
A Qualitative, Interactive Evaluation Procedure for 
Goal- and Agent-Oriented Models 

Jennifer Horkoff1, Eric Yu2  

1Department of Computer Science, 2Faculty of Information,  
University of Toronto, Canada 

jenhork @ cs.utoronto.ca, yu @ ischool.utoronto.ca 

Abstract. Early modeling of domain intentions has emerged as a method for 
deriving early-phase requirements.  Although much understanding can be 
gained through the creation of such models, we want to find ways to get more 
use out of models and the modeling process, increasing the return in the 
investment of modeling time.  Applying systematic analysis procedures to early 
requirements models can test the satisfaction of stakeholder goals and facilitate 
an evaluation of design alternatives.  In this work, we introduce a qualitative 
and interactive model evaluation procedure for the i* Framework.  We use a 
qualitative approach to compensate for the lack of detail in early requirement 
analysis.  In applying the procedure to a variety of case studies, including 
strategic modeling for a large social service organization, we found that the 
interactive nature of the procedure prompts semantic checks, producing models 
that better reflect the intended perspective and increasing domain knowledge.   

Keywords:  Goal-Oriented Requirements Engineering, Agent-Oriented 
Modeling, Model Analysis, Model Reasoning 

1 Introduction 

Use of goal- and agent-oriented models has emerged as a way to help system 
developers ensure that they have elicited the ‘right’, or an adequate set, of 
requirements.  In these approaches, high-level system functionality is mapped to goals 
of particular stakeholders via positive or negative contributions to goal satisfaction, 
allowing for the assessment of system functionality in terms of stakeholder objectives, 
and taking into account tradeoffs between non-functional requirements.  

The approach introduced by goal- and agent-oriented modeling frameworks, such 
as i* [1], has been referred to as “Early” Requirements Analysis, advocating for 
modeling and exploration of the socio-technical domain before focusing on detailed 
system functionality.  Such models form a complex web of relationships and 
dependencies.  In order to perform analysis over such models, systematic analysis 
procedures are needed, considering the chain of effects of goals and functionalities 
throughout the network in a consistent way.  The immediate aim of such analysis is to 
determine whether stakeholder’s goals can be achieved, given domain assumptions. 



Various analysis procedures aimed for goal models have been introduced (for 
example [2], [3], [4], and [5]).  Despite the availability of these procedures in the 
literature, when goal-oriented techniques are used, explicit analysis procedures are 
often not applied.  For example, work in [6] uses synchronization with i* and other 
models to find omissions in the domain, but does not apply analysis to i* models 
individually.  Work in [7] uses comparisons of i*-like models to value models for a 
requirements analysis of enterprise networks without applying explicit analysis to 
goal models.  These omissions can be partially attributed to the lack of emphasis on 
analysis in earlier presentations of goal and agent-oriented models [1].   

As goal models are used in the early stages of the system development process, the 
resulting models have an intrinsic level of informality. Many domain concepts are 
subject to interpretation, especially quality attributes. It is hard to judge when the 
model is sufficiently complete to reflect the real-world complexity of the domain. 
Nevertheless, an analysis of the social aspects of the domain is often critical to the 
success of a system. 

In this work, we argue that the informal and incomplete nature of goal models calls 
for analysis procedures which are interactive, qualitative, and simple to apply.  To this 
end we introduce a qualitative, interactive evaluation procedure for goal-and agent-
oriented models.  We describe the specifics of the procedure in terms of the i* 
Framework, although the procedure can be applied to other goal- and agent-oriented 
models in general.  The procedure is adapted from an evaluation procedure included 
in the NFR Framework [8], which was only described briefly in prose. We expand on 
this work by specifying the algorithm in precise pseudocode, providing more formal 
definitions for evaluation terminology, taking into account agent-related features, and 
considering several issues not covered in the original procedure.   The original 
procedure was advocated as a way to compare design alternatives.  Here, we go 
beyond this purpose, describing additional benefits, including model iteration. 

The procedure has been tested via application to a number of detailed case studies.  
Application to a long-term project involving a large social-service application allowed 
us to effectively evaluate alternative system designs represented within large-scale 
models [9] [10].  The procedure has been used to depict and analyze differences 
between viewpoints concerning technological intentions [11].  It has been used in an 
agent-oriented approach to analyzing knowledge transfer effectiveness [12]. We use 
excerpts from these and other examples in this work. 

This paper is organized as follows:  Section 2 describes the type of analysis needed 
for early requirements models, Section 3 briefly describes the i* Framework, Section 
4 describes the evaluation procedure introduced in this work, Section 5 describes the 
benefits of this procedure, Section 6 contains discussion, Section 7 reviews related 
work, while Section 8 outlines conclusions and future work. 

2 Analysis of Early Requirements Models 

As the flexibility of goal- and agent-oriented modeling allows application in many 
stages of system development, different analysis approaches may be more appropriate 
for different stages of system development, for different purposes. For later stages of 



system analysis, where quantitative information is known, where models contain more 
specific detail concerning stakeholder actions and system functionality, and where 
models are relatively stable, automated and quantitative evaluation can be appropriate.   

