
Deriving Procedural and Warning

Instructions from Device and

Environment Models

by

Daniel Ansari

Department of Computer Science

University of Toronto

Toronto, Canada

June 1995

A thesis submitted in conformity with the requirements

for the degree of Master of Science at the

University of Toronto

Copyright c
 1995 by Daniel Ansari

Abstract

There has been much interest lately in the automatic generation of documentation; however, much

of this research has not considered the cost involved in the production of the natural language

generation systems to be a major issue: the bene�ts obtained from automating the construction of

the documentation should outweigh the cost of designing and coding the knowledge base.

This study is centred on the generation of instructional text, as is found in instruction manuals

for household appliances. We show how knowledge about a device that already exists as part of the

engineering e�ort , together with adequate, domain-independent knowledge about the environment,

can be used for reasoning about natural language instructions.

The knowledge selected for communication can be planned for, and all the knowledge necessary

for the planning should be contained (possibly in a more abstract form) in the knowledge of the

artifact together with the world knowledge. We present the planning knowledge for two example

domains, in the form of axioms in the situation calculus. This planning knowledge formally char-

acterizes the behaviour of the artifact, and it is used to produce a basic plan of actions that both

the device and user take to accomplish a given goal. We explain how the instructions are generated

from the basic plan. This plan is then used to derive further plans for states to be avoided. We will

also explain how warning instructions about potentially dangerous situations are generated from

these plans. These ideas have been implemented using Prolog and the Penman natural language

generation system.

Finally, this thesis makes the claim that the planning knowledge should be derivable from the

device and world knowledge; thus the need for cost e�ectiveness would be met. To this end, we

suggest a framework for an integrated approach to device design and instruction generation.

ii

Acknowledgments

First of all, I wish to thank my supervisor, Dr. Graeme Hirst, for his valuable criticisms, for his

advice when it was much needed, for all the time spent reading my work, and for enduring my

productivity mood swings.

Many thanks go to Phil Edmonds, Yves Lesp�erance, and my second reader Dr. Je�rey Mark

Siskind, for their helpful comments on an earlier draft of this thesis.

I gratefully acknowledge the �nancial support provided by Science and Engineering Research

Council (U.K.) grant 92600436, and use of the equipment provided by Natural Science and Engi-

neering Research Council of Canada.

I also wish to thank my family who, although thousands of miles away across the ocean, gave

me lots of support.

Finally, my deepest gratitude goes to my darling Sonia, who provided me with much love, com-

panionship, and encouragement.

iii

Contents

1 Introduction 1

2 Related research 4

2.1 Planning for instructions : 4

2.2 The Penman system : 5

2.3 Analyzing instructional text : 6

2.3.1 Paris and Scott : 6

2.3.2 Vander Linden : 8

2.4 Generating instructional text : 10

2.4.1 Mellish and Evans : 10

2.4.2 Wahlster et al. : 12

2.4.3 Moore and Paris : 12

2.4.4 Kosseim and Lapalme : 14

2.5 Conclusion : 15

3 The knowledge base 16

3.1 Some example instructions and their analyses : 16

3.1.1 Analysis of examples 1 and 2 : 17

3.1.2 Analysis of example 3 : 18

3.1.3 Analysis of example 4 : 18

3.1.4 Analysis of examples 5 and 6 : 18

3.2 What types of knowledge are required : 19

4 A situation calculus approach to instruction generation 21

4.1 Overview of the situation calculus : 21

4.2 Determination of the actions to be represented : 22

4.2.1 Ontology of high-level device actions : 23

4.3 A description of the toaster system : 23

iv

4.3.1 Meanings of the actions and
uents : 23

4.3.2 An axiomatization of the toaster system : 24

4.4 Deriving instructions from the axioms : 27

4.5 Deriving warning instructions : 29

4.5.1 Determining the placement of warning instructions : : : : : : : : : : : : : : : 30

4.5.2 Collecting similar actions together : 32

4.6 Generating the instructions : 35

4.6.1 Determining the role �llers : 35

4.6.2 Mechanisms for determining some other role �llers : : : : : : : : : : : : : : : 36

4.6.3 Deciding which actions to mention : 37

4.6.4 A sample generated instruction sequence : 38

4.7 Another example: the breadmaker system : 38

4.7.1 Meanings of the actions and
uents : 38

4.7.2 An axiomatization of the breadmaker system : : : : : : : : : : : : : : : : : : 39

4.7.3 A sample generated instruction sequence : 44

4.7.4 Combining the breadmaker and toaster domains : : : : : : : : : : : : : : : : 44

5 Discussion and conclusions 45

5.1 An integrated approach to device design and instruction generation : : : : : : : : : : 45

5.1.1 The design phase : 45

5.1.2 Incorporating instruction generation into the framework : : : : : : : : : : : : 46

5.2 Contributions of this thesis : 50

A Program listing 52

B Trace output 62

B.1 Output for the toaster domain : 62

B.2 Output for the breadmaker domain : 63

B.3 Output for the breadmaker/toaster combination domain : : : : : : : : : : : : : : : : 65

C The SPL �les 68

C.1 SPL for the toaster instructions : 68

C.2 SPL for the breadmaker instructions : 69

Bibliography 71

v

List of Tables

4.1 Components and materials of the toaster system : 23

4.2 Reader actions, device actions, and
uents used in the toaster example : : : : : : : : 24

4.3 Roles of actions : 36

4.4 Default roles of actions in non-warning instructions : : : : : : : : : : : : : : : : : : : 36

4.5 Components and materials of the breadmaker system : : : : : : : : : : : : : : : : : : 38

4.6 Reader actions, device actions, and
uents used in the breadmaker example : : : : : 39

vi

Chapter 1

Introduction

Until recently, natural language generation (NLG) has been of interest mostly to academic re-

searchers, but applications based on this technology have started to emerge in industry (e.g., Ad-

vanced Technologies Applications, Inc. (1994), Goldberg et al. (1994)). There has been much interest

lately in the automatic generation of documentation, in particular, system and software engineer-

ing documentation (e.g., Advanced Technologies Applications, Inc. (1994)), technical documentation

(e.g., Reiter et al. (1995), R�osner and Stede (1994)), and instructional text (e.g., Feiner andMcKeown

(1990), Wahlster et al. (1993)). However, much of the research has not considered the cost involved

in the production of the NLG systems to be a major issue. This consideration is much the same

as that of trying to minimize the cost of producing an interlingua for a multi-lingual NLG system1:

the bene�ts obtained from automating the construction of the documentation should outweigh the

cost of designing and coding the interlingua, or knowledge base.

The IDAS project of Reiter et al. (1992; 1995) serves as a key motivation for our work. One

of the primary goals of the IDAS project was to automatically generate technical documentation

from a domain knowledge base containing design information (such as that produced by an ad-

vanced computer-aided design tool) using NLG techniques. IDAS turned out to be successful in

demonstrating the usefulness, from a cost and bene�ts perspective, of applying NLG technology to

partially automate the generation of documention. This technical documentation was intended to

be read by technicians and other experts, so the focus of this work is di�erent from ours.

This study is centred on the generation of instructional text, as is found in instruction manuals for

household appliances. We will endeavour to show how knowledge about a device that already exists

as part of the engineering e�ort , together with adequate, domain-independent knowledge about the

environment, can be used for generating natural language instructions. We will also describe how all

1TECHDOC (R�osner and Stede, 1994) is one example of a multi-lingual technical documentation generation
system.

1

this knowledge can be used for generating warning instructions, i.e., cautions to the user directing

them to avoid certain situations.

As we will see in section 2.3.1, part of an instruction manual may contain safety information,

or this information might accompany text given in the use part of the manual if it is speci�c to a

particular step in achieving a task. It is our view that the knowledge relevant to warnings and safety

advice is naturally not closely tied to the sequence in which the steps should be carried out, but

is more concerned with the consequences of not carrying out the steps in an appropriate manner,

and more generally with consequences of handling the appliance incorrectly. Hence, it is possible

for certain types of knowledge to be used for generating text about safety and warnings.

Delin et al. (1993) suggested that it is useful to distinguish six levels of representation of instruc-

tional texts:

1. The knowledge of the artifact A functional model of the artifact and its mode of operation

in terms of actions and states.

2. The deep intentions The representation of the originator's intention that the user perform

the sequence of actions that constitute a particular task involving the artifact.

3. The knowledge selected for communication What is to be communicated about the

artifact and the task that will enable the user to perform the appropriate actions, making

assumptions about their cultural background, world knowledge, and expertise.

4. The shallow intentions A representation of the goals that the text has to achieve in order

to motivate the required tasks.

5. The rhetorical structure The discourse strategies chosen to achieve the text's goals.

6. The syntactic structure The syntax expressing the chosen rhetorical structure.

As we shall see in chapter 2, the systems that researchers have built so far to generate instructional

text have largely ignored representation level 1, and most have assumed the prior existence of level 3

knowledge.

We claim that the deep intentions can be encoded in the world knowledge, which should include

knowledge about the environment, in particular the way a human agent interacts with general types

of components such as buttons, levers, and lids. For example, the fact that a button must be pressed

in order for a circuit to be completed is part of the knowledge about the artifact. The fact that in

order for the button to become pressed the user can perform the press action on this button should

be represented in the world knowledge: it is a general fact that applies to any button, and it is the

intention of the originator of the instructions that the button be pressed by the user.

The knowledge selected for communication can be planned for, and all the knowledge necessary

for the planning should be contained (possibly in a more abstract form) in the knowledge of the

2

artifact together with the world knowledge. The kinds of device and world knowledge that should

be su�cient for this planning will be discussed in chapter 3.

In chapter 4 we shall present the planning knowledge for two example domains|a toaster and

a breadmaker|in the form of axioms in the situation calculus. This planning knowledge formally

characterizes the behaviour of the artifact, and it is used to produce a basic plan of actions that

both the device and user take to accomplish a given goal. The axioms together with the goal are the

input to our system. We will explain how the instructions are generated from the basic plan. This

plan is then used to derive further plans for states to be avoided. We will also explain how warning

instructions about potentially dangerous situations are generated from these plans. Thus, the output

of our system consists of English natural language instructions, including warning instructions, for

how to use the device to achieve its purpose.

We make the assumption that the device and world knowledge take the form of formal speci�-

cations. This thesis also makes the claim that the planning knowledge should be derivable from the

device and world knowledge; thus the need for cost e�ectiveness would be met. We shall attempt to

justify this claim, to some extent, in chapter 5. However, this is such a di�cult problem that we do

not expect a solution to be found in the near future.

Finally, we will suggest a framework for an integrated approach to device design and instruction

generation. We will also discuss directions for future work.

The main contributions of this thesis are the following:

1. the suggestion that an integrated model of the device (including solid, kinematic, electrical,

and thermodynamic models) together with world knowledge can be used to automate the

generation of instructions, including warning instructions;

2. that situations in which injuries to the user can occur need to be planned for at every step

in the planning of the normal operation of the device, and that these \injury sub-plans" are

used to instruct the user to avoid these situations. Thus, unlike other instruction generation

systems, our system tells the reader what not to do as well as what to do; and

3. the notion that actions are performed on the materials that the device operates upon, that

the states of these materials may change as a result of these actions, and that the goal of the

system should be de�ned in terms of the �nal states of the materials.

3

Chapter 2

Related research

2.1 Planning for instructions

Agre and Horswill (1992) presented an object-centred formalization of action. They contend that

any computational theory of action should have two properties:

1. It should explain how agents can achieve goals and maintain background conditions1.

2. It should explain how agents can choose their actions in real time.

They proposed that part of the solution for achieving these properties of correctness and e�ciency lie

in culture, and speci�cally in the formal properties of a given culture's repertoire of artifacts. They

de�ned an interesting class of tasks, called cooking tasks, as tasks which only involve objects in certain

classes, and implemented a program, Toast, which demonstrates that cooking tasks can be planned

in a \greedy" (without backtracking) fashion. The e�ciency issue is addressed by constraining the

types of objects and goals that are manipulated, so that the agent can always choose an action which

will move it closer to its goal without constructing a plan. Agre and Horswill say that the inventory

of objects available to an agent depends upon that agent's culture, and by distinguishing the forms

of improvised activity which can be performed by simple mechanisms from the more complex and

varied, an elaborate planning paradigm is not necessary.

Agre and Horswill's formalism was created with the intent of analyzing interactions between an

agent and its environment. They presented an outline of a formal model of objects, actions, and

tasks, de�ning object types, action types, and tasks in terms of states of the objects and the world,

and goals. A world state satis�es a goal in their formalism if that state includes some instance of the

indicated type that is in the indicated state. By categorizing object types in terms of the properties

of their state graphs, they de�ned a cooking task as a task which involves only tools and materials.

1Background conditions specify that all instances of a given type should be in a given state and location.

4

According to Agre and Horswill, these two object classes, together with containers2, constitute the

vast majority of objects found in the average kitchen.

They described an algorithm that solves a cooking task and sketched the design of an agent

which can carry out this process. Their general idea is that the agent is in the kitchen and can

readily detect the states of all visible objects. The agent achieves its goals by performing actions

using the tools3 to push materials through certain customary state transitions4. Their algorithm

also uses an action table and a tool table to determine what actions and/or tools can be applied in

order to move towards the goal state. The goals are represented as triples of the form (class, state,

container) specifying that an object of the speci�ed class in the speci�ed state should be placed in

the speci�ed container.

Agre and Horswill's work is interesting in that it attempts to model interactions between an

agent and its environment, which is what a system that generates natural language instructions,

particularly warning instructions, should do to some extent. Their observation that materials go

through certain state transitions is also relevant to the current study. However, they do not go any

further than proposing a formalism that provides e�cient planning in cooking tasks. Also, they do

not consider the modelling of complex devices in the kitchen, which is important for the current

study.

2.2 The Penman system

Penman is a
exible sentence-level text generator that was developed at the USC Information Sci-

ences Institute (Mann, 1985; Matthiessen, 1985; Penman, 1989). It provides a broad coverage of

English syntax, probably the most comprehensive of any readily available text generator. Penman

is based on a systemic-functional view of language (Halliday, 1976): its approach is functional, that

is, it uses features of the context to map communicative goals to acceptable grammatical forms. A

by-product of this view of language is that the system contains a well-developed implementation

of the systemic network. Penman traverses this network, which e�ects the generation of sentence

structures.

Penman provides two fundamental interfaces for surface realization of the text: the SPL (Sentence

Plan Language) command interface, and the raw inquiry interface. The latter allows one to exercise

complete control over Nigel (Penman's grammatical component), but to specify the great number

of responses required would be a tedious operation. SPL is an extensive and
exible language that

allows the speci�cation of sentences in terms of the processes they are based upon, and the entities

2Examples of tools are forks, spoons, and knives; examples of materials are pancake batter, milk, eggs, and bread
slices; examples of containers are bowls, cups, and plates.

3Each tool has its own set of states and actions, since it is also an object.
4These are de�ned by a state graph.

5

that participate in those processes. The SPL speci�cation is used by Penman to provide responses

(including default responses) to the various inquiries.

