. These correlation
catalogues, are discussed below in Section 2.12.

Figure 2.9 added interdependency links for correlations. Now we can
consider correlations which add softgoals.

The examination of correlation catalogues may also lead to the identi-
�cation of related NFRs which had not previously been considered relevant.
In decomposing Authenticate user access, for example, one of the alternatives
{ Require additional ID { is detected to have a negative impact on User-friendly
access to accounts. Although we had not been considering it in Figure 2.9, note
that the NFR softgoal User-friendly access to accounts now appears in the SIG
of Figure 2.10 as part of a correlation.

Thus correlations can add softgoals (Figure 2.10), as well as interdepen-
dencies (Figure 2.9) to softgoal interdependency graphs.

2.9 RECORDING DESIGN RATIONALE

An important premise of the Framework is that design decisions should be sup-
ported by well-justi�ed arguments or design rationale. Reasons can be stated
for making re�nements, for selecting an alternative for the target system, etc.
The Framework extends the goal-oriented approach to the treatment of argu-
ments.

Let us consider two examples. First, we can state the reason for a priori-
tization, here of Accurate accounts. To support this prioritization, in Figure 2.11
we write Claim \Accuracy is vital."

We call this a claim softgoal (or claim). Claim softgoals are the third
kind of softgoal. Earlier we saw NFR softgoals and operationalizing softgoals.

Here the claim is attached to an interdependency link, which connects
the prioritized softgoal !Accurate accounts to its parent, Accurate accounts.

Note that we use the term claim softgoal to refer to the statement itself.
When the statement is used to argue for or against something, that constitutes
an argument, i.e., the argument refers to the relationship between the claim
and the thing argued about. Claim softgoals are represented as dashed clouds
in the softgoal interdependency graph. Their interdependency links represent
the arguments.

As a second use of claims, we can rationalize tradeo�s. Here, the spe-
cialized operationalization Validate access against eligibility rules helps to achieve
the more general operationalization, Authorize access to account information.

34 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

� Developer examines priorities trade-offs

� Developer provides justifications
� NFR Assistant displays the developer’s arguments.

Secure
accounts

Authorize
access to
account
information

Authenticate
user access

Identify
users

Validate access
against eligibility rules

Use
P.I.N.

Compare
Signature Require

additional
ID

Complete
accounts

Availability
of accountsConfidentiality

of accounts

Integrity
of accounts

Accurate
accounts

User-friendly
access to accounts

Good Performance
for accounts

Space for
accounts Response

time for
accounts

Use
indexing

Claim
 "Optimized validation will not
 hurt response time much."

–

–

Use uncompressed
format

–

Informal SIG

+
+

+

Claim

Informal Legend

+

Accurate
accounts!

+
Claim
 "Accuracy
 is vital"

Figure 2.11. Recording design rationale.

At the same time, it has generated some correlations. It has a positive
impact on the softgoal for accuracy of accounts, which is a priority. However, it
also has a negative impact on the softgoal for good response time for accounts.

In this case, the developer weighs the tradeo� and feels that the Validate
access against eligibility rules operationalizing softgoal is still worth considering,

THE NFR FRAMEWORK IN ACTION 35

despite its negative contribution to Response time for accounts (Figure 2.11).
In fact, this operationalizing softgoal will be chosen in the next section.

To support this position, the developer introduces the claim: Claim
[\Optimized validation will not hurt response time much."] The claim notes that
optimization of \Validate access against eligibility rules" will mitigate its degra-
dation of Response time for accounts.

Rationale can draw on domain information, such as organizational pri-
orities and organizational workload (e.g., the number of credit card sales per
day), as well as development expertise.

Note that as these factors change, the reasons and decisions may change.
For example, if the volume of daily sales rises dramatically, then priorities may
change. These could be reected in the rationale, and di�erent operational-
izations could be selected, which could have an impact on meeting the top
softgoals.