For early-stage modeling, qualitative, interactive evaluation is more appropriate.  
As argued in [8], when considering non-functional desires such as privacy, 
maintainability, or usability in the early phases of system analysis, before detailed 
requirements are developed, concrete quantitative information is often not available to 
express non-functional notions precisely.  However, given the importance of 
addressing non-functional requirements, there are benefits to capturing, representing 
and reasoning about these desires before they can be quantifiable.  The use of 
qualitative measures allows for analysis in this early stage.   

Although we are interested in capturing the social and personal motivations which 
affect the success of a system, it is difficult to completely capture all stakeholder 
goals and social phenomena which may affect or be affected by a software system.  
While a fully automated evaluation procedure may appear to require the least effort 
from the user, it is not necessarily preferable for early requirements analysis, due to 
the informal and potentially incomplete nature of the socio-technical models.  An 
interactive procedure allows expert judgment to be applied at appropriate points, to 
compensate for the inherent incompleteness.  Interactive evaluation forces the 
modeller to examine the model in greater detail, following the reasoning steps, 
questioning the qualitative results and the underlying semantics of the model.  The 
gaps in knowledge revealed by this process prompt the modeller to pursue further 
domain elicitation.  Our experience with case studies has shown that the 
investigations and changes prompted by this iterative process can help to improve the 
quality of the model, and increase the modellers’ knowledge of the domain.  In order 
to support interactivity and gain the trust of the modeller, analysis procedures should 
be simple to use and transparent.   

The imprecise nature of goal-oriented models makes it difficult to judge the 
correctness of analysis results in a formal way.  Instead we focus on judging the utility 
of the analysis in helping to understand and communicate aspects of the system 
domain, and in helping to support decision making in high-level system design. 

3 Analysis with the i* Framework 

The i* Framework is intended to facilitate exploration of the system domain with an 
emphasis on social aspects by providing a graphical depiction of system actors 
including their intentions, dependencies, responsibilities, alternatives and 
vulnerabilities [1].   

The social aspect of i* is represented by actors, including agents and roles, and the 
associations between them.  Actors depend upon each other for the accomplishment 
of tasks, the provision of resources, the satisfaction of goals and softgoals.  Softgoals 
are goals without clear-cut criteria for satisfaction.  Actors can be “opened-up” using 
actor boundaries containing the goals, softgoals, tasks, and resources explicitly 
desired by the actors.  The interrelationships between elements inside an actor are 



depicted with Decomposition links, showing the elements which are necessary in 
order to accomplish a task; Means-Ends links, showing the alternative tasks which 
can accomplish a goal; and Contribution links, showing the effects of softgoals, goals, 
and tasks on softgoals.  Positive/negative contributions representing evidence which is 
sufficient enough to satisfy/deny a softgoal are represented by Make/Break links, 
respectively.  Contributions with positive/negative evidence that is not sufficient to 
satisfy/deny a softgoal are represented by Help/Hurt links.  Positive/negative evidence 
of unknown strength is represented by Some+/Some- links.   

When analyzing i* models, one can visualize the effects of one element on others 
element for one or two steps.  However, more complex questions may involve many 
propagation steps along the graph, cycles, multiple paths, and multiple sources of 
evidence.  Performing this process in an ad hoc manner with no intermediate storage 
of results is difficult and can be prone to errors and inconsistencies.  It is clear that a 
systematic evaluation procedure is needed. 

4 A Qualitative, Interactive Evaluation Procedure for the i* 
Framework 

The proposed procedure works as follows. The modeller raises a question such as 
“How effective is this design option with respect to the desired goals?”  The 
procedure starts with initial values (typically satisfied or denied) assigned to model 
elements representing the design option. These values are propagated through the 
model links using defined rules. Human judgement is needed when multiple 
conflicting or partial values must be combined to determine the satisfaction or denial 
of a softgoal.  The final satisfaction and denial values for the elements of each actor 
are analyzed in light of the original question.  An assessment is made as to whether 
the design choice is satisficed (“good enough”), likely stimulating further exploration.  
During this process, if the evaluation values seem counter-intuitive, the model can be 
examined to determine if it captures the domain to a sufficient level of accuracy and 
completeness, triggering iterative cycles of model refinement.  Details of this 
procedure are described in the following sections, with more detail found in [13].  

Although the description of the procedure below may seem complex, the precise 
detail is intended to allow a reproducible implementation.  This complexity is hidden 
from the user in the implementation.  In fact, most applications of the procedure have 
been performed manually, attesting to its simplicity. 

4.1 Introducing a More Precise Description of i* Concepts 

Given the informal nature of i*, it is not our aim to introduce a complete formalization 
of the i* Framework.  However, to clearly describe the evaluation algorithm 
introduced in this work, we introduce some more precise definitions of i* concepts.   

Definition: An i* model.  An i* model is a tuple M = <E, L, A, AL>, where E is a 
set of elements, each having a type attribute e.type, with a value of the set {Softgoal, 
Goal, Task, Resource}, L is a set of links, each having a type attribute l.type with 



value being one of  {ME, DEC, DEP, CONT}, (means-ends, decomposition, 
dependency, and contribution, respectively) where CONT can be further divided into 
{Make, Some+, Help, Unknown, Hurt, Some-, Break}, A is a set of actors, and AL is a 
set of actor association links. 