In order to use Penman to generate text, a domain model and lexicon must be speci�ed. The

Upper Model, which is provided by Penman, and the domain model, which is de�ned by the user,

contain de�nitions of the entities that the text should address. Both models contain a taxonomy

of entities in the world which aids the generation of English, and the domain model is linked with

the Upper Model. The lexicon contains the de�nitions of words|their spellings, variant forms, and

other features.

For example, the sentence:

Knox sails to Pearl Harbor.

is speci�ed by:

((S1 / SAIL

:actor (KNOX / SHIP)

:destination (PEARL-HARBOR / PORT)

:tense PRESENT

:speechact ASSERTION))

This speci�cation describes one particular sailing action called S1 that has KNOX as its ACTOR,

PEARL-HARBOR as its DESTINATION, and that this information should be asserted in the present

tense. On its own, KNOX is just a symbol, so we also need to tell Penman that this symbol represents

an instance of SHIP, which is a domain model entity.

2.3 Analyzing instructional text

2.3.1 Paris and Scott

Paris and Scott, who have been conducting work on generating multilingual instructions, insist that

computational systems should be able to generate the variations found in texts. Their paper (Paris

and Scott, 1994) is one step in this direction.

In this study, Paris and Scott described di�erent ways, or stances, in which instruction manuals

can convey information:

Information provision Factual knowledge is provided which augments the reader's knowledge of

the artifact or the task.

Eulogy The text accentuates the positive aspects of the product, or \congratulates" the user for

purchasing the product.

Directive An order is given describing how the user should perform a task, without a rationale

being given.

6

Explanation The reader is given advice on how to perform a task together with an explanation as

to why it should be performed in the prescribed manner.5

Paris and Scott noted that the particular stance employed for presenting information at any point

in a manual seems to be in
uenced by factors such as safety, requirements for memorability, and the

expected expertise of the reader. Also, the forms in which each stance can be realised seems to be

determined partly by language. For example, one instruction for �ltering co�ee may be presented as

a directive in English, whereas the French version may more appropriately be given as information

provision.

They found that some manuals are divided into distinct sections, as follows, with each section

typically adopting a particular stance:

General information about the product This section generally consists of text which congrat-

ulates the user for purchasing the product, describes the product and its advantages, and gives

conditions of the warranty. The stances adopted for this part are usually information provision

and eulogy.

Information about safety, etc. This includes warnings, general safety advice, and crucial steps

to be performed (either to accomplish the task or to obtain better results). The stance can be

either a directive or an explanation.

Preparatory steps or installation This is information on how to prepare the product for use.

Use This explains how to operate the product.

Care and maintenance This part informs the reader how to clean and care for the artifact.

Trouble-shooting This part is intended to help the reader identify the source of any potential

problems, and to provide information about the possible consequences of not carrying out a

step properly. Actions to be performed to remedy the problem are provided, together with

conditions under which they are appropriate. The stance is usually directive (actions allowing

the reader to pinpoint the problems are given).

Paris and Scott observed that non-sectioned manuals may present the above information in an

interleaved fashion, especially if space is a problem and the writers do not wish to divide the manual

into such sections.

5An instruction conveyed by an explanation stance may be realized as a matrix clause together with a purpose

clause (Di Eugenio, 1992). The matrix clause describes the action, and the purpose clause expresses an agent's
purpose in performing that action.

7

2.3.2 Vander Linden

Vander Linden (1993) addressed the problem of determining the precise rhetorical and grammatical

forms that are most e�ective for expressing actions in an instructional context. His major con-

tribution to the �eld of natural language processing is the application of the scienti�c method for

managing this diversity of expression: collecting a suitable corpus of text, analyzing that text, im-

plementing the results of the analysis in a text generator, and comparing the output of the generator

with the corpus.

Instructional text can be viewed as the expression of a set of actions bearing procedural rela-

tionships with one another. Two tasks that an instructional text generator must perform are, �rst,

to choose, for each action expression, the rhetorical relation it will hold with the other actions that

best conveys their procedural relationships, and, secondly, to choose the grammatical form that will

realise this rhetorical relation.

Vander Linden did not attempt to identify the rhetorical status and the grammatical form that

appear to most e�ectively express various types of actions and their relations, because it is unclear

how accurate this intuitive approach would be. Rather, he used a detailed function-to-form study of

a corpus of instructional texts, made up of approximately 1000 clauses from 6000 words of text taken

from manuals. This corpus was represented in a relational database representing the rhetorical and

grammatical aspects of the text.

The corpus was analysed and RST (Rhetorical Structure Theory (Mann and Thompson, 1986;

Mann and Thompson, 1988)) structures were built for the whole text. This analysis of rhetorical

status made use of three nucleus-satellite relations: PURPOSE, PRECONDITION AND RESULT, and

two joint schemas: SEQUENCE and CONCURRENT. This set of relations and schemas, which proved

e�ective for the analysis, was based on the notions of hierarchical and non-linear plans and the use

of preconditions and postconditions in automated planners.

Given this coding of the rhetorical status of action expressions, coupled with the coding of the

grammatical form of the expressions, a functional analysis was performed which identi�ed systematic

co-variation between functions and forms in the corpus. It was found that a set of approximately

70 features of the communicative environment (i.e., the instructional register, in systemic-functional

terms) was su�cient to produce a broad analytical coverage of the rhetorical status and grammatical

forms used in the corpus. A Penman-style systemic network was used to distinguish these features

and accommodate them in a hierarchy.

Vander Linden's text generator, IMAGENE, makes decisions on the basis of features of instruc-

tional text; it does not perform any text planning. There are two main inputs to IMAGENE:

(1) the structure of the process being described (i.e., the text plan), and (2) the responses to a set

of text-level inquiries, analogous to the sentence-level inquiries of Penman. Using these, an SPL

speci�cation is constructed, which is fed into Penman to generate the English sentences.

8

The process structure is represented by a Process Representation Language (PRL), which allows

the representation of actions in a hierarchy and provides facility for representing concurrency. A

PRL speci�cation represents the actions and their attributes, which have the following slots (from

(Vander Linden, 1993, pages 60{61)):

Action-Type The lexical item corresponding to this action.

Actor The PRL entity which represents the actor.

Actee The PRL entity which represents the object acted upon by the actor.

Destination The PRL entity which represents the destination of a moving action.

Duration The natural number denoting the number of duration units that an action takes.

Duration-Units The lexical item corresponding to the units of the duration.

Instrument The PRL entity which represents the instrument used in the action.

In addition, the PRL entities, which represent the objects referred to by the actions, have attributes

associated with them (see (Vander Linden, 1993, page 61) for a listing of these). Thus, a planner

which produces PRL structures should be able to deal with temporal information at some level, and

should be hierarchical, in order to take full advantage of IMAGENE's expressive power.

An example of part of a PRL input is the following, in which the \root" action consists of an

instruct action, followed by a remove action, followed by a place action:

(tell (:about *prl-root* Action

(subaction instruct-action)

(subaction remove-action)

(subaction place-action)))

(tell (:about instruct-action Action

(action-type it::instruct)

(actor phone)

(actee hearer)))

(tell (:about phone Object

(object-type it::phone)

(object-status device)))

(tell (:about hearer Object

(object-type it::hearer)))

(tell (:about remove-action Action

(subaction grasp-action)

(subaction pull-action)

(action-type it::remove)

(actor hearer)

9

(actee phone)))

(tell (:about place-action Action

(subaction return-action)

(action-type it::place-call)

(actor hearer)

(actee call)))

The text-level inquiries take place during the run of IMAGENE. One example of such an inquiry

is the following, in which READER-KNOWLEDGE-Q is a question about one particular feature of

the instructional register:

READER-KNOWLEDGE-Q: Is INSTRUCT-ACTION a procedural sequence

that the reader is assumed to know?

Enter inquiry answer:

1. KNOWN

2. UNKNOWN

Number Of Choice: 1

The output of IMAGENE, given the full PRL and text-level inquiry inputs corresponding to the

above, is this:

When you are instructed, remove the phone by grasping the top of the handset and

pulling it. Return to a seat to place a call.

One type of action that IMAGENE does not handle and cannot represent in its PRL is a negative

action, or one that should not be performed. If IMAGENE is to produce warning instructions, it

must be extended to deal with these.

2.4 Generating instructional text

2.4.1 Mellish and Evans

Mellish and Evans (1989) addressed the problem of designing a system that accepts a plan structure

of the sort generated by AI planning programs, and produces natural language text explaining how

to execute the plan.

Their system used, as input, the data structures produced by the NONLIN hierarchical planner

(Tate, 1976). The process of natural language generation from here can be thought of as consisting

of four stages, centring on the construction and manipulation of an expression of their message

language. The �rst stage is message planning, where the generator decides on the content and order

of the real-world objects and relationships to be expressed in language. The output of this stage is

a message language expression. In the message simpli�cation stage, this expression is simpli�ed by

the repeated application of localized rewrite rules. The goal of the next stage, structure building,

10

is to build a functional description of a linguistic object that will realize the intended message.

The structure-building rules are responsible for making choices from a limited number of possible

syntactic structures, introducing pronominalization where appropriate, and accessing the lexical

entries corresponding to the actions, states, and objects. These rules are applied as in a production

system, i.e., a recursive descent traversal of the message is made. The �nal stage is to produce a

linear sequence of words.

An example of an expression in the message language (before simpli�cation) corresponding to

this piece of text follows (from (Mellish and Evans, 1989, page 237)):

If you go to the front of the car now you will not be at the cab afterwards. However in

order to start the engine you must be at it. Therefore before going to the front of the

car you must start the engine.

The initial message expression is:

implies(

contra_seq(

hypo_result(

user,

achieve(goal(located(mech, frontofcar))),

not(goal(located(mech, cab)))),

prereqs(

user,

then(wait([]), achieve(goal(started(engine)))),

goal(located(mech, cab))))

neccbefore(user,

then(wait([]), achieve(goal(started(engine)))),

achieve(goal(located(mech, frontofcar)))))

where expressions such as goal(located(mech, frontofcar)) are straight NONLIN expressions

translated into Prolog. This expression can be read approximately as \the hypothetical result of

going to the front of the car is that you will not be in the cab, and this contrasts with the prerequisite

of being in the cab to start the engine. This combination implies you should start the engine before

you go to the front of the car" (Mellish and Evans, 1989, page 237).

The intent of Mellish and Evans was to produce a model of a complete system as a basis for

comparison with future work. Vander Linden's system IMAGENE can be seen as an attempt to

address one particular simpli�cation that they made in their work, speci�cally, the small range of

rhetorical and grammatical forms in the text produced by their generator.

The advantage of our system over that of Mellish and Evans, as we shall see later, is that it is

intended to be integrated into IMAGENE at some point in the future. However, our system produces

\
at", linear plans rather than hierarchical plans, so we do not need to deal with unordered actions

or abstraction hierarchies.

11

2.4.2 Wahlster et al.

WIP, the system of Wahlster et al. (1991; 1993), is a system that was designed for the generation of

illustrated documents. They argued that not only the generation of text, but also the synthesis of

multimodal documents, can be considered as a communicative act that aims to achieve certain goals

(most of which correspond to pragmatic relations in RST). WIP supports a plan-based approach

similar to that of Moore and Paris (see section 2.4.3); its presentation planner produces a plan in

the form of a directed acyclic graph, of which the leaves are speci�cations for individual presentation

acts, which may be realized either in text or graphics. The plan operators contain knowledge not

only about \what to present" (i.e., content selection), but also \how to present" (i.e., whether to

present text or graphics); in this way, WIP interleaves content and mode selection. The design of

WIP supports data transfer between the content planner and the mode-speci�c generators, which

allows for continuous evaluation of the plan as it is produced, and revision of the initial document

structure.

The application knowledge used by WIP's presentation planner contains basic, \compiled" plans

of the actions that need to be carried out to achieve a task in the domain. An example of part such

a plan is the following, which expresses that the Fill-in-water task is achieved by carrying out

the sequence of actions Lift-lid, Remove-cover, and Pour-water:

(defaction 'Fill-in-water

(actpars ((...))

(sequence (A1 Lift-lid)

(A2 Remove-cover)

(A3 Pour-water))

(constraints (...))

Wahlster et al. did not seem to have placed any emphasis on the modelling of the domain, something

which the current study investigates in some depth.

2.4.3 Moore and Paris

Moore and Paris (1989) constructed a text planner which is intended to be part of an explanation

facility for an expert system. One application which uses this planner is the Program Enhancement

Advisor (PEA), an advice-giving system which aids users in improving their Common Lisp programs

by recommending transformations that enhance the user's code.

Their planner is a top-down hierarchical expansion planner similar to that of Sacerdoti (1975),

which serves to operationalize Rhetorical Structure Theory. The intentional, attentional, and rhetor-

ical structure of the generated text are recorded in the plan, as in Hovy's (1988) planner. The planner

also makes use of a user model, which contains the user's domain goals and assumed knowledge.

Each of their plan operators consists of the following:

12

An e�ect This is a characterisation of what goal(s) the operator can be used to achieve. An e�ect

may be an intentional goal, or a rhetorical relation.

A constraint list This consists of the conditions that must be true for the operator to be applied,

and may refer to facts in the system's knowledge base or in the user model.

A nucleus This describes the main topic to be expressed. It is either a primitive operator or a goal

(intentional or rhetorical) that must be expanded further.

Satellites These are subgoals that express additional information that may be needed to achieve

the e�ect of the operator, and are speci�ed as required or optional.

The planner works roughly as follows: when a discourse goal is posted, all the plan operators

whose e�ect �eld matches this goal are identi�ed. Those operators whose constraints can be satis�ed

(by uni�cation with knowledge contained in the system's knowledge base and the user model) become

candidates for achieving the goal. The planner chooses one on the basis of the user model, the

dialogue history, the speci�city of the plan operator, and whether or not assumptions about the

user's beliefs must be made in order to satisfy the operator's constraints. The nucleus is then

expressed. For a primitive goal, the corresponding text is generated; otherwise, any non-primitive

subgoals are posted for the planner to achieve recursively. The planner decides whether to expand

optional satellites by using information from the user model and knowledge base.

One useful consequence of this process is that the resulting (tree-shaped) text plan contains both

the intentional structure and the rhetorical structure of the generated text. This tree indicates which

purposes di�erent parts of the text serve, the rhetorical means used to achieve them, and how parts

of the plan are related to each other.

Unfortunately, realisation of the primitive goals results in rather coarse-grained text being gen-

erated. For example, the primitive goal (RECOMMEND S H replace-1) results in the following text:

You should replace (setq x 1) with (setf x 1).

The output of PEA at the rhetorical level, like that of WIP, is not based on any corpus of real text.

Also, unlike IMAGENE, PEA has no provision for expressing the leaves of its plan tree in a variety

of grammatical forms.

Because PEA combines discourse knowledge with domain knowledge in its plan operators, this

knowledge is unrealistically hand-tailored to the purposes of the planner. It is di�cult to see what

use this knowledge can be put to other than planning. Because of the severely restricted domain

of application of such knowledge, the representations and techniques employed by systems such as

PEA leave much to be desired in view of the need for cost e�ectiveness mentioned in chapter 1.