Claims are treated as softgoals related by interdependencies and associ-
ated contributions, in the same way that NFRs and their operationalizations
are. Claims make contributions, positive or negative, to other softgoals. Such
contributions are not shown in the �gures of this chapter, but will be discussed
in the next chapter.

2.10 SELECTING AMONG ALTERNATIVES

The re�nement process continues until the developer considers that the possi-
ble solutions for the target system are su�ciently detailed, and that no other
alternatives need be considered.

Along the way, the developer has considered NFRs, domain information,
and addressed ambiguities, priorities and tradeo�s. The developer has then
considered possible operationalizations, design rationale, and interdependencies
among softgoals, using the expertise from the developer and from catalogues.
Of course, early decisions need to be considered and reconsidered when making
later decisions. All this information is recorded in the graph, and is available
to help the developer select among alternatives.

Thus, developers are aided in their decision-making, by referring to the
graphs, which have a history of the design process.

In expanding the softgoal interdependency graph, the developer is elabo-
rating on the possible subparts and alternatives that one would like to consider
as means for achieving the initial high-level softgoals. The graph thus repre-
sents a design space over which design decisions are to be made.

As softgoals are being re�ned, the developer will eventually reach some
softgoals which are su�ciently detailed. The developer can accept or reject
them, as part of the target system.

Now it is time to choose from among the possible operationalizations,
in order to produce a target system. In addition, appropriate design rationale
should be selected.

36 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Secure
accounts

Authorize
access to
account
information

Authenticate
user access

Identify
users

Validate access
against eligibility rules

Use
P.I.N.

Compare
Signature Require

additional
ID

Complete
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

Accurate
accounts

User-friendly
access to accounts

Good Performance
for accounts

Space for
accounts Response

time for
accounts

Use
indexing

–

Use uncompressed
format

�

�

�

�

�

�

�

–

Informal SIG

+
+

+

� Developer makes decisions

Informal Legend

�

Chosen operationalization or claim

Rejected operationalization or claim

�
Claim
 "Optimized validation will not
 hurt response time much."

–
+

Accurate
accounts!

+
Claim
 "Accuracy
 is vital"

�

Figure 2.12. Selecting among alternatives.

There are choices of operationalizing softgoals. Of the many target al-
ternatives in the graph (Figure 2.12), some are chosen (selected or \satis�ced,"
indicated by \

p
") and others are rejected (denied, indicated by \�").

Having identi�ed three possible ways for authenticating user access, the
developer decides that the Compare Signature operationalization is acceptable.
Chosen solutions are represented in the graphical notation as a check-mark
(\
p
") inside the node (Figure 2.12). On the other hand, rejected candidates,

such as Require additional ID, are shown as \�".

THE NFR FRAMEWORK IN ACTION 37

To aid con�dentiality, Identify users and Validate access against eligibility
rules are also selected. To aid response time, indexing and an uncompressed
format are chosen. Note that a decision need not be made for every opera-
tionalizing softgoal. This is the case for Use P.I.N, which is left blank.

As is the case for operationalizing softgoals, claim softgoals (claims) are
also either accepted (satis�ced) or rejected (denied). The claim for prioritizing
accuracy is accepted, hence a check-mark (\

p
") is placed in the Claim[\Accuracy

is vital."] claim softgoal. Likewise, the claimClaim[\Optimized validation will not
hurt response time much."] is accepted.

Now we turn to the impact of these decisions on top requirements.

2.11 EVALUATING THE IMPACT OF DECISIONS

The evaluation of softgoals and interdependencies determines the impact of
decisions. This indicates whether high-level softgoals are met.

To determine the impact of decisions, both current and previous decisions
are considered. Previous considerations and decisions are already reected in
the graph, as softgoals and interdependencies.