Definition: Links. DEP and CONT links are “binary”, relating one element to 
another element, and can be expressed as L: E →E.  For example, in HELP: 
e1→ e2, e1 is the source and contributes to e2, the destination. In DEP: e1→ e2, e2 
depends on e1, meaning that e1 is the source and e2 is the destination.  The remaining 
links, ME and DEC are “(n+1)-ary”, L: E x ... x E →E, meaning that for 
ME/DEC:(e1, …, en)→ e, the evaluation values of a set of elements (e1, …, en)∈  E x 
... x E determines the evaluation value of e∈E. 

Given these more precise definitions, we can describe some restrictions on the 
construction of a valid i* model, as per the style described in [1]. 

Syntax Restrictions on an i* model. 
a. Each element has at most one Decomposition or Means-Ends relation, i.e. for 

each ed ∈E, only one of DEC:es →  ed or ME:es→  ed hold. 
b. For each DEC:(e1 ,…, en)→ e, e.type = Task, while (e1, …, en).type = any type. 
c. For each ME:(e1, … ,en) → e, e.type = Goal, while (e1, …, en).type=Task. 
d. For each CONT:es→ ed relation, ed.type = Softgoal, es.type = any type. 

4.2 Qualitative Evaluation Labels   

For simplicity and recognition, we adopt the qualitative labels used in NFR evaluation 
and previous examples of i* evaluation, replacing “weakly” with “partially”.  The 
(Partially) Satisfied label represents the presence of evidence which is (insufficient) 
sufficient to satisfy a goal. Partially denied and denied have the same definition with 
respect to negative evidence.  Conflict indicates the presence of both positive and 
negative evidence of roughly the same strength. Unknown represents the situation 
where there is evidence, but its effect is unknown.  We introduce the “None” label to 
indicate a lack of any label. These labels are shown in the Table 1.   

Definition: Evaluation Labels/Values.  We can define qualitative evaluation 
labels as an attribute of e∈E, expressed as e.v, where v ∈V and V ={S, PS, U, C, PD, 
D, N}, (Satisfied, Partially Satisfied, Unknown, Conflict, Partially Denied, Denied, or 
None, respectively). 

We adopt the use of partial labels for tasks, resources, and goals to allow for 
greater expressiveness.  For consistency, we use the term satisfied and not satisficed 
when talking about element satisfaction.  For a discussion of i* semantics, see [13]. 

4.3 Initial Evaluation Values 

In order to start an evaluation of a model, a set of initial evaluation values must be 
placed on the model, reflecting a particular situation.   

Definition: Initial Evaluation Values.  Initial evaluation values are each e.v∈V, 
e∈E, which manually receives a value to initialize an evaluation.   



It is useful to define our use of the term “alternative”.  Often, when referring to i* 
models, “alternative” is used to mean choices in a means-ends relationship.   

Definition: An Alternative. Alternative means to an end.  For ME: (e1, …en) → e, 
each possible combination of setting (e1.v,…,en.v) to values v1, …, vn, vi∈V. 

In addition to explicit alternatives, the choice of whether or not to implement or 
select elements not involved in mean-ends relationships can be made.  In order to 
distinguish between individual alternatives and a selection over multiple elements 
within a model, we will call the latter a strategy after [3].  This refers to a strategy in 
the domain to be evaluated, and not to a particular way of doing evaluation. 

Definition: A Strategy.  A strategy is a set of choices which initialize a particular 
evaluation.  A set, S, of (e1,…,en) such that e∈E and S⊆E, where each ei∈S is given a 
value e.v =  v∈V, where v is not none. 

It is also useful to define exactly what is meant by “an evaluation”.   
Definition: An Evaluation of a Model.  An i* evaluation starts with a set S, an 

evaluation strategy, created to reflect an analysis question. These labels are 
propagated throughout the model using the procedure described in the following 
sections.  Results are analyzed.   

Typically, several evaluations are applied to a single model, each exploring a 
different strategy.  Often changes are made to the model in between evaluations. 

4.4 Evaluation Propagation Rules 

We define rules in order to facilitate a standard propagation of values given a link 
type and contributing label.  As contribution links in i* are similar to such links in the 
NFR Framework, we adopt the contribution links propagation rules from this 
procedure.  These rules intuitively reflect the semantics of contribution links.   

Propagation: Contribution Rules(l, es.v).  For l: es→ ed, given es.v and a link 
l∈CONT, a resulting evaluation value, v∈V, is produced as per Table 1.   

Table 1.  Propagation Rules Showing Resulting Labels for Contribution Links 

Source Label (es.v) Contribution Link Type (l.type) 
 Name Make Help Some+ Break  Hurt Some- Unkn. 