13

2.4.4 Kosseim and Lapalme

Kosseim and Lapalme's work (1994) focused on determining the content and structure of instruc-

tional texts. Their work emphasized two types of tasks: operator tasks, i.e., procedures on a system

or device to accomplish a goal external to that system/device (e.g., mowing the lawn), and mainte-

nance/repair tasks, i.e., speci�c operations on a system/device (e.g., repairing a tape recorder).

Kosseim and Lapalme's system implements a two-stage process for the planning of instructional

text: a task planning stage, where the task representation6 is constructed, followed by a text planning

stage, where the content and rhetorical structure of the text is selected.

Task knowledge is divided into operations, preconditions, parent-child relations7, and postcon-

ditions. In order to map the task knowledge to the appropriate rhetorical structure, Kosseim and

Lapalme introduced an intermediate semantic level. This level classi�es task knowledge into se-

mantic carriers8 according to functional criteria (the mandatory/optional nature of operations, the

execution time, the in
uence of an operation on the interpretation of the procedure, etc.). Semantic

carriers help determine what task knowledge is introduced in the text and what rhetorical relation

should be used. At the linguistic realisation level, the actual grammatical form and position of

the rhetorical relations are selected on the basis of the results of Vander Linden (1993) adapted to

French.

A corpus analysis of a wide range of operator and repair/maintenance texts was performed. This

analysis determined:

� What semantic carriers are found in the texts, where they can be found in the task represen-

tation, and when they are included in the texts (in terms of parent-child relations between

nodes in the task representation).

� What rhetorical relations are used to present the semantic carriers and when one is preferred

over another.

Kosseim and Lapalme pointed out that although there are di�erent ways of representing the task

and interpreting the generated text, it is important only that the reader interprets the prescribed

task correctly, and that the text seems \natural". They used the notion of basic-level operations

introduced by Rosch (1978) and Pollack (1986) for their task knowledge, on the premise that people

seem to remember and mentally represent these operations most easily. They remarked that these

6This is a plan of the procedure, and includes a reader model and a domain knowledge base.
7For example, in the sentence

Screw the screw-cap on the lampshade holder so that you do not lose it.

which is an expression of the purpose rhetorical relation, the action is regarded as the child, and the purpose is viewed
as the parent.

8Semantic carriers represent patterns of information. These include, for example, sequential operation (which can
be expressed by the precondition or action sequence rhetorical relation), and causality (which can be expressed by
the purpose or result rhetorical relation).

14

operations turn out to be detailed enough to be descriptive, but general enough to be useful. They

also observed that basic-level operations are a rather subjective notion and depend heavily on factors

such as the communicative goal, the discourse domain, etc. For their example domain of operating

a VCR, their basic-level operations are: set any speed, select any channel, and press any button.

The notion of these basic-level operations is useful for helping us decide the granularity of the actions

that we need to represent in models of the device and environment.

Kosseim and Lapalme do not pay any attention to the modelling of the system/device, nor do

they consider what knowledge is required for the generation of warning instructions, two problems

which the current study addresses.

2.5 Conclusion

We take the stand that a complete natural language instruction generation system for a device

should have, at the top level, knowledge of the device (as suggested by Delin et al. (1993)). This

is one facet of instruction generation that the NLG systems described above (except Kosseim and

Lapalme's) have largely ignored by incorporating the knowledge of the task at their top level, i.e.,

the basic content of the instructions is assumed to already exist and does not need to be planned

for. Kosseim and Lapalme's system does include a task planning stage, but the knowledge used for

this planning is too super�cial to be useful in generating warning instructions.

We also believe that an NLG system that generates text of the highest quality should use a corpus-

based approach such as that of Vander Linden and Kosseim and Lapalme, in which the rhetorical

and grammatical structure of the text is determined by features of the communicative environment,

rather than an approach such as that of Moore and Paris, in which the rhetorical structure is

determined by planning to achieve a communicative goal. For this reason, we wish our NLG system

to perform task planning only, and leave the mapping of the features of the instructional register

to the rhetorical and grammatical structure of the instructions (and other aspects of instructions,

some of which are discussed in section 4.6) for future work.

15

Chapter 3

The knowledge base

In this chapter, we shall examine some sample instructions and try to determine what kind of

knowledge should be stored about the artifact and the world, in order to provide enough information

for instructions to be generated.

Throughout the rest of this thesis, we shall use the term device{environment system to refer to

the device, the user, and any objects or materials used by the device1.

3.1 Some example instructions and their analyses

In this section, we present several examples of instructions (taken from (Black & Decker, 1994)),

and analyse them to determine what types of knowledge are necessary to understand the situations

described by the sentences. Warning instructions have been chosen for these examples, because they

serve well to illustrate the kinds of knowledge required for instructions in general.

First, we provide some background to the breadmaker device{environment system. In order to

end up with a loaf of bread, the user should �rst open the lid of the main body and remove the

baking pan from the interior. The kneading blade should be attached to the baking pan. Then

the ingredients|the water,
our, and yeast|should be poured, in that order, into the baking pan.

The baking pan should then be inserted into the main body, and the ON button pressed. During

the baking process steam will be produced in the main body as water evaporates from the baking

pan, and the steam will escape through the steam vent. When the breadmaker has completed the

baking cycle, the baking pan should be removed from the main body, and the bread removed from

the baking pan.

Next, we present the example instructions followed by their analyses:

1. Do not clog or close the steam vent under any circumstances.

1Instances of the last in the context of the breadmaker example include the ingredients of the bread.

16

2. Be careful not to get burned by hot air coming from the machine.

3. Be careful not to mix the yeast with any of the wet ingredients (i.e., water, fresh milk),

otherwise, the bread may not rise properly.

4. The main body can get very hot during the baking process.

5. Avoid opening the lid during operation as warm air, which is important for proper rising, will

escape.

6. The lid should never be opened during the last hour of operation as this is the baking period.

3.1.1 Analysis of examples 1 and 2

In order to be able to reason about the situation relevant to instructions 1 and 2, the following has

to be known:

Steam travels through the steam vent under certain circumstances. It may be necessary

to have a fact in world knowledge stating that in a sealed container that has a steam vent, any steam

that is produced will attempt to escape through the steam vent.

Also, it has to be known that the circumstances under which steam is produced can actually

occur during use of the appliance. This implies that there has to be some kind of process description

of the way in which a certain task is carried out by the device{environment system, together with

corresponding information about states that the various components of the system go through.

The steam vent is the only place through which steam can escape. This implies that the

knowledge base must contain knowledge about the way components of the appliance are connected

to each other, that is, the relative spatial locations of each component. In this case, the steam vent

is \connected" both to the inside of the container of the steam, and the outside of the device.

If the steam vent is closed then steam cannot escape through it. It must be known

that the steam vent is an opening to the exterior of the device, and that any such opening could

conceivably become blocked. A system should be able to infer the latter if it is ultimately able to

produce sentence 1.

Something \bad" can happen if steam is not allowed to escape via the steam vent. The

user may become burned, or the appliance may cease to function properly. The possible

temperature of steam must be known, and/or the actual means by which the device could become

damaged must be able to be inferred.

17

3.1.2 Analysis of example 3

For instruction 3, the following must be known:

The user must pour the ingredients into the baking pan at a speci�c point in the task.

This point would be de�ned in the process description for making bread.

When one ingredient is poured on top of another, those two ingredients become in

contact with one another. This fact could be part of world knowledge.

Yeast is involved in the rising of the bread (dough). This is an example of knowledge about

an object or material that is used by the device.

The activity of yeast may be reduced if it gets wet. The knowledge base could also contain

a world knowledge fact that causing a wet ingredient to come into contact with a dry ingredient

causes the dry ingredient to become wet also.

3.1.3 Analysis of example 4

For instruction 4, the following has to be known:

The baking process causes the breadmaker to become very hot inside, and the heat

can cause the exterior of the breadmaker to also become very hot. Inferring this requires

knowing that during the baking process, a particular component of the breadmaker reaches a certain

temperature, and heat can be transferred by conduction to the exterior. This temperature may be

high enough to burn the user if he/she touches the appliance.

3.1.4 Analysis of examples 5 and 6

For sentences 5 and 6, the following must be known:

The breadmaker holds warm air. This air will escape when the lid is open. This requires

knowing how the air becomes warm, the general fact that warm2 air rises, and physical knowledge

of where the lid is connected in the appliance.

During operation, this warm air is important for the bread to rise properly. If the

bread does not rise properly then the �nal product will be spoiled. This would probably

2The adjective warm in this case is used to describe the temperature of something relative to the outside air
temperature.

18

be stored in the world knowledge component. It intuitively seems unnecessary to contemplate

reasoning about the transformation of the dough into bread at the level of molecular changes.

3.2 What types of knowledge are required

The observations made in the previous section motivate our proposal that a full knowledge base

should have these components:

Topological knowledge of the device This is knowledge about the relative spatial locations of

each component. Some examples of topological knowledge are:

� handle_1 is attached to surface_1

� switch_1 is located at position x

� the baking_pan has to be at a proper orientation before it can click into position in the

main_body

Kinematic knowledge of the device This is knowledge about how the moving parts of the de-

vice move in relation to the other components. For example:

� the washing_machine_spindle rotates at angular velocity v and has its axis located at

position x

� the bread_slice_holder moves in a line together with the start_lever

Electrical knowledge of the device This should be a representation of the electrical circuitry of

the device, possibly describing voltages, currents, and resistances. This will be linked with the

topological knowledge to some extent, in that switches, resistors, etc., are all physical entities

that are common to both knowledge base components. Examples of electrical knowledge are:

� switch_1 has a resistance of 50

� the mains_power_supply delivers a voltage of 120 V across the main_circuit

Thermodynamic knowledge of the device This should allow the speci�cation of the materials

comprising each component and physical connection. Coupled with the electrical knowledge,

the thermodynamic knowledge should permit the temperatures reached by each component

to be determined, as well as the rate of increase of the temperatures. For example, we could

determine that:

� the heating_element is made of tungsten

� the main_body has a temperature of T �C at state S of the system. T �C is hot enough

to burn the user upon contact

19

Electronic knowledge of the device This component of the knowledge base would only exist if

the device has electronic parts. It would describe the inputs and outputs of the electronic

parts, possibly in the form of a computer program.

World knowledge This is general knowledge that could be used in a variety of domains, and

includes facts such as the following:

� tungsten has a speci�c heat capacity of t J K�1 kg�1

� if a dry material comes into contact with water, then the dry material becomes wet

� yeast must remain dry to be fully active

� a switch can be turned on by the user performing the push action on the switch

20

Chapter 4

A situation calculus approach to

instruction generation

This chapter describes one way of representing the kinds of knowledge discussed in chapter 3, and

discusses how natural language instructions can be derived from this representation.

4.1 Overview of the situation calculus

The situation calculus (following the presentation in (Reiter, 1991)) is a �rst-order language that is

designed to model dynamically changing worlds. It is based on the notion of changing situations,

where the changes are the results of a single agent performing actions. It is assumed that the only

way in which the world can change from one state to another is by the agent performing an action.

The initial state is denoted by the constant S0, and the result of performing an action a in situation

s is represented by the term do(a; s). Certain properties of the world may change depending upon

the situation. These are called
uents, and they are denoted by predicate symbols which take a

situation term as the last argument.

An action precondition axiom characterizes the conditions, denoted by ��(~x; s), under which

action �(~x) can be performed.

Action precondition axiom

Poss(�(~x); s) � ��(~x; s) (4.1)

For every
uent F , a positive e�ect axiom describes the conditions, denoted by
+
F
(~x; a; s), under

which performing action a in situation s causes F to become true in the successor state do(a; s).

General positive e�ect axiom for
uent F

Poss(a; s) ^
+
F
(~x; a; s)! F (~x; do(a; s)) (4.2)

21

Similarly, a negative e�ect axiom describes the conditions, denoted by
�
F
(~x; a; s), under which

performing action a in situation s causes F to become false in the new state.

General negative e�ect axiom for
uent F

Poss(a; s) ^
�
F
(~x; a; s)! :F (~x; do(a; s)) (4.3)

The axioms presented in this chapter have the form of (4.1), (4.2), and (4.3).

Usually, frame axioms are also needed to specify when
uents remain unchanged. The frame

problem arises because the number of frame axioms is generally of the order of 2�A�F , where A

is the number of actions and F the number of
uents.

The solution to the frame problem (Reiter, 1991) rests on a completeness assumption: that the

positive e�ect axioms describe all the ways in which
uents can become true, and the negative e�ect

axioms describe all the ways in which
uents can become false. If the completeness assumption

holds, a set of successor state axioms can be derived (Reiter, 1991).

Successor state axiom

Poss(a; s)! [F (~x; do(a; s)) �
+
F
(~x; a; s)_ (F (~x; s) ^ :
�

F
(~x; a; s))] (4.4)

Our current implementation uses action precondition axioms and successor state axioms to describe

the domain.

4.2 Determination of the actions to be represented

We can conceptually divide the actions that are performed in the device{environment system into

reader actions and non-reader actions1. The former are actions which can be performed by the reader

of the instructions (i.e., the user of the device), whilst the latter are actions that are carried out

either by the device on its components and the materials it uses, or by some other agent. However,

for simplicity, and because the majority of non-reader actions are actions performed by the device,

we shall only consider device actions henceforth.

It is necessary for us to make this distinction, because natural language instructions are directed

to the user of a device, and they usually describe mainly the actions that are executed by the user. A

device action may be carried out by a component of the device on another component; for example,

the heating element of a toaster may carry out a heating action on the bread slot, which in turn

may heat the inserted bread slice. However, we shall not di�erentiate between actions performed by

di�erent components of the system; all that need be known is that these actions are performed by

the device and not by the user.

1Vander Linden (1993) also makes a distinction between reader actions and non-reader actions.

22

Components

ON lever
time control lever
bread slot

Materials

bread slice

Table 4.1: Components and materials of the toaster system

4.2.1 Ontology of high-level device actions

Device actions are the result of physical processes going on in the device{environment system. The

device can be thought of as performing the following high-level actions, amongst others2, on the

components and/or materials of the system:

� changing the temperature of things

{ heating things

{ cooling things

� moving things

{ rotating things

{ oscillating things

{ moving things in a line/curve

This classi�cation should be similar to that employed by the corresponding modules of the device

design model, so that the relevant axioms (see sections 4.3.2 and 4.7.2) are more easily derived.

Reasoning about the equations used to describe these physical processes is rather complicated

(Sandewall, 1989; Levesque and Reiter, 1995), so instead of using equations, we shall be using these

device actions to discretely model the continuous processes.

4.3 A description of the toaster system

Table 4.1 shows the components of the toaster and the materials used for its operation. Table 4.2

shows the reader actions, device actions, and
uents.

4.3.1 Meanings of the actions and
uents

Informally, the toaster device{environment system works as follows. The agent (reader) can insert

a slice of bread into the bread slot, and remove it from the bread slot. He can also press the ON

lever of the toaster, which \loads" the bread and starts the heating process. The act of inserting the

2Other device actions include those related to electrical charge, but we do not consider those here.