To reect the nature of design reasoning, the evaluation and propagation
of design decisions focusses on the question of whether a chosen alternative
is \good enough," i.e., whether it meets a softgoal su�ciently. This style
of reasoning is appropriate for dealing with non-functional requirements since
meeting these requirements is often a matter of degree, not a binary true-
false decision. The NFR Framework builds on the notion of satis�cing, which
was used by Herbert Simon [Simon81] to refer to �nding solutions that are
su�ciently good, even if they may not be optimal. To emphasize the di�erence
between this style of goal-oriented reasoning from the more conventional, binary
logic-based, goal-oriented reasoning (e.g., [Nilsson71]), we use the term softgoal
to refer to the kind of goal that requires satis�cing.

The evaluation process can be viewed as working bottom-up, starting
with decisions, which are often leaves of the graph, and often at its bottom.
Then the evaluation procedure (or labelling algorithm) works towards the top
of the graph, determining the impact on higher-level main softgoals. These top
softgoals reect overall non-functional requirements as stated by the developer
and people in the organization for which the system is being developed.

In the NFR Framework, the evaluation of softgoals is represented by
assigning labels (such as \

p
" and \�") to the clouds (softgoals) in the graph.

Labels may be assigned by the developer , or computed from contributions from
other nodes.

Roughly speaking, when there is a single o�spring, a positive contribution
\propagates" the o�spring's label to the parent. Thus a satis�ced o�spring
results in a satis�ced parent, and a denied o�spring results in a denied parent.

On the other hand, a negative contribution will take the o�spring's label
and \invert" it for the parent's label. That is, a satis�ced o�spring leads to a
denied parent, and a denied o�spring leads to a (somewhat) satis�ced parent.

38 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

� Developer makes decisions
� NFR Assistant evaluates the satisfaction of softgoals.

�
Informal Legend

�

Satisficed softgoal

Denied softgoal

Secure
accounts

Authorize
access to
account
information

Authenticate
user access

Identify
users

Validate access
against eligibility rules

Use
P.I.N.

Compare
Signature Require

additional
ID

Complete
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

Accurate
accounts

User-friendly
access to accounts

Good Performance
for accounts

Space for
accounts Response

time for
accounts

Use
indexing

–

Use uncompressed
format

�

�
�

�
�

�

�

–

Informal SIG

+
+

+

�
Claim
 "Optimized validation will not
 hurt response time much."

–
+

Accurate
accounts!

+
Claim
 "Accuracy
 is vital"

�

�

�

�

�

�

�

�

Figure 2.13. Evaluating the impact of decisions.

This is the case in the lower left of Figure 2.13. The operationalizing soft-
goal Use uncompressed format makes a negative contribution towards the NFR
softgoal Space for accounts. In addition, Use uncompressed format is satis�ced
(the label is shown as\

p
"). When the satis�ced label and negative contribution

are considered, the result is that Space for accounts is denied (\�").

THE NFR FRAMEWORK IN ACTION 39

Note that in Figure 2.12, \
p
" indicated \leaf" operationalizations or

claims which were selected directly by the developer. Now in Figure 2.13 (and
the remainder of this book), its meaning is made more general. It indicates
softgoals which are determined to to be satis�ced; this is determined by the
developer, or by the evaluation procedure. Likewise \�" represented rejected
operationalizations or claims, but nowmore generally indicates denied softgoals.

Suppose a softgoal receives contributions from more than one o�spring.
Then the contribution of each o�spring toward the parent is determined, using
the above approach. The individual results are then combined.

For example, Response time for accounts has three o�spring. Use com-
pressed format is satis�ced and makes a positive contribution, hence its individ-
ual result would be to satis�ce the parent. The same is true for Use indexing. If
these two were the only o�spring, the combination of their individual positive
results would lead to satis�cing the parent. However, Validate access against
eligibility rules is satis�ced and makes a somewhat negative contribution to re-
sponse time.

The developer combines the results | two satis�ced and one denied
| and sees there is a conict. What value should be assigned to the parent
softgoal? The developer could assign various values | satis�ced, denied, or
something in between. Here, the developer notes that claim that optimized
validation will not hurt response time much, and labels Response time for ac-
counts as satis�ced.