 Satisfied (S)  
 Partially Satisfied (PS)  
 Conflict (C)  

 Unknown (U)  
 Partially Denied (PD)  
 Denied (D)  

 
It is left to define how evaluation values should be propagated through link types 

that are in i* but not in the NFR framework, namely, Means-Ends, Decomposition, 
and Dependency links.  The nature of a dependency indicates that if the dependee is 
satisfied then the dependum will be satisfied, and so will the depender.   

Propagation: Dependency Rule(es, ed).  For DEP: es→ ed, the result is es.v.   



In i*, Decomposition links depict the elements necessary to accomplish a task, 
indicating the use of an AND relationship. AND indicates the selection of the 
"minimum" value amongst all of the values in the AND relation.  Similarly, the 
Means-Ends link depicts the alternative tasks which are able to satisfy a goal, 
indicating an OR relationship, taking the maximum values of elements in the relation.  
To increase flexibility, the OR is interpreted to be inclusive.  We expand the order of 
the values presented in the NFR Framework to allow for partial values, producing: 

<   <    <   <    <      (1) 
Here the ordering between unknown and conflict is somewhat arbitrary.  From 

these concepts we can define the following functions and rules: 
Propagation: Decomposition Rule(e1.v,…,en.v).  For DEC: (e1.v,…,en.v)→ ed, 

the resulting value is the min vi∈(e1.v,…,en.v) using (1). 
Propagation: Means-Ends Rule(e1.v,…,en.v).  For ME: (e1.v,…,en.v)→ ed, the 

resulting value is the max vi∈(e1.v,…,en.v) using (1). 
Note that the N value is ignored in the above rules, favoring any other value.  Only 

if all vi  =N, vi∈ (e1.v,…,en.v), is the result of min or max N. 
Combinations of Links.  Models in i* often contain situations where multiple 

kinds of links affect a single node.  This special case complicates an otherwise simple 
procedure.  Hard links, which are Decomposition, Means-Ends and Dependency links, 
are combined using an AND of the final results of each link type.   

Propagation: Mixture of “Hard” Links.  For l1,..,ln such that li:esi→ ed, each 
link shares the same destination, (l1,..,ln).type ≠ CONT, then for l1 mapping to ME or 
DEC, l1 = ME/DEC: (e1.v,…,ek.v)→ ed,  and l2,…,ln mapping to DEP, ed.v is set to 
Min(Means-Ends Rule/Decomposition Rule(e1.v, …, ek.v), for each li ∈ l2,…,ln, li: esi 
→ ed, Dependency Rule(esi, ed)).  Note that due to syntax restriction a), l1,..,ln will 
only have one type equal to ME or one type equal to DEC. 

If Contribution and Dependency links are mixed, the result of the Dependency 
links are treated as a Make contribution, and considered in conjunction with the other 
contributions when the final label is determined. 

Resolving Multiple Contributions.  Most often, softgoals in i* are the destination 
of multiple contribution links.  We adopt the notion of a “Label Bag” from the NFR 
Framework.  This is needed to store all incoming labels for a particular softgoal.  Its 
content is presented to the user when prompting for human judgment, discussed in the 
next section. We produce a more precise definition of this concept: 

Definition: Label Bag.  Each e∈E such that e.type = Softgoal contains an 
additional attribute, expressed as e.lb.  We define lb as a set consisting of tuples <v, 
es> where v∈V is an evaluation label received by e and es∈E is the source of the 
evaluation label.  We keep track of whether the current label bag has been resolved 
with a human judgment situation with a Boolean e.lb.r. 

Labels in the bag are combined into a single, resulting label, either through 
automatic rules, as described in Table 2, or by human judgment.  The choices in Table 
2 allow the evaluator more control than was originally given in the NFR procedure.  
We define a function which applies the automatic cases in Table 2. 

Propagation: Automatic Cases(e.lb).  For e.lb, the label bag, determine if one of 
the cases described in Table 2 applies, and if so, produce the resulting value.  If one 
of the cases does not apply, then produce a temporary value of N (None).   



Table 2.  Cases where Overall Softgoal Labels can be Automatically Determined 

Label Bag Contents Resulting Label 
1. The bag has only one label : {<v, es>} the label: v 
2. The bag has multiple full labels of the same polarity, 

and no other labels. Ex: { , , } or { , }  
the full label: or 

3. All labels in the bag are of the same polarity, and a full 
label is present. Ex:  { , , } or { , } 

the full label: or 

4. The previous human judgment produced  or , and a 
new contribution is of the same polarity 

the full label: or 

4.5 Human Judgment in Evaluation 

As a result of the inherent incompleteness and abstraction of i* models, human 
intervention may be needed in order to make some evaluation decisions.  Specifically, 
human judgment is used to decide on an overall label for softgoals in the cases not 
covered in Table 2.  Human judgment may be as simple as promoting partial values to 
a full value, or may involve the combination of many sources of conflicting evidence. 
In applying our algorithm, the domain concepts represented by the name of each 
element are not taken into consideration, except when human judgment is applied.  
When determining a final label for an element, domain knowledge related to the 
identities of the destination and source elements should be used. 

In the evaluation algorithm, we choose to keep track of the human judgment 
situations that have occurred, in order to avoid repetition.  We store the human 
judgment situations collected during successive evaluations of a model in a set, HJ.   