23

Reader actions

insert
remove
press
touch
get burned

Device actions

raise temp
pop up

Fluents

pressed
contains
removed3

temperature
touching
burned
toasted
exposed

Table 4.2: Reader actions, device actions, and
uents used in the toaster example

bread slice into the bread slot causes the bread slot to contain the bread slice. The bread slot ceases

to contain the bread slice when the bread slice is removed. When the toaster pops up the bread,

the bread slot is still said to contain the (toasted) bread slice, although at this point the bread slice

is exposed (to the agent). During the heating process, the toaster raises the temperatures of various

components and materials.

4.3.2 An axiomatization of the toaster system

Action precondition axioms

The following are the action precondition axioms for our toaster example. The domain-independent

axioms are assumed to be transferable unchanged to other domains, whereas the domain-speci�c

axioms relate speci�cally to the appliance.

When free variables appear in formulas, they are assumed to be universally quanti�ed from the

outside.

Domain-independent axioms

Poss(insert(x; y); s) � three d location(y) ^ fits(x; y) ^ exposed(y; s) (4.5)

Poss(remove(x; y); s) � three d location(y) ^ contains(y; x; s) ^ exposed(x; s) (4.6)

Poss(press(x); s) � button(x) _ lever(x) (4.7)

Poss(touch(x); s) � physical object(x) ^ exposed(x; s) (4.8)

3This
uent is used only because the current implementation does not have a representation for :contains. We
will not provide positive or negative e�ect axioms for this
uent, because they are not strictly necessary.

24

Poss(get burned; s) � 9x; t:(touching(x; s)^ temperature(x; t; s) ^ t � 70) (4.9)

Axiom (4.5) states that an action by the agent of inserting x into y is possible in state s if y is a

three d location, i.e., a spatial volume, x �ts into y, and y is exposed. Note that this axiom attempts

to capture only one sense of the meaning of insert.

Axiom (4.6) expresses that an action of removing x from y is possible in state s if y is a

three d location, x is contained in y, and x is exposed, in state s.

Axiom (4.7) asserts that the press action is only possible on buttons or levers. This is clearly an

incomplete formalization if we wish to describe the broad meaning of press (e.g., a surface can also

be pressed), but it is su�cient for our purposes.

Axiom (4.8) states that it is possible for the agent to touch an object if it is exposed. The
uent

exposed is useful for describing the conditions under which harm can occur to the agent, as we shall

see in more detail in section 4.5.

Axiom (4.9) asserts that an action of the agent getting burned is possible if the agent is touching

something with a temperature of at least 70 �C.

The rest of the axioms are straightforward.

Domain-speci�c axioms

Poss(raise temp(x); s) � (x = bread slot _ contains(bread slot; x; s))^

9t:(temperature(x; t; s) ^ t < 200) ^ pressed(on lever; s) (4.10)

Poss(pop up; s) � 9t:(temperature(bread slot; t; s) ^ t � 200) (4.11)

Axiom (4.10) states that an action by the device of raising the temperature of component (or

material) x is possible only if the temperature of x is less than 200 �C4, and the ON lever is pressed.

This axiom currently considers only the bread slot and bread slice to be components and materials

of the toaster system (see section 5.1.2 for a discussion on this).

Axiom (4.11) states that the device can cause the bread slot to pop up its contents if the

temperature of the bread slot reaches 200 �C. This is a temporary simpli�cation of stating that the

popping up action is possible if the temperature of the bread slot remains 200 �C for some period

of time.

For our simple toaster example, it is merely coincidental that the reader actions are all domain-

independent, and the device actions are all domain-speci�c. A more complex device may allow an

action upon it that is peculiar to that device; also, a host of devices may share common actions on

4We make an assumption here that the electrical subsystem constrains the maximum temperature of any
component.

25

their components or materials, such as spinning, etc.

Positive e�ect axioms

Domain-independent axioms

Poss(a; s) ^ a = insert(x; y)! contains(y; x; do(a; s)) (4.12)

Poss(a; s) ^ a = press(x)! pressed(x; do(a; s)) (4.13)

Poss(a; s) ^ a = touch(x)! touching(x; do(a; s)) (4.14)

Poss(a; s) ^ a = get burned! burned(do(a; s)) (4.15)

Axiom (4.12) asserts that inserting x into y in state s results in y containing x in state do(a; s).

Axiom (4.13) states that the action of pressing x in state s, provided it is possible, results in x

becoming pressed in state do(a; s).

Axiom (4.14) states that a touch action (by the agent) on x results in the agent touching x in

the new state.

Axiom (4.15) states that if it is possible for the agent to get burned (by the get burned action),

then the agent may be burned in the new state.

Domain-speci�c axioms

Poss(a; s) ^ a = pop up^ contains(bread slot; x; s)! exposed(x; do(a; s)) (4.16)

Poss(a; s) ^ a = raise temp(x) ^ temperature(x; t; s)!

temperature(x; t+ 50; do(a; s)) (4.17)

Poss(a; s) ^ a = pop up! temperature(x; 20; do(a; s)) (4.18)

Axiom (4.16) expresses that if the device causes x to pop up in state s, then x becomes exposed

in the next state.

Axiom (4.17) states that the raise temp action on component (or material) x causes the temper-

ature of x to increase by 50 �C in the successor state.

As a simpli�cation of the fact that all the components of the toaster system eventually cool down

26

to room temperature after the pop up action, axiom (4.18) states that their temperatures become

equal to room temperature5 instantaneously.

Negative e�ect axioms

Domain-independent axioms

Poss(a; s) ^ a = remove(x; y) ! :contains(y; x; do(a; s)) (4.19)

Domain-speci�c axioms

Poss(a; s) ^ a = pop up! :pressed(on lever; do(a; s)) (4.20)

Poss(a; s) ^ a = press(on lever) ^ contains(bread slot; x)!

:exposed(x; do(a; s)) (4.21)

Axiom (4.20) expresses that the pop up action results in the ON lever no longer being pressed;

this is a mechanical action by the device, and indicates the end of the toasting process.

Axiom (4.21) states that an action of the reader pressing the ON lever causes anything in the

bread slot to become unexposed; this happens because the object in the bread slot gets \pushed

down". As we have already seen, the related positive e�ect axiom (4.16) causes this object to become

exposed once again when the pop up action is performed.

4.4 Deriving instructions from the axioms

As in (Pinto, 1994), we shall abbreviate terms of the form:

do(an; (do(. . . ; do(a1; s) . . .))

as:

do([a1; . . . ; an]; s):

Our aim is to derive a sequence of actions (reader and device) which, when performed, causes

a slice of bread to become toasted. Ideally, this sequence would begin with the act of the reader

inserting a fresh slice of bread into the toaster, and end with the act of the reader removing the

toasted bread from the toaster. A typical sequence of reader actions could be as follows:

1. Adjust time lever for desired degree of toasting.

5Assumed to be a constant at 20 �C.

27

temperature(bread slot; 20; S0)
temperature(bread slice; 20; S0)
exposed(bread slot; 20; S0)
exposed(bread slice; 20; S0)

Figure 4.1: Fluents that hold in the initial state, S0

2. Insert a slice of bread into the bread slot.

3. Press the ON lever.

4. Remove the toast when it pops up.

The device actions are interleaved in some fashion with the reader actions, but many sequences of

instructions do not refer to device actions.

We need to formulate the goals for the planner in order to be able to come up with something

resembling the above sequence. Since the overall goal of the reader in using the toaster is to toast a

slice of bread, it makes sense to describe the goal in terms of the �nal state of the material (bread,

in this case)6. The plan will then describe a sequence of device and reader actions which cause the

transformation of the material from its initial to its desired state. Note that we make a distinction

between the states of individual components and materials of the device{environment system, and

the global state of the whole system.

Let us see what happens if we chose the goal of the system to be to produce a piece of toast. How

do we formulate this goal? First of all, we need
uents to describe the states of all the components

and materials. As a reasonable approximation, we could model the state changes of the bread in

terms of the temperature of the bread. Using temperature(x; t; s) as a
uent describing that object

x has a temperature of t �C in state s, we could simply de�ne toast as a slice of bread that has

reached a temperature of 200 �C:

toasted(bread slice; do(a; s))

temperature(bread slice; t; s) ^ t � 200 _ toasted(bread slice; s) (4.22)

Note that using this de�nition, toasted(bread slice) holds for all states after do(a,s). So, the bread

slice remains toasted even when its temperature falls below 200 �C.

Let S0 denote the initial global state, in which the bread slot and bread slice are both at room

temperature (20 �C), and the bread slot and bread slice are exposed (i.e., the agent can touch them).

Figure 4.1 shows the
uents that hold in this initial state.

6The goals of an agent in using other kitchen appliances can be expressed in terms of the �nal states of the materials
they operate upon: a washing machine delivers clean clothes, a kettle produces hot water, a breadmaker produces
bread, etc.

28

Then, a possible plan to cause this
uent to become true could be this:

do([insert(bread slice; bread slot); press(on lever); raise temp(bread slice);

raise temp(bread slice); raise temp(bread slice); raise temp(bread slice)]; S0) (4.23)

The raise temp action is carried out four times, since each time it raises the temperature of something

by 50 �C. This sequence of actions does cause the slice of bread to become toasted, but it does not

say anything about �nishing o� the process that instructions usually talk about; that is, causing

the slice to pop up and having the reader remove it. This can easily be accomplished by adding an

extra condition to the goal G7:

G = toasted(bread slice) ^ removed(bread slice; bread slot) (4.24)

A possible plan then becomes this:

do([insert(bread slice; bread slot); press(on lever); raise temp(bread slice);

raise temp(bread slice); raise temp(bread slice); raise temp(bread slice);

pop up; remove(bread slice; bread slot)]; S0) (4.25)

The instruction sequence corresponding to this plan could be this:

1. Insert the bread slice into the bread slot.

2. Press the ON lever.

3. When the bread slice pops up, remove it from the bread slot.

Note that this sequence does not include any references to the time control lever: this lever determines

the length of time that the bread slice will be heated for, and we have not included any knowledge

of this in our axiomatization.

Also note that we do not model the perception actions of the reader watching for the bread slice

to pop up. In our simple domain, we have avoided the need for these by assuming that the reader

knows when a salient observable change occurs in the system. In this case, the salient change is the

popping up of the bread slice.

4.5 Deriving warning instructions

Many instructional texts contain warning and safety instructions mingled, or together with, the basic

procedural instructions. In order for us to generate warning instructions we must be able to derive

7Note thatG should consist of
uent expressions which by de�nition must contain a state variable, but this expres-
sion contains terms which lack state variables. We can think of these terms as representing true
uent expressions.
When used for reasoning, the state variables are restored.

29

possible plans, using the available actions and
uents, in which the reader can become harmed. There

are many ways in which this can happen: by burning, electric shock, laceration, crushing, etc. For

each di�erent type of injury, di�erent factors need to be considered. So, for example, when reasoning

about the possibility of an electric shock, the electrical subsystem and related components must be

examined; for the possibility of laceration, sharp objects must be considered. We shall concentrate

on examining the conditions under which burns to the user can occur. For this, we must consider

thermal properties of the objects in the device{environment system. As a crude approximation to

the modelling of thermodynamics in our system, we shall only regard the absolute temperature of

the objects to be signi�cant. These values can be derived from lower-level physical knowledge such

as the topology and heat conductivity of the various components, and knowledge of the electrical

subsystem (see (Sandewall, 1989; Levesque and Reiter, 1995) for suggestions for the modelling of

continuous, physical processes).

We can derive a plan for which the user gets burned by setting the goal G to be this:

G = burned (4.26)

A possible plan would then be this:

do([insert(bread slice; bread slot); press(on lever); raise temp(bread slot);

raise temp(bread slice); raise temp(bread slot);

touch(bread slot); get burned]; S0) (4.27)

It is clear that the penultimate action in this plan is the one which causes the agent to become

burned, as can be seen from axiom (4.14); the previous actions are those that make this touch action

possible. Hence, the appropriate warning instruction should be something like this:

Do not touch the bread slot during the heating period. (4.28)

We now have two problems. Firstly, we need to determine where this caution should be placed

in the instruction sequence. Secondly, we need to be able to refer to a sequence of similar actions

by a generic name; in this case, the two raise temp actions are collectively called the heating period.

4.5.1 Determining the placement of warning instructions

For this problem, a solution would be to add the
uent burned to the goal, so that:

G = toasted(bread slice) ^ removed(bread slice; bread slot) ^ burned (4.29)

Planning would continue as normal, with the get burned action being included in the plan. At the

point in the sentence plan where the get burned action is encountered, a negative imperative caution,

such as sentence (4.28), will be generated. The goal of the agent being burned should not be thought

30

of as having been achieved: the get burned action merely denotes a point where the potential for

injury exists.

Following this approach, one possible plan which includes the get burned action is this:

do([insert(bread slice; bread slot); press(on lever); raise temp(bread slot);

raise temp(bread slice); raise temp(bread slot);

touch(bread slot); get burned; raise temp(bread slice);

raise temp(bread slot); raise temp(bread slice);

raise temp(bread slot); raise temp(bread slice);

pop up; remove(bread slice; bread slot)]; S0) (4.30)

We can imagine processes in which there are many possible situations where the user can get

hurt. Since the potential for being burned may exist in more than one situation, once the get burned

action is planned for, the goal burned should not be discarded: following Hovy (1988), we consider

that such a goal needs to be planned for in-line. In this approach, the planner completes its task

by planning in-line, during realization. For our purposes, this means that after the basic plan is

obtained, the plan is examined for places in which the touch and get burned actions (together)

could be inserted, i.e., places where the get burned action can be planned for using only reader

actions. This simply requires checking all the places in the plan where these actions' preconditions

are satis�ed.

This technique does pose a problem, however. If the planner were allowed to insert touch and

get burned actions wherever possible, the resulting plan could be something like this:

do([[insert(bread slice; bread slot)]; [press(on lever)];

[raise temp(bread slot)]; [raise temp(bread slice)];

[raise temp(bread slot); touch(bread slot); get burned];

[raise temp(bread slice); touch(bread slot); get burned];

[raise temp(bread slot); touch(bread slot); get burned];

...

[pop up]; [remove(bread slice; bread slot)]]; S0) (4.31)

In this plan, extra square brackets have been added to illustrate the grouping of actions which results

after in-line planning has been performed.

This problem can be solved by �rst �nding a solution to the other problem of generating sen-

tence (4.28), that of being able to refer to a set of similar actions collectively. Then, we could simply

constrain the planner to attempt to plan for one injury (for each injury type) per collection.

31

Notice that we have made some important simpli�cations here. Realistically, the sequence of

actions leading to one particular type of injury in a time period may not be unique. There may be

many ways of achieving the injury; indeed, given a more complex model of reader interactions with

the device{environment system, there may be in�nitely many such sequences. An implementation

taking this into account should therefore place a bound on the length of the injury sequences planned

for, and it should incorporate heuristics indicating which sequences are too unlikely to warrant

consideration. For example, an injury sequence of, say, four or �ve reader actions might be ignored

because it is highly unlikely that the reader would carry out such a sequence.