Using the rule for satis�ced softgoals and positive contribution links,
!Accurate accounts is noted as being satis�ced, and so is Accurate accounts.

It is interesting to note that the evaluation procedure works the same
way, whether the interdependency link was explicitly stated by the developer,
or implicitly detected.

Let us continue at the bottom right of Figure 2.13. Requiring additional
identi�cation is not chosen for authenticating access. This helps satis�ce the
requirement for user-friendly access to accounts.

Compare Signature and its siblings participate in an OR contribution to
their parent, Authenticate user access. This means that if any of the o�spring
is acceptable, the parent will be acceptable. Compare Signature was chosen, so
the operationalizing softgoal Authenticate user access can thus be automatically
evaluated to be satis�ced (\

p
").

Earlier, the softgoals Identify users and Validate access against eligibility
rules were selected, hence satis�ced. Since they and Authenticate user access
are all satis�ced, then a checkmark can be propagated \upwards" along the
AND contribution to the Authorize access to account information softgoal. Then
Con�dentiality of accounts is satis�ced.

Let us take stock of how well the target system would meet main non-
functional requirements. Accuracy, con�dentiality, response time and user-
friendly access requirements have been satis�ced. The space requirement has
been denied. For other requirements, such as performance, integrity and secu-
rity, we have not indicated if they are satis�ced or denied. To obtain answers

40 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

for some of these, we would need further re�nement, further information, or a
resolution of conicts.

Interestingly, we have been able to address interactions between di�erent
kinds of non-functional requirements (here, accuracy and performance), even
though the NFRs were initially stated as separate requirements.

In the NFR Framework, a softgoal can be assigned a label. So far, we
have used labels such as \

p
" or \�". In fact, there are actually more \shadings"

of label values than these ones. For example, softgoals can be weakly satis�ced,
or weakly denied. The propagation of these labels along interdependency links
depends on the type of contribution.

We have shown some contribution types, such as AND and OR, in this
chapter. There are also other contribution types indicating various combi-
nations of positive and negative, and partial and su�cient contributions. In
addition, claims provide positive or negative contributions; these are omitted
from the Informal SIGs in Figures 2.11 through 2.14. Full details of labels and
contribution types are given in Chapter 3.

The propagation of labels is interactive, since human judgement is needed
at various points. The evaluation procedure (whether executed by a developer
\by hand" or using an automated tool) will propagate labels as far as it can, at
which point the developer can step in to provide values as appropriate. At any
time, the developer can override previously assigned or computed labels, and
can change contribution types. Details of the evaluation procedure are given
in Chapter 3.

Developers can assess the status of their designs at any time, by ex-
amining how the status of the most detailed decisions contribute towards the
top-level softgoals that they started with. The developer can thus make in-
formed tradeo�s among the available alternatives.

Relating Functional Requirements to Decisions and NFRs

We can also relate functional requirements to NFRs and the decisions made for
the target system.

So far, graphs started with top NFRs and resulted in operationalizations
being selected. Now we graphically relate them to functional requirements and
their associated chosen target design speci�cation or implementation.

The top of Figure 2.14 shows the functional requirements (for maintain-
ing accounts) and the top level NFRs, relating to the security, performance,
etc., of maintaining accounts. The bottom of the �gure links the chosen opera-
tionalizations to a description of the target system (shown in a rectangle at the
bottom right). The right side of the �gure links this description of the target
system to the (source) functional requirements (shown in an oval at the top
right).

THE NFR FRAMEWORK IN ACTION 41

Informal Legend

Functional requirement

Design decision link Operationalization-target link

Target

Maintain
accounts

For accounts, use indexing and uncompressed format;
identify users and validate access against eligibility rules;

and authenticate user access by comparing signatures

Secure
accounts

Authorize
access to
account
information

Authenticate
user access

Identify
users

Validate access
against eligibility
rules

Use
P.I.N.