Definition: Human Judgment Situation.  A human judgment situation is a tuple 
<e, lb, v>, where e∈E is the element for which the situation applied, e.type = 
Softgoal, lb is a copy of the label bag of e at the time the human judgment was made, 
and v∈V is the evaluation label result provided by the user. 

4.6 The Evaluation Algorithm 

The algorithm adopts the structure outlined in the NFR procedure by including 
iteration over two steps: propagation and value resolution.  In the first step, all present 
labels are propagated through all outgoing links using the rules described in the 
previous section.  In the second step, the resulting evaluation values for softgoals are 
determined, using either the automatic cases in Table 2, or human judgment. 

Once the values for all elements have been determined in the second step of the 
algorithm, the cycle starts again.  The labels to be propagated are kept track of using a 
queue of elements to which the labels are assigned, LQ, starting with the initial labels, 
and adding each final label produced in step 1 and 2.  The algorithm will terminate 
when all labels have been propagated and this queue is empty.   

As the procedure allows the placement of initial values, (e1.v,…,e2.v), e∈S, on 
non-leaf nodes, it is necessary to define how these values are affected by subsequent 



propagation.  In the case of hard elements (non-softgoals), subsequent propagation is 
ignored, favoring the initial value.  In the case of softgoals, initial values are placed in 
the bag of labels, leaving conflicts between initial and propagated values to human 
judgment.  Element initial values are retained in an attribute e.i, e∈E.   

Pseudocode describing the evaluation algorithm is shown in Table 3.  The 
procedure for resolving a mix of hard links could be simplified using attributes and 
data structures for hard elements.  Here, we chose a repetitive method of examining 
all hard links for each incoming value; we leave this to be optimized in the 
implementation. 

4.7 Example Evaluation 

To demonstrate the procedure, we provide a simplified example from the Trusted 
Computing (TC) Case Study [11] in Fig. 1.  This model depicts a simplistic view of 
the TC domain, showing the intentions of the PC User, the PC Product Provider and the 
Data Pirate.  In our example evaluation, we ask: “If the PC User Obtains PC Products 
from the Data Pirate how does this affect the PC Product Provider’s ability to Sell PC 
Products for Profit?”  Initial values are circled and human judgment is annotated in the 
model.   

In this example, when PC Products are Obtained from the Data Pirate, PC Products are 
Obtained Affordably, but the PC Product Provider does not Sell PC Products for Profit.  
Further rounds of evaluation and model iteration are needed.  Ideally, a solution 
would be found where the PC Product Provider can make a Profit and the PC User can 
have Affordable products while Abiding by Licensing Regulations. 
 

 
 

Fig. 1.  Simplified TC Example showing Final Evaluation Results 
 

  



Table 3.  Pseudocode of the i* Evaluation Algorithm 

qualitativeInteractiveEvaluation(E, L, S):
init(LQ, S); 
While !LQ.empty(){ step1(LQ); step2(LQ); } 

init(LQ, S): 
For each e ∈ S   

e.i = e.v; LQ.push(e); 
If e.type == Softgoal { e.LB.addToBag(v, “Initial”) } 

step1(LQ): 
LQ2 = LQ; 
While !LQ2.empty() { 

es = LQ2.pop(); LQ.pop();  
For each l ∈L s.t. l:es→ ed  { 

Label v = findResultingEvalValue(l, es, ed); 
If ed.type = Softgoal  { ed.LB.addToBag(v, es)} 
Else if ed.i == N and v != N { ed.v = v }

If ed ∉LQ  { LQ.push(ed)}}} 
step2(LQ): 

For each e ∈ E s.t. e.type == Softgoal and e.LB.r == false { 
e.v =AutomaticCases(e.LB) 
If (e.v == N) { 

If <e, e.LB, v> ∈HJ  { e.v = v  } 
Else if <e, e.LB, *> ∉HJ { 

e.v = PromptUser(e.LB) ; HJ.add(<e, e.LB, e.v>); } }
If e ∉LQ { LQ.push(e)} 
e.LB.r = true }  

findResultEvalValue(l, es, ed):
If l∈CONT {Label v = ContributionRules(l, es)} 
If ed.type == softgoal {Label v = es.v } 
Else {Label v = resolveMixofHardLinks(ed)} 
return v 

resolveMixofHardLinks(ed)
Label v   
For each l ∈L s.t. l: (e1,…,en)→ ed and l∉CONT { 

v = min(v, resolveSingleHardLinks(l)) } 
return v 

resolveSingleHardLinks(l)
If l == ME  

Label v = Means-Ends Rule(e1.v,…,en.v) where ME: (e1,…,en)→ ed  
If l == DEC 

Label v = Decomposition Rule(e1.v,…,en.v) where DEC: (e1,…,en)→ ed 
If l == DEP { Label v = es.v }
return v 

addToBag(v, e):  
{ e.LB.remove(<*, e>); e.LB.add(<e.v, e>); e.LB.r = false} 

4.8 Convergence, Termination, and Correctness 

Goal models often contain cycles.  To avoid infinite loops, we store a count of each of 
the combinations of source elements that have been placed in the Label Queue along 
with their current labels at the time they were added, for example <e1, PS> may have 
occurred three times.  Once this count has reached a certain fixed number, n, the same 



source and label combination cannot be placed in the Label Queue again.  This allows 
some fluctuation without infinite loops.  In this way, if there are r elements in the 
model, with 6 labels and a cap of n, the Label Queue has a maximum lifetime size of 
6rn, and the algorithm must terminate.  For simplicity, this is not reflected in Table 3. 