Also, the actions in each injury sequence need not necessarily all be reader actions. For our

simple approach, this requirement is justi�able because there is only one possible action|the touch

action|that can cause an injury. If device actions were allowed, then the planner could insert

several of the following actions of the basic plan, as well as the extra actions leading to the injury,

into many points of the basic plan, as in the following:

do([[insert(bread slice; bread slot)]; [press(on lever);

raise temp(bread slot); raise temp(bread slice);

raise temp(bread slot); touch(bread slot); get burned];

...

[pop up]; [remove(bread slice; bread slot)]]; S0) (4.32)

The injury sequence in this plan is clearly undesirable, because it includes several actions of the

basic plan. Therefore, some technique would have to be implemented that disallows more than one

normal action of the basic plan to be included in the injury sub-plan. One such technique would be

for the planner, when performing in-line planning, to not consider sub-plans where the next action

is identical to the next action in the basic plan.

4.5.2 Collecting similar actions together

Hovy (1988) gives an example of a straightforward text generated by his PAULINE system:

First, Jim bumped Mike once, hurting him. Then Mike hit Jim, hurting him. Then

Jim hit Mike once, knocking him down. Then Mike hit Jim several times, knocking him

down. Then Jim slapped Mike several times, hurting him. Then Mike stabbed Jim. As

a result, Jim died.

By grouping together similar enough topics, and then generating the groupings instead of the indi-

vidual actions, we can formulate less tedious variants of the text. For this example, using the force

of the actions as the similarily criterion, PAULINE can produce the following variants:

32

1. Jim died in a �ght with Mike.

2. After Jim bumped Mike once, they fought, and eventually Mike killed Jim.

3. After Jim bumped Mike once, they fought, and eventually he was knocked to the ground by

Mike. He slapped Mike a few times. Then Mike stabbed Jim and Jim died.

In variant (1), all actions were grouped together; in variant (2), all actions more violent than bumping

but less violent than killing were accepted; and in variant (3), the grouping resulted from de�ning

four levels of violence: bumping, hitting and slapping, knocking to the ground, and killing.

Hovy asserts that this technique of grouping together actions by levels of force is very speci�c

and not very useful. He gives examples of generator-directed inference, such as recognizing that in

a political nomination race one candidate beats another candidate, because both voting outcomes

relate to one election and the winning candidate has a higher number of votes than the losing one.

This is termed an interpretation, because a new concept beat is formed by interpreting the input as

an instance of beat.

In section 4.2.1 we explained our rationale for attempting to approximate continuous physical

processes by the use of discrete states and device actions. For our toaster example, the continuous

process of a slice of bread being heated was represented by a series of raise temp actions by the

toaster. Thus, a process which might be described using just one equation is represented by a series

of contiguous, repeated actions. The continuous process might be assigned a name, such as \the

heating period" or \the kneading stage", so we want to be able to refer to the corresponding series

of actions by such names, i.e., we want to refer to the interpretations rather than the details.

Note that the action plan may contain interleaved device actions as a result of the approximation

of a continuous process involving more than one component or material: the heating of a slice of

bread involves raising the temperature of the bread itself, the bread slot, and the heating element.

In reality these temperatures rise in tandem with one another (though these temperatures won't

be equal), but the planner will interleave the actions. Since all these heating actions are closely

related to one another, we need some provision for establishing that they together constitute an

overall heating period. A simpli�ed way of determining this is to simply recognize that these actions

are grouped together in the plan. A more complicated approach would be to also consider the

spatial and thermodynamic relationships between the components a�ected by these actions: we can

imagine a situation in which a large system has two \distant" components which just happen to be

getting heated concurrently, but we cannot refer to the heating periods using a common term such

as \heating period". We shall adopt the former, simple, approach.8

8Observe that if we used a continuous, rather than discrete, approach such as that of Levesque and Reiter (1995),
then the need to group actions like this would be avoided.

33

The inferred concepts referred to by instructional texts are generally very simple. For the toaster,

the only interpretation that needs to be made is that the sequence of raise temp actions forms a

period which we might call \the heating period". One question which immediately arises is, how

many times does an action have to be repeated to merit a label being ascribed to the sequence? The

answer depends on several factors. A label will need to be assigned if:

1. The process represented by the sequence of actions is referred to anywhere in the generated

text. For simplicity and
exibility, we shall assume that a label always needs to be inferred.

2. The granularity of the actions is large, or the number of repetitions is high and the granularity

is su�cient (indicating that the continuous process was taking place over a signi�cant length

of time). The granularity of the actions will have been determined during the derivation of

the axioms.

We shall need a place to store the results of the interpretations, so that the �nal stage, the

instruction realization stage, can use them. Since an inferred label may span several actions, it is

useful to index the actions in non-descending order, such that all those actions belonging to one

collection have the same index. This method allows our system to easily inspect whether an action

takes place during the period represented by a label. The labels, together with their corresponding

indices, will simply be stored in a separate list.

After all the possible sequences leading to an injury have been planned for (giving us se-

quence (4.31)), the interpretations have been performed, and the super
uous injury sequences sub-

sequently removed, the �nal sequence of indexed actions is the following:

do([insert(bread slice; bread slot)(1); press(on lever)(2); raise temp(bread slot)(3);

raise temp(bread slice)(3); raise temp(bread slot)(3);

touch(bread slot)(3); get burned(3); raise temp(bread slice)(3);

raise temp(bread slot)(3); raise temp(bread slice)(3);

raise temp(bread slot)(3); raise temp(bread slice)(3);

pop up(4); remove(bread slice; bread slot)(5)]; S0) (4.33)

and the label list just contains the information that index (3) refers to the heating period:

[(3; heating period)] (4.34)

There are also situations in which interpretations should be performed that do not involve con-

tinuous physical processes. Consider the following subsequence of instructions, taken from the

breadmaker domain (see section 4.7):

1. Pour the water into the baking pan.

34

2. Pour the
our into the baking pan.

3. Pour the yeast into the baking pan.

If the order of these actions were not important, then this subsequence could be replaced by the

following single instruction:

Pour the ingredients into the baking pan. (4.35)

However, deciding the relative importance of reader actions is beyond the scope of this work, so in

our system this particular type of interpretation will not be performed.

4.6 Generating the instructions

We shall use the Penman system (see section 2.2) to generate the instructions. Penman's inputs are

primarily organized around processes, which include actions, events, states, relations, etc.

An action, event, or state contains some number of entities that participate in the actualization

of that action, event, or state. The manner of these entities' participation is identi�ed in terms of

given role names.

In order to make Penman generate a sentence, the process that the sentence is based upon must

be speci�ed. We shall be using SPL (Sentence Plan Language) in order to specify the actions,

together with the roles of the actions and their �llers.

4.6.1 Determining the role �llers

Each argument position of an action is designated exactly one role, the �ller of that position being

the �ller for that role. The agent of the action is determined by whether that action is a reader

action or a device action. So, for example, the action insert(bread slice; bread slot) describes an

insert action with the agent as the ACTOR, the bread slice as the ACTEE, and the bread slot as

the DESTINATION. Table 4.3 lists the possible actions in our system, together with the roles and

arguments associated with their arguments.

The information gathered by the interpretation stage, as described in section 4.5.2, gives us the

EXHAUSTIVE-DURATION role9 of the actions which take place during that period.

Table 4.4 shows the basic roles and �llers of actions that are typically assumed by instructional

texts.

For the touch action the polarity role is assigned a �ller of \negative" when it is part of a sequence

ending in an injury to the user. This is because the touch action should not be performed by the

agent under the circumstances; this �ller overrides the default �ller of \positive". Note that, as

9This, in Penman terminology, means the time period during which an action, event, or process occurs.

35

Action Role Filler

insert(x; y) ACTOR reader
ACTEE x

DESTINATION y

remove(x; y) ACTOR reader
ACTEE x

SOURCE y

press(x) ACTOR reader
ACTEE x

touch(x) ACTOR reader
ACTEE x

get burned ACTOR reader
raise temp(x) ACTOR device

ACTEE x

pop up ACTOR device

Table 4.3: Roles of actions

Role Filler
TENSE present
SPEECHACT imperative
POLARITY positive

Table 4.4: Default roles of actions in non-warning instructions

we discussed in section 4.5.1, the touch action is used for planning injury sequences. In our simple

model, this action can occur only in injury sub-plans, so we can automatically assume that it should

generate a warning instruction. However, in a more complex model, reader actions may occur in the

basic plan, and in this case, any reader actions that should generate warnings should be specially

tagged in the plan representation.

Vander Linden (1993) focuses on determining the features that contribute to variation in natural

language instructions; this is beyond the scope of the current work.

4.6.2 Mechanisms for determining some other role �llers

The mechanism described in section 4.5.2 for grouping together similar actions allows us to determine

only the EXHAUSTIVE-DURATION role of the actions that took place during that period.

Sometimes we would like the system to infer the �llers of other roles for a particular action.

For example, sometimes we will want the system to generate an explanation instruction (see sec-

tion 2.3.1), in other words, an instruction containing both amatrix and a purpose clause (Di Eugenio,

1992). An instance of this would be the following warning instruction:

Do not touch the bread slot during the heating period to avoid getting burned. (4.36)

In our representation, determining the range of the rhetorical relation RST-PURPOSE (i.e., the

purpose clause) simply amounts to following the chain of actions in the plan, beginning with the

touch action, to the next injury action. Nevertheless, determining the conditions under which a

36

purpose clause should be generated is beyond the scope of this work (but see (Vander Linden,

1993)), so we shall not consider this issue further. By default, our system will only generate matrix

clauses and will omit purpose clauses.

4.6.3 Deciding which actions to mention

As we have noted previously (see section 4.2), instruction sequences describe mainly actions that

are carried out by the user of the device. So, we may assume that our system should generate

instructions corresponding to these reader actions. However, there are situations in which it is

appropriate to mention device actions. Consider, for example, the following sentences:

1. The bread slice will pop up.

2. Remove it from the bread slot.

Intuitively, the popping up action is mentioned because the bread slice had been contained in the

bread slot for some period of time during which it was concealed from the agent, or \unexposed".

Since the popping up action was the main event which indicated the completion of the toasting

process to the agent (because this action caused the bread slice to suddenly become exposed again),

we deem this device action important enough to mention. Hence, we can state this intuition more

generally by saying that if there is a signi�cant period of time during which the agent is not involved

in the process, when the agent should eventually perform an action, then the last conspicuous device

action during that period should be mentioned. In our representation formalism, this can be stated

thus:

� If the interpretation stage inferred a collection of device actions, this collection is followed by

reader action Areader, and the last device action Adevice caused a change of state of a salient

exposed component or material10, then construct SPL speci�cations for both actions Adevice

and Areader .

We do not propose a principled approach for selecting which actions should be mentioned because

there are many factors that contribute towards these decisions; an accurate assessment of these

factors could be made by a study essentially similar to that of Vander Linden's (1993). Instead

of attempting to characterize these features, we shall just simply abstract them in the form of the

pattern presented above.

Note also that not every reader action will be mentioned in the instructions. Consider the

following subsequence of instructions:

1. The \complete" light will
ash when bread is done.

10For our toaster example, the bread slice, the principlematerial operated upon, is the one that should be considered.

37

Components

ON button
main body
main body interior
baking pan
baking pan interior
kneading blade
lid
steam vent
\complete" light

Materials

water

our
yeast
bread

Table 4.5: Components and materials of the breadmaker system

2. Remove baking pan from unit.

In between these two actions, the user of the device must open the lid. This is considered too \ob-

vious" to mention, possibly because something similar was mentioned elsewhere in the instructions.

For simplicity, our system mentions every reader action.

4.6.4 A sample generated instruction sequence

After the role �llers of the actions (as in sequence (4.33)) have been determined using the types of the

actions and their arguments, the consequent SPL speci�cation would result in Penman generating

the following natural language instruction sequence (see appendix B for the complete output of the

system):

Insert the bread slice into the toaster's bread slot.

Press the ON lever.

Do not touch the toaster's bread slot during the heating period.

The bread slice will pop up.

Take the bread slice out of the toaster's bread slot.

4.7 Another example: the breadmaker system

Table 4.5 shows the components of the breadmaker and the materials used for its operation. Table 4.6

shows the reader actions, device actions, and
uents used in our breadmaker example.

4.7.1 Meanings of the actions and
uents

Informally, the breadmaker device{environment system works as follows. In order to end up with a

loaf of bread, the user should �rst open the lid of the main body and remove the baking pan from

the interior. The kneading blade should be attached to the baking pan. Then the ingredients|the

water,
our, and yeast|should be poured, in that order, into the baking pan. The baking pan should

then be inserted into the main body, and the ON button pressed. During the baking process the

main body will become \steami�ed", i.e., steam will be produced there, and the steam will escape

38

Reader actions

insert
attach
pour
remove
press
open
close
touch
get burned

Device actions

raise temp
steamify

ash

Fluents

pressed
contains
attached
removed
opened

ashing
temperature
touching
burned
exposed

Table 4.6: Reader actions, device actions, and
uents used in the breadmaker example

through the steam vent. When the breadmaker has completed the baking cycle, the \complete" light

will
ash. The baking pan should then be removed from the main body, and the bread removed

from the baking pan. During the heating process, the breadmaker raises the temperatures of various

components and materials.

4.7.2 An axiomatization of the breadmaker system

Action precondition axioms

Domain-independent axioms

Poss(insert(x; y); s) � three d location(y) ^ fits(x; y) ^ exposed(y; s) (4.37)

Poss(attach(x; y); s) � physical object(x) ^ physical object(y)^

fits(x; y) ^ exposed(y; s) (4.38)

PossG(pour(x; y); s) � raw material(x) ^ three d location(y) ^ exposed(y; s) (4.39)

Poss(remove(x; y); s) � contains(y; x; s) ^ exposed(x; s) (4.40)

Poss(press(x); s) � button(x) _ lever(x) (4.41)

Poss(open(x); s) � openable(x) (4.42)

Poss(close(x); s) � openable(x) (4.43)

39

Poss(touch(x); s) � physical object(x) ^ exposed(x; s) (4.44)

Poss(get burned; s) � 9x; t:(touching(x; s)^ temperature(x; t; s) ^ t � 70) (4.45)

Poss(steamify(x); s) � 9t:(temperature(x; t; s) ^ t � 100) ^ contains(x;water; s) (4.46)

For this domain, it is useful for us to de�ne axiom (4.39) as a generic action precondition axiom|

denoted by PossG11| because the order in which the ingredients are poured into the baking pan is

important, and the kneading blade should be attached to the baking pan before any ingredients are

poured on. The speci�c action precondition axioms for pouring each ingredient are listed below.12

Axioms (4.42) and (4.43) state that an open or close action on x is possible if x is openable. For

the modelling of the domain, deciding whether or not something is openable may be uncertain. For

example, an empty box may or may not be openable depending on its structure; however, a lid by

its very nature is openable, whereas a sheet of paper is not.

Axiom (4.46) expresses that steam is produced in x if x contains water, and the temperature of

x is at least 100 �C.