Compare
Signature

Require
additional
ID

Complete
accounts

Availability
of accounts

Confidentiality
of accounts

Integrity
of accounts

Accurate
accounts

User-friendly
access to accounts

Good Performance
for accounts

Space for
accounts Response

time for
accounts

Use
indexing

–

Use
uncompressed
format

�

�

�

�
�

�

�

–

Informal SIG

+

+

+

�

Claim
 "Optimized validation
 will not hurt response
 time much."

–

+

Accurate
accounts!

+
Claim
 "Accuracy
 is vital"

�

�

�

�

�

�

�

�

Figure 2.14. Relating decisions to Functional Requirements.

42 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

2.12 CATALOGUING DEVELOPMENT METHODS AND

CORRELATIONS

Let us further consider how a developer comes up with re�nements, including
NFR decompositions, operationalizations, and claims that justify decisions.

In order to be able to bring relevant knowledge to the attention of the
developer at each point in the design process, knowledge needs to be represented
in a exible catalogue structure. Three major kinds of catalogues are used to
express design knowledge:

NFR type catalogues: They encode concepts about particular types of NFRs,
such as security and performance.

method catalogues: They encode knowledge that helps re�ne graphs by de-
composing softgoals and considering operationalizations.

correlation rule catalogues: They encode knowledge that helps detect implicit
interdependencies among softgoals.

Developers can browse through these catalogues to examine a current
area of interest within a wide range of possible techniques.

Development knowledge can be catalogued to organize NFR types, meth-
ods, and correlation rules, which are used as a developer faces particular design
decisions.

So far we have shown only a catalogue of NFR types in Figure 2.1. Let
us now consider other kinds of catalogues.

Method Catalogues

Figure 2.15 shows a catalogue of methods for addressing the NFR of con�-
dentiality. The catalogue is hierarchically classi�ed: more speci�c methods
(techniques) are placed under general ones.

The concept of method is applied uniformly to re�nement throughout
the Framework. Thus there are methods to assist in the decomposition of
NFRs, methods for operationalizing, and methods for argumentation to identify
claims.

Let us consider how catalogues can be used to aid re�nement. Recall
Figure 2.2, where we were starting with the NFR softgoal that accounts be
maintained securely and with good performance. A search of catalogues (which
can be done by hand, or be tool-assisted and semi-automated) for NFR types
and methods could result in a suggestion to decompose an NFR softgoal into
several sub-softgoals, which use sub-types of the type of the parent softgoal.
This occurs through the invocation of a method which encodes this knowledge,
here, about sub-types.

Some methods are domain-speci�c, e.g., dealing with particular develop-
ment techniques and domains. Some other methods are fairly generic, applying
to all softgoals of a particular NFR type. Others are quite generic, applying
to a variety of domains and NFR types, e.g., a method decomposing an NFR

THE NFR FRAMEWORK IN ACTION 43

Methods for Operationalizing Confidentiality

identification

authentication

auditing

validateAccess
perturbation

encryption

virusFilter

noiseAddition

noiseRemovalsubsystem

manual

PIN

requireAdditional ID

password

cardKey biometrics

Method Catalogue

Informal Legend

IsA relationship

Figure 2.15. A catalogue of operationalization methods for achieving con�dentiality.

softgoal for a data item into NFR softgoals for all components of that item.
Methods that are generic tend to be more powerful, because they are appli-
cable more widely. However, they can be harder to come up with. Many
generic methods are already built into the Framework, and are developed by
the Framework developers.

The NFR Framework comes with a collection of generic methods, which
are described in Chapter 4. Other method catalogues are available for accuracy,
security and performance requirements, and are discussed in Chapter 4 and
Part II.

Note that the developer may have to select among a number of sugges-
tions, possibly coming from di�erent knowledge sources. The developer can
also adapt a method by overriding some of its features.