Given that the semantic richness of an i* model lies in the informal naming of 
elements, it is not formally possible to state correctness criteria for the semantic 
results of the algorithm.  Instead, we focus on evaluating the utility of performing the 
procedure.  Regarding correctness of the algorithm in Table 3, we say that the 
algorithm is correct if all initial evaluation labels are propagated throughout the model 
according to the propagation rules given.  Due to the complexity and detail involved, 
such a proof is omitted from this work. 

5 Benefits of Qualitative, Interactive Evaluation 

Benefits of performing qualitative, interactive analysis on goal- and agent-oriented 
models include both the ability to answer strategic questions and the means to iterate 
upon and improve the quality of the model and subsequent domain understanding. 

Analysis.  A significant benefit of i* evaluation is its ability to facilitate analysis 
by providing answers to strategic questions, and to compare the effectiveness of high-
level design strategies.  For example, in a case study involving a large social service 
organization, [10], the evaluation procedure described in this work was applied 
manually to large models in order to evaluate the situational effectiveness of a variety 
of technologies, including wikis and discussions forums.  It was discovered that the 
features of a wiki were not effective in satisfying the goals of the organization, while 
a discussion forum, with a set of specific features, showed more promise.   

Analysis can also be used as a means of understanding, justifying and explaining 
complex situations.  Examples of this type can be found in [11], where evaluation is 
used to describe the motivations behind stakeholders involved in Trusted Computing.   

Evaluation and Model Iteration.  When evaluation results are unexpected, this 
can often reveal the presence of missing information or semantic flaws.  In the TC 
case study, although the model appeared to be sufficiently complete, one of the first 
rounds of analysis of the TC Opponent point of view revealed that PC Users would 
not buy TC Technology.  Although this may be case for some Users, obviously the 
makers of TC Technology envisioned some way in which users would accept their 
product.  These results lead the modeller to include factors such as product lock-in, 
more accurately reflecting the domain. 

In another example, based on work describing Agents in E-Commerce 
Environments [15], issues were noticed during the propagation of evaluation values, 
as shown in Fig. 2, part a).  Due to space restrictions we show only small segments of 
these larger models. First, Rich Consumer Profile depends solely on Produce Consumer 
Profile, when it seems that just producing a profile alone would not be enough to 
ensure Richness, and second Accurate Consumer Profile has no effect on any other 
element.  Upon further consideration of the source paper, it was determined that 
Accurate Consumer Profile has a positive effect on several aspects, including Rich 
Consumer Profile.  Changes to the model are shown in Figure 2, part b). 



 
 
Fig. 2.  Excerpts of Model Changes from Agents in E-Commerce Case Study: a) Before 
changes prompted by evaluation, b) After changes prompted by evaluation. 

6 Discussion 

When considering the model changes made during evaluation, the argument could 
be made that if the evaluator is continually adjusting the model to correspond with 
his/her notion of the domain.  As a result, subsequent evaluation will not produce 
results which bring revelations or new information, only what the modeller already 
knows.  We argue that as the modeller adjusts the model to conform to his/her 
perception of the domain, the modellers perception of the domain is also altered, and 
for the better, as the entire interactive process forces the modeller to ask and find 
answers for specific questions about the relationships between entities.  These 
questions prompt the modeller to return to the system stakeholders, filling in the gaps 
from previous rounds of elicitation. 

In the case studies referred to in this work, the evaluation procedure was applied 
manually.  A version of the algorithm was implemented in the OpenOME tool, an 
open-source, Eclipse-based, conceptual modeling tool [16].  We are currently working 
on modifying this implementation to work with the latest version of OpenOME, 
which makes use of several Eclipse-based frameworks including EMF, GMF, and 
GEF.  

When using qualitative evaluation, it may be useful to apply more fine-grained 
qualitative labels.  For example, weak partially satisfied or strong partially satisfied.  
In order to retain the simplicity of the procedure, we use only a simple set of values.  
Additional qualitative values could be appended by adding to the ordering of (1).  
Future implementations can include the ability to select amongst qualitative scales. 

a) 

b) 



7 Related Work 

Several methods also aim to measure the satisfaction of goals.  These include 
evaluation in the NFR Framework, [8], on which this work was based.  The NFR 
method is applied to non-agent goal models, allows less freedom for human judgment, 
and was intended only for the evaluation of model alternatives.  Previous work has 
used evaluation from the NFR Framework in order evaluate i* models, see [17] for 
example.  Such work assumed that the NFR procedure could be easily extended for 
use with i*, without describing the necessary extensions or additional benefits. 