Domain-speci�c axioms

Poss(pour(water; baking pan interior); s) � PossG(pour(water; baking pan interior); s)^

attached(kneading blade; baking pan; s) (4.47)

Poss(pour(flour; baking pan interior); s) � PossG(pour(flour; baking pan interior); s)^

contains(baking pan;water; s) (4.48)

Poss(pour(yeast; baking pan interior); s) � PossG(pour(yeast; baking pan interior); s)^

contains(baking pan; flour; s) (4.49)

Poss(raise temp(x); s) � (x = main body _ x = baking pan_

vents(x;main body) ^ contains(main body; steam; s)) ^

9t:(temperature(x; t; s) ^ t < 200) ^ pressed(on button; s) (4.50)

11PossG is de�ned in the same way as Poss (see axiom (4.1)).
12A specialized action is one whose arguments are constant symbols rather than variables.

40

Poss(flash(x); s) � x = complete light^

9t:(temperature(baking pan; t; s)^ t � 200) (4.51)

Axiom (4.47) states that the speci�c action of pouring water into the baking pan is possible if

the generic action is possible, and the kneading blade is attached to the baking pan.

Axiom (4.48) expresses that the speci�c action of pouring
our into the baking pan is possible if

the generic action is possible, and the baking pan already contains water.

Thus, axioms (4.47), (4.48), and (4.49) encode the knowledge that the kneading blade must be

attached to the baking pan before the water,
our, and yeast are poured (in that order) into the

baking pan.

Axiom (4.50) asserts that the raise temp action can be performed on the main body, the baking

pan, and the steam vent provided that steam is present inside the main body, that their temperatures

are below 200 �C and that the ON button is pressed. Raising the temperature of the steam vent

models part of what happens when steam is escaping from the steam vent|the steam is actually

causing much of the temperature change to occur. It need not concern us here that we have not

included the possibilities of the raise temp action being performed on any other components.

Axiom (4.51) expresses that the \complete" light of the breadmaker
ashes when the temperature

of the baking pan reaches 200 �C: this indicates the end of the baking process, and is, of course, a

gross oversimpli�cation.

Positive e�ect axioms

Domain-independent axioms

Poss(a; s) ^ a = attach(x; y)! attached(x; y; do(a; s)) (4.52)

Poss(a; s) ^ a = open(x)! opened(x; do(a; s)) (4.53)

Poss(a; s) ^ a = press(x)! pressed(x; do(a; s)) (4.54)

Poss(a; s) ^ a = touch(x)! touching(x; do(a; s)) (4.55)

Poss(a; s) ^ a = get burned! burned(do(a; s)) (4.56)

41

Domain-speci�c axioms

Poss(a; s) ^ (a = insert(x; y) _ a = pour(x; y)_

a = steamify(y) ^ x = steam _

a = flash(complete light) ^ x = bread ^ y = baking pan interior) !

contains(y; x; do(a; s)) (4.57)

Poss(a; s) ^ a = open(lid) ^ contains(main body; x; s)! exposed(x; do(a; s)) (4.58)

Poss(a; s) ^ a = raise temp(x) ^ temperature(x; t; s)!

temperature(x; t+ 50; do(a; s)) (4.59)

Poss(a; s) ^ a = flash(complete light) ! temperature(x; 20; do(a; s)) (4.60)

Poss(a; s) ^ a = steamify(y) ^ x = steam ! temperature(x; 100; do(a; s)) (4.61)

Axiom (4.57) expresses that y contains x if x is inserted or poured into y; it also expresses that

y contains steam if y gets \steami�ed", and that the interior of the baking pan contains bread once

the baking cycle is complete (indicated by the \complete" light
ashing).

We point out here the important di�erence between the modelling of the materials in the toaster

and breadmaker domains. For the toaster domain, we had a single material|the bread slice|for

which we used the
uent toasted to describe its �nal desired stated (see axiom 4.22); however, the

bread slice remained a bread slice, and no new object (i.e., toast) was introduced. The breadmaker

domain is considerably more complex, however. There are initially three raw materials in the baking

pan|
our, water, and yeast|and at the end of the baking process, the object bread is \created",

and is contained in the baking pan (as described by axiom (4.57). Thus, the state changes of the

materials are modelled to some extent. This approach is necessary for the breadmaker domain, but

it also provides a simple means by which a di�erent linguistic expression can be used to refer to the

�nal product. If the state changes of the materials were similarly modelled in the toaster domain, we

would have easily been able to refer to the �nal product as the slice of toast , which is preferable to the

bread slice.13 Note that for a more complex description of the breadmaker domain, an intermediate

13To make this change, axiom (4.12) should be modi�ed as follows:

Poss(a; s) ^ (a = insert(x; y)_

a = raise temp(bread slice) ^ temperature(bread slice; 220; do(a; s)) ^

42

state of the materials|dough|may need to be modelled, because dough may be the �nal product

of the device for some of its program settings. Also note that according to axiom (4.57), the baking

pan still contains water,
our, and yeast at the end of the baking process. This is not important

here, but we observe that a decision may sometimes have to be made as to whether the creation of

a composite material should result in the \destruction" of its constituent materials.

Axiom (4.58) states that whatever is contained in the main body becomes exposed when the lid

is opened.

Axiom (4.60) asserts that the temperatures of all the components and materials of the breadmaker

system become 20 �C when the bread is �nished. Axiom (4.61) states that the temperature of the

steam, when it is initially produced, is 100 �C.

Negative e�ect axioms

Domain-independent axioms

Poss(a; s) ^ a = remove(x; y) ! :contains(y; x; do(a; s)) (4.63)

Poss(a; s) ^ a = remove(x; y) ! :attached(x; y; do(a; s)) (4.64)

Poss(a; s) ^ a = close(x)! :opened(x; do(a; s)) (4.65)

Domain-speci�c axioms

Poss(a; s) ^ a = flash(complete light) ! :pressed(on button; do(a; s)) (4.66)

Poss(a; s) ^ a = close(lid) ^ contains(main body; x)! :exposed(x; do(a; s)) (4.67)

Axiom (4.66) asserts that the ON button ceases to be pressed at the end of baking.

Axiom (4.67) states that whatever is contained in the main body of the breadmaker is not exposed

any more after the lid is closed.

x = toast^ y = bread slot)!

contains(y; x; do(a; s)) (4.62)

43

4.7.3 A sample generated instruction sequence

If we de�ne the bread to be �nished when the \complete" light starts
ashing, we can set the goal

G of the planner to be this:

G = finished(bread) ^ removed(bread; baking pan interior) (4.68)

The �nal sequence of instructions, generated by Penman, including warning instructions, is the

following (see appendix B for the full output of the system):

Attach the kneading blade to the baking pan.

Pour the water into the baking pan.

Pour the flour into the baking pan.

Pour the yeast into the baking pan.

Insert the baking pan into the main body.

Close the lid.

Press the ON button.

Do not touch the main body during the heating period.

Do not touch the steam vent during the heating period.

The ``complete'' light will flash.

Open the lid.

Take the baking pan out of the main body.

Take the bread out of the baking pan.

4.7.4 Combining the breadmaker and toaster domains

By allowing our system access to the axioms for both the breadmaker and toaster domains, and

adding the slice14 action that can be performed by the user on the bread to produce a bread slice,

the system can generate a sequence of sentences which instruct the user how to obtain a slice of

toast starting from the ingredients for bread (see appendix B):

Attach the kneading blade to the baking pan.

Pour the water into the baking pan.

Pour the flour into the baking pan.

Pour the yeast into the baking pan.

Insert the baking pan into the main body.

Close the lid.

Press the ON button.

Do not touch the main body during the heating period.

Do not touch the steam vent during the heating period.

The ``complete'' light will flash.

Open the lid.

Take the baking pan out of the main body.

Take the bread out of the baking pan.

Cut the bread slice from the bread.

Insert the bread slice into the toaster's bread slot.

Press the ON lever.

Do not touch the toaster's bread slot during the heating period.

The bread slice will pop up.

Take the bread slice out of the toaster's bread slot.

14This action is lexicalized as \cut" in our system.

44

Chapter 5

Discussion and conclusions

5.1 An integrated approach to device design and instruc-

tion generation

In chapter 3 we argued that a complete natural language instruction generation system should

incorporate topological, kinematic, electrical, thermodynamic, electronic, and world knowledge at

the top level, on which all the necessary reasoning to arrive at the �nal instructions is carried out.

We propose here a general framework within which a device may be designed by the engineer, with

one of the intended \side e�ects" being the generation of instructions to perform a given task. This

methodology starts with an engineering approach to the design of a kitchen appliance. The possible

uses of the design components with respect to natural language generation will be considered.

5.1.1 The design phase

In this section, we provide an overview of the steps that we propose could be taken as part of

designing a kitchen appliance:

1. For the device, construct solid, kinematic, electrical, thermodynamic, and electronic models.

2. Determine the salient states of the components of the device.

Construction of the device models

There are industrial packages which allow an engineer to construct solid and kinematic models of a

device. A solid model de�nes the topology of the device, whereas a kinematic model describes the

motions of movable components. Electrical modelling software also exists; it should allow one to

formally describe
ow of charge and resistance. We are not aware of any thermodynamic modelling

software currently in existence, but if and when this comes into existence, it should enable the

45

engineer to specify the materials comprising each component and connection. In conjunction with

the electrical model, the thermodynamic model should allow the temperatures of various components

to be estimated at any given time.

Identi�cation of component states

During the construction of the models mentioned above, the salient states of each component will

have been identi�ed. For example, although the kinematics component of the integrated model may

describe a lid as having a certain range of motion, it is probably not necessary to regard every

position of the lid as a separate state, because the di�erence between one position and another

neighbouring one may not have any e�ect on the rest of the device{environment system. However,

when the lid gets to a certain position, let's call this closed, another component of the system may

become enabled. Thus, we consider the closed position of the lid to be a salient state of the lid. We

envision that the enabling of one component by the closing of the lid should be part of the integrated

model.

Note that these stages are concerned with the device rather than the device{environment sys-

tem. This is because: (1) the engineer is presumably building a model of the device and not the

environment, and (2) we believe that the environment model can be very general to a large extent,

i.e., domain-independent. The environment model should model possible user interactions with any

device, such as the pushing of buttons, the touching of components, the cutting of materials, etc.

5.1.2 Incorporating instruction generation into the framework

The design phase can be succeeded by the following steps leading to the generation of natural

language instructions:

3. Determine the actions and
uents for this domain.

4. Derive the action precondition axioms and the positive and negative e�ect axioms for this

domain, using the design speci�cation and world knowledge.

5. Determine the goal of the system, and plan a sequence of actions leading to the goal becoming

true.

6. Perform further in-line planning, using the basic plan, to determine potentially dangerous

states.

7. Determine the relevant case roles for the actions.

8. Decide which actions should be mentioned.

46

9. Generate a PRL (Process Representation Language) speci�cation for these actions.

10. Determine the features of the system from the design speci�cation and world knowledge, and

use these as answers to IMAGENE inquiries.

11. Feed the PRL speci�cation and the results of the inquiries into IMAGENE.

Steps (5){(9) are what this thesis concentrates on. However, instead of generating a PRL speci�ca-

tion for the text, a SPL (Sentence Plan Language) expression is produced, which is fed into Penman

(see section 4.6).

Determination of domain-speci�c actions and
uents

The domain
uents are simply symbols assigned to the salient states, which were identi�ed in step (2).

In section 4.2.1, we outlined a basic ontology of the high-level device actions to be represented.

The particular device actions used depend on the kinematic, electrical, and thermodynamic models|

for instance, a washing machine needs an action symbol representing rotate, while a toaster will not.

Also, the number and meanings of the arguments of these actions must be determined. As we saw in

section 4.6.1, these arguments specify some of the roles of the action. However, some device actions,

such as pop up, have no arguments, and thus a role may need to be inferred from the plan if the

action is to be mentioned. A special domain-speci�c program clause needs to be added for this

purpose. For example, to determine what pops up from the bread slot at a given point in the plan,

the clause must �nd out what the bread slot contains at that point.

As we have already mentioned, we believe that the user interactions with a device are largely

domain-independent; thus, the reader actions are transferable to other domains. Although there are

some domain-dependent axioms, such as the speci�c action precondition axioms for the pour action

(de�ned in section 4.7.2), the symbols representing these actions should still be domain-independent.

Derivation of domain-speci�c axioms from design and world knowledge

In this section we will not propose a general mechanism by which the domain-speci�c axioms can be

derived from the device and environment models, but instead we will try to justify the derivability

of some of them from these models. We will be referring to axioms presented in sections 4.3.2 and

4.7.2, and to the knowledge types outlined in section 3.2).

Axioms (4.10) and (4.17) There is more than one possible way in which axiom (4.10) can hold;

we shall consider one for now. We can assume that the correctness of the axiom is dictated by the

electrical subsystem (i.e., the electrical model), the thermodynamic properties of the components and

materials of the system (i.e., the thermodynamic model), and the topology of the system (i.e., the

solid model). When the ON button is pressed, a switch allows an electrical current to begin
owing

47

through the heating element. The resistance of the electrical components together with the current

will determine the maximum temperature reachable by any component. Also, the thermodynamic

properties of the components connected to, or near to, the heating element determine the maximum

temperature reachable by those components. For example, when a slice of bread is in the bread slot,

it gets heated mainly by radiation of heat from the heating element, and to a much lesser extent,

conduction of heat through the air between the bread and the heating element. These physical

processes can be represented, to some degree of accuracy, by equations.

Axiom (4.10) can be elaborated by examining the solid and thermodynamic models, and con-

sidering which components other than the bread slot and its contents can become heated by the

heating element. The raise temp action may be applicable to other parts as well, but we have only

considered one component and one material for simplicity.

Axiom (4.17) is an approximation of a physical equation, and a conversion must be made from

the continuous equation into the discrete axiom.

Axiom (4.11) This axiom is justi�able if the toaster contains a thermostat which senses the

temperature of the bread slot. The solid model will specify the location of the thermostat relative

to the other components, and the electrical and thermodynamic models will specify its functionality.

That is, when the thermostat senses a temperature of 200 �C in the bread slot, it triggers the

popping up action.

The pop up action This action causes a number of things to happen (i.e., changes the truth

values of
uents). Whatever was in the bread slot becomes exposed; this can be determined from

the solid and kinematic models. This action causes the state of the ON button to become not pressed,

i.e., it \breaks the connection" in the electrical circuit between the ON button and the electrical

subsystem. Also, it marks the beginning of the cooling down period of every component as a result

of the switching o� of the electrical current. We could have modelled this continuous cooling down

period with more axioms representing discrete temperature changes, but to make matters simple,

we ignored this period altogether and assumed that the cooling down is instantaneous.

Axioms (4.47), (4.48), and (4.49) The pour action is an example of an action that is domain-

independent, but whose specializations are not, in the case of the breadmaker. The fact that the

baking pan must contain water before the
our is poured, and that the
our must be present before

the yeast is poured, should be part of world knowledge: there should be a fact stating that the yeast

must not come directly into contact with the water, or else the yeast may not perform its function

(in the rising of the dough) properly.1

1Why the yeast,
our, and water should not be poured in that order is another point to analyze. Presumably, the
kneading blade cannot mix the ingredients well if it is initially surrounded by the dry ingredients.