Correlation Catalogues

Now let us consider a catalogue of correlations, showing implicit inter-
dependencies. Figure 2.16 is an example of a catalogue of implicit interdepen-
dencies, and their contributions.

This catalogue shows the impact of various operationalizing softgoals
(such as Validation and Indexing, shown on the vertical axis) upon NFR softgoals
(such as Accuracy and Response Time, shown on the horizontal axis). The
correlation catalogue entries show the contribution type. For exampleValidation
makes a positive contribution towards Accuracy, and Indexing has a positive
contribution towards Response Time.

44 NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING

Informal Correlation Catalogue

Impact of upon

o�spring parent

Operationalizing NFR Softgoal

Softgoal Accuracy Con�dentiality Response Space User-

Time friendliness

Validation + + {

Compression { +

Indexing +

Authorization +

Additional ID + {

Figure 2.16. A catalogue showing the impact of operationalizing softgoals upon NFR

softgoals.

Detected correlations are shown as dashed lines in graphs. In Figures 2.9
and 2.10, the implicit interdependencies between Use uncompressed format and
Space for accounts, between Require Additional ID and User-Friendly Access, and
among Validate Access against Eligibility Rules, Response Time, and Accuracy of
Accounts are detected by correlation rules.

Catalogues can be prepared with di�erent axes showing correlations be-
tween di�erent groups of softgoals. For example, another correlation catalogue
could show the impact of NFR softgoals upon other NFR softgoals. Yet an-
other correlation catalogue could show the impact of operationalizing softgoals
upon other operationalizing softgoals.

Catalogue-based correlations are detected by pattern-matching. Correla-
tions can be used to establish interdependencies in a graph either automatically
or after con�rmation by a developer, depending on the developer's wishes. Like
methods, correlations can be generic or speci�c.

2.13 DISCUSSION

In this chapter, we o�ered a glimpse into how the NFR Framework provides
a systematic treatment of non-functional requirements, and how they are me-
thodically introduced into steps in the design process.

During this process, the developer is constructing a record of how sub-
softgoals contribute to higher softgoals, eventually contributing to the top-level
softgoals. Throughout the development process, both selected and discarded

THE NFR FRAMEWORK IN ACTION 45

alternatives form part of the development history, and the softgoal interdepen-
dency graph keeps track of the impact of decisions upon the top-level softgoals.
These records are displayed graphically.

Catalogues of NFR knowledge help with the time-consuming, and often
di�cult, search for development techniques.

It can be possible, at least for small examples, to use the NFR Frame-
work starting from \�rst principles," without the use of catalogues. However,
our experience has been that catalogues are quite important, especially when
considering NFRs for larger systems.

While it can take some time to develop methods and catalogues, our
experience is that this results in a payo�, by speeding up the re�nement pro-
cess. Chapter 4 presents generic catalogues of methods and correlations, while
Part II presents catalogues for particular types of NFRs (accuracy, security and
performance).

Literature Notes

This chapter is adapted from [Chung94a,b].
The goal-oriented approach we have taken is meant to be intuitive, fol-

lowing and supporting the developer's reasoning. However, it is not the same as
the approaches in arti�cial intelligence or automated reasoning, such as AND-
OR trees [Nilsson71]. By taking a \satis�cing" approach [Simon81], the aim
is to o�er exible support for a developer's reasoning, and to allow it to be
recorded. The purpose is not to automate development. Instead, development
is intended to be highly interactive, where the human developer is in control.

The catalogues of re�nement techniques and tradeo�s (e.g., [Chung93a]
[Nixon97a] [Yu94b]) are based on work done by researchers and practitioners
in particular areas. These include security [ITSEC91, Parker91, Clark87, Mar-
tin73], accuracy [Peeger89], and performance [C. Smith90, Hyslop91], as well
as information system development. In addition, catalogues can deal with other
NFRs, other classes of issues, e.g., Business Process Reengineering [Hammer95],
and other aspects of development, e.g., software architecture [Garlan93].