Giorgini et al have introduced qualitative and quantitative procedures for goal 
model analysis [2].  This approach separates negative and positive evidence 
throughout the procedure, is fully automated, and works in a forwards and backwards 
direction.  The most recent definition of GRL [3], a variant of i*, describes a variety 
of associated evaluation methods which range from quantitative to qualitative, and 
involve an overall measure of actor satisfaction.  This approach uses differing 
propagation rules, favoring undecided values, and a differing algorithm, propagating 
in stages based on the type of link, i.e. first through all decomposition links, then 
through all contribution links, etc. 

Methods have been proposed to evaluate the satisfaction of goals in the KAOS 
Framework [4].  A notion of partial goal satisfaction is introduced via the creation of a 
probabilistic model, where the satisfaction level of a goal corresponds to the 
likelihood of its satisfaction, given concrete domain evidence.   

All existing qualitative methods which explore goal satisfaction, with the exception 
of [8], are fully automated, either separating negative or positive evidence or using 
arbitrary rules to decide values for softgoals, often resulting in the proliferation of 
conflicts or partial values.  We chose to focus on an interactive procedure which gives 
greater control to the modeller and promotes model iteration. 

In quantitative analysis methods, unless the numbers used in the evaluation are 
derived from measures in the domain, they can be viewed as fine-grained qualitative 
analysis.  There is a danger that users may place an undeserved amount of confidence 
in the results, as numerical results are often associated with mathematical precision.  

The evaluation of metrics over goal- and agent- oriented models has been 
proposed.  For example, in [5], Franch outlines a framework which uses the structure 
of i* models as a means to measure desired properties such as security, completeness, 
modifiability and predictability.  However, it is difficult to determine if the results of 
metrics correspond well to real-life phenomena.  In addition, the semi-formal nature 
of i* constructs, and the variance in i* styles, makes it difficult place a high degree of 
confidence in metrics based on the structure of i* models. 

Methods have applied planning and simulation to goal- and agent-oriented models 
in order to find a satisfactory plan or explore model interactions (for example, [18] 
and [19]).  Methods which check properties over such models have been explored 
[20].  The detailed information used in these approaches makes them more 
appropriate for later stage models.  Work has tried to improve the quality of goal- and 
agent- oriented models by introducing methodologies to direct their creation [21], by 
cross-checking these models with other models [6], [7], or by involving stakeholders 
in the modeling process [6].  We are not aware of approaches which focus on 
improving the quality of non-temporal goal models after their initial construction. 



8 Conclusions and Future Work 

In this work, we have identified the need for a systematic method of performing early, 
qualitative analysis of Early Requirement Models.  We have introduced a relatively 
simple procedure which builds on the NFR procedure, specifying the algorithm in 
precise pseudocode, expanding the algorithm to deal with i*-specific constructs, 
precisely defining the meanings of several evaluation-related terms, exploring issues 
not covered in [8], and considering convergence, termination, and correctness.  We 
have explored the benefits of such a procedure, including analysis, argumentation, and 
model iteration and elicitation, using examples from several case studies.  Issues 
brought to light by our exploration have been discussed. 

This work can be expanded in several ways, for example, considering the effect of 
actor boundaries in evaluation, evaluating the satisfaction of actors, as in [3], 
incorporation textual arguments, similar to work in [22], expanding to “top-down” or 
backwards analysis, explored in [23], allowing for evaluation constraints as in [2], 
facilitating the traceability of evidence, giving users selection over different 
qualitative scales, and supporting views over evaluations, as is done in [24].   

Acknowledgements.  Financial support has been provided by Bell University 
Laboratories and the Ontario Graduate Scholarship Program.  The KHP project was 
conducted along with Steve Easterbrook, Jorge Aranda, Yuntian Fan, Marcel Leica, 
Rifat Abdul Qadir, and Markus Strohmaier.  The TC case study was conducted along 
with Lin Liu.  Thanks to Steve, Jorge, Markus, Golnaz Elahi, Sotirios Liaskos, Samer 
Abdulhadi, and Marsha Chechik for helpful discussions and comments.   

References 

1. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements 
Engineering. In 3rd IEEE International Symposium on Requirements Engineering (RE'97), 
pp. 226--235. IEEE Press, New York (1997) 

2. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Simple and Minimum-Cost Satisfiability for 
Goal Models.  In: Persson, A., Stirna, J. (eds) CAiSE 2004. LNCS, vol. 3084, pp. 20-3-5. 
Springer, Heidelberg (2004)  

3. International Telecommunication Union, Telecommunication Standardization Sector, Study 
Group 17: Z.151: User Requirements Notation (URN), 
http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/DraftZ151Standard (2008) 

4. Letier, E., Lamsweerde, A. van: Reasoning about Partial Goal Satisfaction for Requirements 
and Design Engineering, In: 12th ACM International Symposium on the Foundations of 
Software Engineering (FSE’04), pp. 53--62. ACM, New York (2004) 

5. Franch, X.: On the Quantitative Analysis of Agent-Oriented Models: In Dubois, E., Pohl, K. 
(eds) CAiSE’06. LNCS, vol. 4001, pp. 495--509. Springer, Heidelberg (2006) 