48

One may wonder why axiom (4.47) needs to specify that the kneading blade be attached to

the baking pan before the water can be poured; deriving this axiom could use some world knowl-

edge about it being di�cult to attach the kneading blade once there are ingredients already in

the baking pan. A more realistic approach would have been to de�ne the bottom of the bak-

ing pan as a physical object and asserting fits(kneading blade; baking pan bottom) rather than

fits(kneading blade; baking pan), so that when an ingredient is poured into the baking pan, the

baking pan bottom is no longer exposed; thus the kneading blade cannot now be attached to the

baking pan bottom. Although the way this is currently implemented is simpler than the more real-

istic approach, this example serves to illustrate that it will sometimes be di�cult to decide whether

parts of the physical objects of the solid model should be used in constructing the axioms.

The procedural planner

The planner employed in our current implementation is a very basic forward-chaining planner that

attempts to reach the goal state from the initial state. It would have been preferable to have

implemented a regression planner such as that of Lin (1995); all of the axioms presented in chapter 4

would still be correct, but their forms would have to be modi�ed for use with the given planner.

However, this thesis is not concerned with any particular planning paradigm. We just need to make

the reader aware that several of the action precondition axioms used in the implementation have

extra conditions which were added only to allow the current planner to function correctly. A linear

regression planner would not need these extra conditions.

Determining what actions to mention

In section 4.6.3 we looked at some situations in which certain actions should or should not be

mentioned. We propose that a study essentially similar to that of Vander Linden's (1993) should be

undertaken to determine how the features of the environment and communicative context a�ect the

inclusion of actions in instructional text.

Integration with IMAGENE

Vander Linden's PRL is rather similar to the basic form of Penman's SPL that our system produces,

in that many of the case roles determined by our system are also used by PRL (see sections 2.3.2

and 4.6.1)

In order to take full advantage of IMAGENE's expressiveness (because several of the features

of instructional text identi�ed by Vander Linden are based on action hierarchies and concurrency),

a hierarchical planner should be implemented. Vander Linden acknowledges that as well as the

planner needing to determine the content of the instructional text, it would \also be critical in

implementing the text-level inquiries, a step that is required for fully automating the instruction

49

generation process" (Vander Linden, 1993, page 133). Thus the planner, or a system working in

tandem with the planner2, should be able to identify these features (the values of which are input

to IMAGENE via its inquiries).

We propose that several of these features should be identi�able from the knowledge in the solid

and kinematic models, and some are already related to the
uents we have used in our toaster and

breadmaker examples:

Action-Actor Is the action being performed by the reader or some other agent?

Action-Monitor-Type Is this non-reader action expected to be monitored by the reader?

Precond-Inception-Status Could the reader have witnessed the inception of the process on which

the precondition is being based?

Whether an action is expected to be monitored or witnessed by the reader is related to the use of

our exposed
uent, and the idea of a salient change used in our implementation (see section 4.6.3).

Representation of continuous time and physical processes

The situation calculus formalism we have used does not have any explicit representation of time.

If we are to fully capture the temporal relationships between actions and address the time-related

features of instructional text identi�ed by Vander Linden, we will need to use a formalism that

allows the representation of time explicitly, such as that of Pinto (1994). For instance, PRL allows

the speci�cation of the role DURATION for an action (see section 2.3.2), and the features queried

about by IMAGENE include the following:

Temporal-Orientation Is the action one which was performed at a temporally remote time in the

past?

Concurrency-Structure Is the action a procedure with concurrency that must be expressed?

We suspect that using a formalism that allows continuous equations (to represent the physical

processes), such as those of Sandewall (1989) and Levesque and Reiter (1995), would make it more

straightforward for the axioms to be derived, because the meanings of the axioms would then be

\closer" to the device model. However, reasoning in those formalisms is much more complex than

in the basic situation calculus.

5.2 Contributions of this thesis

This thesis showed how it is possible to go from a model of a kitchen appliance, characterized by

axioms in the situation calculus, to the generation of natural language instructions which explain

2Such a planner might possibly be akin to Kosseim and Lapalme's semantic level (see section 2.4.4).

50

the steps the user should take to operate the device as well as instructions which warn the user to

avoid potentially dangerous situations. The behaviour of the appliance is simulated by the planning

mechanism, which attempts to determine all the situations that are potentially hazardous to the

user.

The contributions of this thesis are therefore:

1. the suggestion that an integrated model of the device (including solid, kinematic, electrical,

and thermodynamic models) together with world knowledge can be used to automate the

generation of instructions, including warning instructions;

2. that situations in which injuries to the user can occur need to be planned for at every step

in the planning of the normal operation of the device, and that these \injury sub-plans" are

used to instruct the user to avoid these situations. Thus, unlike other instruction generation

systems, our system tells the reader what not to do as well as what to do; and

3. the notion that actions are performed on the materials that the device operates upon, that

the states of these materials may change as a result of these actions, and that the goal of the

system should be de�ned in terms of the �nal states of the materials.

51

Appendix A

Program listing

This appendix contains a listing of the Quintus Prolog program which implements the ideas presented

in chapter 4, for the toaster domain.

For the domain model, clauses which have extra conditions needed only for the current planner

are marked with a /*!*/ on the right side of the page.

:- no_style_check(all).

/* DOMAIN DESCRIPTION */

/* Preconditions for actions */

poss(insert(X,Y),S) :-

fits(X,Y), three_d_location(Y),

holds(exposed(Y),S),

\+ holds(contains(Y,X),S). /*!*/

poss(remove(X,Y),S) :-

three_d_location(Y),

holds(contains(Y,X),S),

holds(exposed(X),S).

poss(press(X),S) :-

lever(X),

\+ holds(pressed(X),S). /*!*/

poss(raise_temp(X),S) :-

(X=bread_slot; holds(contains(bread_slot,X),S)),

holds(temperature(X,T),S), T < 200,

holds(pressed(on_lever),S).

poss(pop_up,S) :-

holds(temperature(bread_slot,T),S), T >= 200.

poss(get_burned,S) :-

holds(touching(X),S),

holds(temperature(X,T),S), T >= 70.

52

poss(touch(X),S) :-

physical_object(X), holds(exposed(X),S),

holds(temperature(X,T),S), T > 20. /*!*/

/* Successor state axioms */

holds(contains(Y,X),do(A,S)) :-

A = insert(X,Y);

\+ A = remove(X,Y), holds(contains(Y,X),S).

holds(removed(X,Y),do(A,S)) :-

A = remove(X,Y);

holds(removed(X,Y),S).

holds(pressed(X),do(A,S)) :-

A = press(X);

\+ A = pop_up, holds(pressed(X),S).

holds(exposed(X),do(A,S)) :-

X = bread_slot; /* Always exposed */

A = pop_up, holds(contains(bread_slot,X),S);

\+ A = press(on_lever), holds(exposed(X),S).

holds(temperature(X,T2),do(A,S)) :-

A = raise_temp(X), holds(temperature(X,T1),S), T2 is T1+50;

A = pop_up, T2 is 20;

\+ A = raise_temp(X), \+ A = pop_up, holds(temperature(X,T2),S).

holds(burned,do(A,S)) :-

A = get_burned;

holds(burned,S).

holds(touching(X),do(A,S)) :-

A = touch(X);

holds(touching(X),S).

holds(toasted(X),do(A,S)) :-

holds(temperature(X,220),do(A,S));

holds(toasted(X),S).

/* Initial state */

holds(temperature(bread_slice,20),s0).

holds(temperature(bread_slot,20),s0).

holds(exposed(bread_slot),s0).

holds(exposed(bread_slice),s0).

/* General */

physical_object(bread_slot).

physical_object(on_lever).

three_d_location(bread_slot).

fits(bread_slice,bread_slot).

lever(on_lever).

raw_material(bread_slice).

indicator(nothing). /* Not used for this domain */

53

reader_action(insert).

reader_action(remove).

reader_action(press).

reader_action(touch).

device_action(raise_temp).

device_action(pop_up).

actor(flash(X),X).

actee(insert(X,_),X).

actee(remove(X,_),X).

actee(press(X),X).

actee(touch(X),X).

actee(raise_temp(X),X).

source(remove(_,Y),Y).

destination(insert(_,Y),Y).

polarity(touch(_),P) :-

!, P = negative.

polarity(A,positive).

normal_action(A) :- /*!*/

A =.. [Action|Args], /*!*/

member(Action,[insert,remove,press,remove,raise_temp,pop_up]). /*!*/

injury_action(A) :- /*!*/

A =.. [Action|Args], /*!*/

member(Action,[touch,get_burned]). /*!*/

affects(insert(X,Y), contains(Y,X)). /*!*/

affects(remove(X,Y), removed(X,Y)). /*!*/

affects(remove(X,Y), contains(Y,X)). /*!*/

affects(press(X), pressed(X)). /*!*/

affects(press(on_lever), exposed(X)). /*!*/

affects(get_burned, burned). /*!*/

affects(touch(X), touching(X)). /*!*/

/* DOMAIN-INDEPENDENT CLAUSES */

/* Main clause */

run :-

planNormal(s0,G,[toasted(bread_slice), removed(bread_slice,X)]),

listActions(G,L1),

indexActions(L1,1,L2),

writeln('Inserting injuries...'),

insertInjuries(L2,L3),

write('WITH INJURIES: '), write(L3), nl,

writeln('Making interpretations...'),

makeInterpretations(L3,L4,Patterns),

write('INTERPRETATIONS: '), write(L4), nl,

write('PATTERNS: '), write(Patterns), nl,

writeln('Making SPL...'),

makeSPL(L4,L4,Patterns,SPL,0),

outputSPL0(SPL),

writeln('Done.').

54

/* The forward planner */

planNormal(Goal_state,Goal_state,Goals) :-

satisfied(Goals,Goal_state),

write('GOAL STATE: '), write(Goal_state), nl.

planNormal(Current_state,Goal_state,G) :-

poss(A,Current_state),

normal_action(A),

\+ loop(Current_state,A), /* Try to avoid infinite loop */

planNormal(do(A,Current_state),Goal_state,G).

planInjury(Goal_state,Goal_state,Goals) :-

satisfied(Goals,Goal_state).

planInjury(Current_state,Goal_state,G) :-

poss(A,Current_state),

injury_action(A),

\+ loop(Current_state,A),

planInjury(do(A,Current_state),Goal_state,G).

satisfied([],Goal_state) :- !.

satisfied([G|Goals],Goal_state) :-

holds(G,Goal_state),

satisfied(Goals,Goal_state).

loop(do(A1,S),A2) :-

affects(A1,F), affects(A2,F).

/* Find all points in the plan which can lead to an injury */

insertInjuries(L1,L2) :-

write('INDEX: '),

getInjuryPoints(L1,1,L3),

write('POINTS: '), write(L3), nl,

mergeActions(L1,L3,L2).

getInjuryPoints(L,I,[]) :-

\+ member((I,_),L),

nl, !.

getInjuryPoints(L1, I, [(I,L8)|L2]) :-

getFirst(L1,I,L3), /* Get first I indexed actions */

deListify(L3,L4),

makeState(L4,S),

write('['), write(I), write('] '),

planInjury(S,G,[burned]), /* Invoke planner */

listActions(G,L5), /* Listify goal state */

indexActions(L5,1,L6),

getLast(L6,I,L7), /* Keep actions after I */

collectActions(L7,L8), /* Remove indices */

J is I+1,

getInjuryPoints(L1,J,L2).

getInjuryPoints(L1,I,L2) :-

J is I+1,

55

getInjuryPoints(L1,J,L2).

mergeActions(L,[],L).

mergeActions([(I1,[A])|L1], [(I1,L2)|L3], [(I1,[A|L2])|L4]) :-

mergeActions(L1,L3,L4).

mergeActions([P|L1],L2,[P|L3]) :-

mergeActions(L1,L2,L3).

/* Make interpretations */

makeInterpretations(L1,L2,Patterns) :-

makeInts(L1,L3,Patterns),

splitGroup(L3,L4),

deListify(L4,L2).

makeInts(L1,L2,[Pattern|Patterns]) :-

getFirstOccurrence(L1,raise_temp,I), /* Find first action in */

getTail(L1,I,L3), /* heating pattern */

checkPattern(L3,raise_temp,I,J,Pattern), /* Get rest of actions */

reIndexSame(L3,I,J,InGrp), /* Make actions in group have */

/* same index */

removeSuperfluousActions(InGrp,[],InGroup), /* Remove duplicate injury actions */

write('InGroup: '), write(InGroup), nl,

getLast(L1,J,L4),

H is I+1,

reIndexIncrementing(L4,H,AfterGroup), /* Reindex actions after group */

K is I-1, /* in ascending order */

getFirst(L1,K,BeforeGroup),

append(BeforeGroup,InGroup,BeforeAndInGroup),

makeInts(AfterGroup,NewAfterGroup,Patterns),

append(BeforeAndInGroup,NewAfterGroup,L2).

makeInts(L,L,[]).

getFirstOccurrence(L,Act,I) :-

appendz(L1, [(I,[A|Actions]) | IActions], L),

A =.. [Act|Args].

checkPattern([(I,[A|Actions])|IActions], Act, J, K, Pattern) :-

A =.. [Act|Args],

checkPattern(IActions,Act,J,K,Pattern).

checkPattern([(I,[A|Actions])], Act, J, I, (J,heating_period)) :-

A =.. [Act|Args],

I > J+2.

checkPattern([(I,Actions)|IActions], Act, J, K, (J,heating_period)) :-

I > J+2, /* Assign label only if length */

K is I-1. /* of collection is at least 3 */

reIndexSame([(I,Actions)|IActions], J, I, [(J,Actions)]) :- !.

reIndexSame([(I,[A|Actions])|IActions1], J, K,

[(J,[A|Actions])|IActions2]) :-

reIndexSame(IActions1,J,K,IActions2).

reIndexIncrementing([],I,[]) :- !.

56

reIndexIncrementing([(I,[A|Actions])|IActions1], J,

[(J,[A|Actions])|IActions2]) :-

M is J+1,

reIndexIncrementing(IActions1,M,IActions2).

indexSame([],_,[]).

indexSame([A|Actions],I,[(I,[A])|Rest]) :-

indexSame(Actions,I,Rest).

splitGroup([],[]).

splitGroup([(I,Actions)|IActions],L) :-

indexSame(Actions,I,L1),

splitGroup(IActions,L2),

append(L1,L2,L).

removeInjuries(Actions,InjuryList,InjuryList,[]) :-

member(Actions,InjuryList),

!.

removeInjuries(Actions,InjuryList,[Actions|InjuryList],Actions).

removeSuperfluousActions([(I,[A])|IActions], InjuryList, [(I,[A])|Rest]) :-

removeSuperfluousActions(IActions,InjuryList,Rest).

removeSuperfluousActions([(I,[A|Actions1])|IActions], InjuryList,

[(I,[A|Actions2])|Rest]) :-

removeInjuries(Actions1,InjuryList,NewInjuryList,Actions2),

removeSuperfluousActions(IActions,NewInjuryList,Rest).

removeSuperfluousActions([],_,[]).