6. Maiden, N. A. M., Jones, S. V., Manning, S., Greenwood, J., Renou, L.: Model-Driven 
Requirements Engineering: Synchronising Models in an Air Traffic Management Case 
Study. In: Persson, A., Stirna, J. (eds) CAiSE’04, LNCS, vol. 3084, pp. 367--383, Springer, 
Heidelberg (2004) 



7. Gordijn, J.; Petit, M.; Wieringa, R.: Understanding Business Strategies of Networked Value 
Constellations Using Goal- and Value Modeling. In: 14th IEEE International Conference on 
Requirements Engineering (RE’06). pp. 129--138. IEEE Press, New York (2006) 

8. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software 
Engineering. Kluwer Academic Publishers,  Norwell, MA (2000) 

9. Easterbrook, S. M., Yu, E., Aranda, J., Fan, Y., Horkoff, J., Leica, M., Qadir, R. A.: Do 
Viewpoints Lead to Better Conceptual Models? An Exploratory Case Study. In: 13th IEEE 
International Requirements Engineering Conference (RE’05). pp. 199--208. IEEE Press, 
New York (2005) 

10. Strohmaier, M., Horkoff,  J., Yu,  E., Aranda, J., Easterbrook, S.: Can Patterns improve i* 
Modeling? Two Exploratory Studies. In: Paech, B., Rolland, C. (eds) REFSQ’08.  LNCS, 
vol. 5025, pp. 153--167. Springer, Heidelberg (2008) 

11. Horkoff, J., Yu, E., Liu, L.: Analyzing Trust in Technology Strategies. In: International 
Conference on Privacy, Security and Trust (PST 2006). pp. 21--32. (2006) 

12. Strohmaier, M., Yu, E., Horkoff, J., Aranda, J., Easterbrook, S.: Analyzing Knowledge 
Transfer Effectiveness - An Agent-Oriented Approach. In: 40th Hawaii International 
Conference on Systems Science (HICSS-40 2007), pp. 188b. IEEE Computer Society, 
Washington DC (2007) 

13. Horkoff, J.: An Evaluation Algorithm for the i* Framework. Master’s Thesis, Department of 
Computer Science, University of Toronto (2006) 

14. Horkoff, J., Elahi, G., Abdulhadi, S., Yu. E.: Reflective Analysis of the Syntax and 
Semantics of the i* Framework.  In: Song, I-Y et al. (eds) RIGiM’08.  LNCS, vol. 5232, pp. 
249--260. Springer, Heidelberg (2008). 

15. Spiekermann, S., Dickinson, I., Günther, O., Reynolds, D.: User Agents in E-commerce 
Environments: Industry vs. Consumer Perspectives on Data Exchange. In: Eder, J., 
Missikoff, M. (eds) CAiSE’03.  LNCS, vol. 2681, pp. 1029. Springer, Heidelberg (2003) 

16. OpenOME, an open-source requirements engineering tool,  
https://se.cs.toronto.edu/trac/ome/wiki 

17. Liu, L., Yu, E.: Designing Information Systems in Social Context: A Goal and Scenario 
Modelling Approach. Information Systems. 29(2), 187--203 (2004) 

18. Gans, G., Jarke, M., Lakemeyer, G., Schmitz, D.: Deliberation in a Modeling and 
Simulation Environment for Inter-organizational Networks. In: Eder J., Miisikoff M. (eds), 
Proceedings CAiSE’03. LNCS, vol. 2681, pp. 242--257, Springer, Heidelberg (2003) 

19. Wang, X., Lesperance, Y.: Agent-oriented requirements engineering using ConGolog and 
i*. In: Workshop on Agent-Oriented Information Systems (AOIS’01) co-located with 
CAiSE'01, pp. 59--78 http://www.aois.org/ (2001) 

20. Fuxman, A., Pistore, A., Mylopoulos, J., Traverso, P.: Model Checking Early Requirements 
Specifications in Tropos. In Fifth IEEE International Symposium on Requirements 
Engineering (RE01). pp. 174-181. IEE Press, New York (2001) 

21. Grau, G., Franch, X., Maiden, N.A.M.: PRiM: an i*-based process reengineering method for 
information systems specification. Information and Software Technology. 50(1-2), 76--100 
(2008)  

22. Maiden, N.A.M., Lockerbie, J., Randall, D., Jones, S., Bush, D.: Using Satisfaction 
Arguments to Enhance i* Modelling of an Air Traffic Management System. In: 15th IEEE 
International Conference on Requirements Engineering (RE’07). pp.49--52. IEEE Press, 
New York (2007) 

23. Horkoff, J., Yu, E.: Qualitative, Interactive, Backward Analysis of i* Models. In: Castro, J., 
Franch, X., Perini, A., Yu, E. (eds) 3rd International i* Workshop. pp. 43—46, CEUR-
WS.org (2008) 

24. jUCMNav - Eclipse plugin for the User Requirements Notation,  
http://jucmnav.softwareengineering.ca/jucmnav/ 