/* Make SPL */

makeSPL([(I1,A1),(I2,A2),(I3,A3)|IActions], AllActions, Patterns,

[(ID1,Act2,SF_Pairs1), (ID3,Act3,SF_Pairs2) |L], ID) :-

nonvar(Patterns),

I2 is I1+1,

A1 =.. [Act1|Args1],

device_action(Act1),

A2 =.. [Act2|Args2],

device_action(Act2),

A3 =.. [Act3|Args3],

reader_action(Act3),

caused_salient_change(I2,AllActions), /* A2 caused a salient change */

member((I1,Interpretation),Patterns), /* A1 is last continuous */

ID1 is ID+1, /* action in a collection */

getSFPairs((I2,A2),AllActions,Patterns,SF_Pairs1,ID1,ID2), /* Get roles of action A2 */

ID3 is ID2+1,

getSFPairs((I3,A3),AllActions,Patterns,SF_Pairs2,ID3,ID4), /* Get roles of action A3 */

makeSPL(IActions,AllActions,Patterns,L,ID4).

makeSPL([(I,A)|IActions],AllActions,Patterns,[(ID1,Act,SF_Pairs)|L],ID) :-

A =.. [Act|Args],

reader_action(Act), /* Normally just mention */

ID1 is ID+1, /* reader actions */

getSFPairs((I,A),AllActions,Patterns,SF_Pairs,ID1,ID2),

57

makeSPL(IActions,AllActions,Patterns,L,ID2).

makeSPL([(_,_)|IActions],AllActions,Patterns,L,ID) :-

makeSPL(IActions,AllActions,Patterns,L,ID).

makeSPL([],_,_,[],_).

caused_salient_change(I,Actions) :-

getFirst(Actions,I,L),

makeState(L,do(A,S)),

changed_salient(A,S).

changed_salient(A,S) :-

(physical_object(X); raw_material(X)),

\+ holds(exposed(X),S),

holds(exposed(X),do(A,S)).

getSFPairs((I,A),AllActions,Patterns,SF_Pairs,ID1,ID2) :-

getActor(I,A,AllActions,SF1,ID1,ID3),

getActee(A,SF2,ID3,ID4),

getSource(A,SF3,ID4,ID5),

getDestination(A,SF4,ID5,ID6),

getTime(I,A,Patterns,SF5,ID6,ID7),

getTense(A,SF6,ID7,ID8),

getSpeechact(A,SF7,ID8,ID2), /* Remove roles if they */

removeNone([SF1,SF2,SF3,SF4,SF5,SF6,SF7],SF_Pairs). /* have no filler */

/* Domain-specific clause: determines what pops up by examining what is

contained in the bread_slot at that point */

getActor(I, pop_up, Actions,

(actor,(ID2,Actor,[(determiner,(ID2,the,[]))])),

ID1, ID2) :-

getFirst(Actions,I,L),

makeState(L,S),

holds(contains(bread_slot,Actor),S),

ID2 is ID1+1.

getActor(_, A, _,

(actor,(ID2,Actor,[(determiner,(ID2,the,[]))])),

ID1, ID2) :-

actor(A,Actor),

ID2 is ID1+1.

getActor(_, A, _,

(actor,(hearer,person,[])),

ID, ID).

getActee(A,

(actee,(ID2,Actee,[(determiner,(ID2,the,[]))])),

ID1, ID2) :-

actee(A,Actee),

ID2 is ID1+1.

getActee(_,none,ID,ID).

getSource(A,

(source,(ID2,Source,[(determiner,(ID2,the,[]))])),

ID1, ID2) :-

58

source(A,Source),

ID2 is ID1+1.

getSource(_,none,ID,ID).

getDestination(A,

(destination,(ID2,Destination,[(determiner,(ID2,the,[]))])),

ID1, ID2) :-

destination(A,Destination),

ID2 is ID1+1.

getDestination(_,none,ID,ID).

getTime(I,A,Patterns,

(exhaustive-duration,(ID2,Time,[(determiner,(ID2,the,[]))])),

ID1, ID2) :-

theTime(I,A,Patterns,Time),

ID2 is ID1+1.

getTime(_,_,_,none,ID,ID).

/* We make a simplification here that the tense of a device action is

always future, because the only time it is mentioned is when it is

the last action in a collection */

getTense(A,

(tense,(ID,future,[])),

ID, ID) :-

A =.. [Action|Args],

device_action(A).

getTense(A,

(tense,(ID,present,[])),

ID, ID).

/* We also make a simplification that the speechact of a device action

is always an assertion, for the same reason */

getSpeechact(A,

(speechact,(ID,assertion,[])),

ID, ID) :-

A =.. [Action|Args],

device_action(A).

getSpeechact(A,

(speechact,(ID,imperative,[])),

ID, ID) :-

polarity(A,positive).

getSpeechact(A,

(speechact,(ID,neg-imperative,[])),

ID, ID) :-

polarity(A,negative).

/* Set the time of an action if it is part of a collection */

theTime(I,A,Patterns,Time) :-

nonvar(Patterns),

member((I,Time),Patterns).

59

removeNone([none|SF_Pairs1],SF_Pairs2) :-

removeNone(SF_Pairs1,SF_Pairs2).

removeNone([SF|SF_Pairs1],[SF|SF_Pairs2]) :-

removeNone(SF_Pairs1,SF_Pairs2).

removeNone([],[]).

/* Output SPL */

outputSPL0(SPL) :-

tell('toast.spl'),

write('(setq plan '), put(39), write('('),

outputSPL(SPL),

write('))'), nl,

told.

outputSPL([Sentence | Rest]) :-

outputSentence(Sentence, 0),

outputSPL(Rest).

outputSPL([]).

outputSentence((ID, Top_level, SF_pairs), T) :-

tab(T), write('(ID'),

write(ID),

write(' / '),

write(Top_level),

NewT is T+8,

outputSF(SF_pairs, NewT),

write(')'), nl.

outputSF([(actor,(hearer,person,[])) | Rest], T) :-

nl, tab(T), write(':'),

write('actor (hearer / person)'),

outputSF(Rest, T).

outputSF([(Slot,(ID,Filler,[])) | Rest], T) :-

nl, tab(T), write(':'),

write(Slot),

write(' '),

write(Filler),

outputSF(Rest, T).

outputSF([(Slot,(ID,Filler,SF_pairs)) | Rest], T) :-

nl, tab(T), write(':'),

write(Slot),

write(' (ID'),

write(ID),

write(' / '),

write(Filler),

NewT is T+8,

outputSF(SF_pairs, NewT),

write(')'),

outputSF(Rest, T).

outputSF([], _).

60

/* Generic clauses */

listActions(do(A,s0),[A]).

listActions(do(A,S),L) :-

listActions(S,L1),

append(L1,[A],L).

makeState([(I,A)],do(A,s0)).

makeState(L,do(A,S)) :-

append(L1,[(I,A)],L),

makeState(L1,S).

indexActions([],_,[]).

indexActions([A|Actions],I,[(I,[A])|Rest]) :-

J is I+1,

indexActions(Actions,J,Rest).

getFirst(L1,I,L2) :-

append(Before,[(I,Actions)|After],L1),

append(Before,[(I,Actions)],L2).

getLast(L1,I,L2) :-

append(Before,[(I,Actions)|L2],L1).

getTail(L1,I,[(I,Actions)|L2]) :-

append(Before,[(I,Actions)|L2],L1).

collectActions([],[]).

collectActions([(_,[A])|Rest], [A|L]) :-

collectActions(Rest,L).

deListify([],[]).

deListify([(I,[A])|IActions], [(I,A)|Rest]) :-

deListify(IActions,Rest).

deListify([(I,[A|Actions])|IActions], [(I,A)|Rest]) :-

deListify([(I,Actions)|IActions], Rest).

member(X, [X|_]).

member(X, [_|L]) :- member(X, L).

appendz([], X, X).

appendz([X|Z], Y, [X|Z1]) :- appendz(Z, Y, Z1).

writeln(X) :- write(X), nl.

61

Appendix B

Trace output

This appendix contains a trace of the run for each of the toaster, breadmaker, and toaster/breadmaker

combination domains.

The Prolog program is �rst invoked; this outputs the SPL for the instructions to a �le, which is

read from Penman.

The GOAL STATE is the �nal state produced by the planner; POINTS speci�es all the places in the

plan which can lead to an injury; WITH INJURIES shows all the actions with these injury sub-plans

included; INTERPRETATIONS shows the actions after the interpretations have been made and the

super
uous injury sub-plans removed; and the PATTERNS represent the periods of continuous actions

inferred during the interpretation stage.

comb.loom is the Penman domain model; lexicon speci�es the lexical features of each word

linked to the domain model; and toast.spl, bread.spl, and comb.spl are the SPL �les.

B.1 Output for the toaster domain

spawn prolog

Quintus Prolog Release 3.2 (Sun 4, SunOS 5.3)

Copyright (C) 1994, Quintus Corporation. All rights reserved.

301 East Evelyn Ave, Mountain View, California U.S.A. (415) 254-2800

Licensed to Dept. of Computer Science, University of Toronto

| ?- ['~/prolog/toast'].

% compiling file /homes/neat/a/da/prolog/toast.pl

% toast.pl compiled in module user, 1.240 sec 16,420 bytes

yes

| ?- run.

GOAL STATE: do(remove(bread_slice,bread_slot),do(pop_up,do(raise_temp(bread_slice),do(raise_temp(bread

_slice),do(raise_temp(bread_slice),do(raise_temp(bread_slice),do(raise_temp(bread_slot),do(raise_temp(

bread_slot),do(raise_temp(bread_slot),do(raise_temp(bread_slot),do(press(on_lever),do(insert(bread_sli

ce,bread_slot),s0))))))))))))

Inserting injuries...

62

INDEX: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

POINTS: [(3,[touch(bread_slot),get_burned]),(4,[touch(bread_slot),get_burned]),(5,[touch(bread_slot),g

et_burned]),(6,[touch(bread_slot),get_burned]),(7,[touch(bread_slot),get_burned]),(8,[touch(bread_slot

),get_burned]),(9,[touch(bread_slot),get_burned]),(10,[touch(bread_slot),get_burned])]

WITH INJURIES: [(1,[insert(bread_slice,bread_slot)]),(2,[press(on_lever)]),(3,[raise_temp(bread_slot),

touch(bread_slot),get_burned]),(4,[raise_temp(bread_slot),touch(bread_slot),get_burned]),(5,[raise_tem

p(bread_slot),touch(bread_slot),get_burned]),(6,[raise_temp(bread_slot),touch(bread_slot),get_burned])

,(7,[raise_temp(bread_slice),touch(bread_slot),get_burned]),(8,[raise_temp(bread_slice),touch(bread_sl

ot),get_burned]),(9,[raise_temp(bread_slice),touch(bread_slot),get_burned]),(10,[raise_temp(bread_slic

e),touch(bread_slot),get_burned]),(11,[pop_up]),(12,[remove(bread_slice,bread_slot)])]

Making interpretations...

INTERPRETATIONS: [(1,insert(bread_slice,bread_slot)),(2,press(on_lever)),(3,raise_temp(bread_slot)),(3

,touch(bread_slot)),(3,get_burned),(3,raise_temp(bread_slot)),(3,raise_temp(bread_slot)),(3,raise_temp

(bread_slot)),(3,raise_temp(bread_slice)),(3,raise_temp(bread_slice)),(3,raise_temp(bread_slice)),(3,r

aise_temp(bread_slice)),(4,pop_up),(5,remove(bread_slice,bread_slot))]

PATTERNS: [(3,heating_period)]

Making SPL...

Done.

spawn ~/penman/penman

Allegro CL 4.2 [SPARC; R1] (2/3/95 0:50)

Copyright (C) 1985-1993, Franz Inc., Berkeley, CA, USA. All Rights Reserved.

;; Optimization settings: safety 1, space 1, speed 1, debug 2

;; For a complete description of all compiler switches given the current

;; optimization settings evaluate (EXPLAIN-COMPILER-SETTINGS).

USER(1): :pa penman

#<The PENMAN package>

PENMAN(2): :ld lexicon

; Loading /homes/neat/a/da/thesis/penman/lexicon.

PENMAN(3): :ld comb.loom

; Loading /homes/neat/a/da/thesis/penman/comb.loom.

.+.+.+.+.+-.+.+.+.+.+.+..++..++...++...++..++..++..++..++..++...++..+..++..+..++..+..++..+..++...++..+

+..++

Warning # 31 -- The SPL macro SPEECHACT is being redefined.

PENMAN(4): :ld toast.spl

; Loading /homes/neat/a/da/thesis/penman/toast.spl.

PENMAN(5): (dolist (x plan)(print (say-spl x)))

"Insert the bread slice into the toaster's bread slot."

"Press the ON lever."

"Do not touch the toaster's bread slot during the heating period."

"The bread slice will pop up."

"Take the bread slice out of the toaster's bread slot."

B.2 Output for the breadmaker domain

spawn prolog

Quintus Prolog Release 3.2 (Sun 4, SunOS 5.3)

Copyright (C) 1994, Quintus Corporation. All rights reserved.

301 East Evelyn Ave, Mountain View, California U.S.A. (415) 254-2800

Licensed to Dept. of Computer Science, University of Toronto

| ?- ['~/prolog/bread'].

% compiling file /homes/neat/a/da/prolog/bread.pl

% bread.pl compiled in module user, 1.410 sec 21,316 bytes

63

yes

| ?- run.

GOAL STATE: do(remove(bread,baking_pan),do(remove(baking_pan,main_body_interior),do(open(lid),do(flash

(complete_light),do(raise_temp(baking_pan),do(raise_temp(baking_pan),do(steamify(baking_pan),do(raise_

temp(baking_pan),do(raise_temp(baking_pan),do(raise_temp(steam_vent),do(raise_temp(steam_vent),do(rais

e_temp(steam_vent),do(raise_temp(steam_vent),do(raise_temp(main_body),do(raise_temp(main_body),do(stea

mify(main_body),do(raise_temp(main_body),do(raise_temp(main_body),do(press(breadmaker_on_button),do(cl

ose(lid),do(insert(baking_pan,main_body_interior),do(open(lid),do(pour(yeast,baking_pan_interior),do(p

our(flour,baking_pan_interior),do(pour(water,baking_pan_interior),do(attach(kneading_blade,baking_pan)

,s0))))))))))))))))))))))))))

Inserting injuries...

INDEX: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]

[22] [23] [24] [25] [26]

POINTS: [(10,[touch(main_body),get_burned]),(11,[touch(main_body),get_burned]),(12,[touch(main_body),g

et_burned]),(13,[touch(main_body),get_burned]),(14,[touch(main_body),get_burned]),(15,[touch(steam_ven

t),get_burned]),(16,[touch(steam_vent),get_burned]),(17,[touch(steam_vent),get_burned]),(18,[touch(ste

am_vent),get_burned]),(19,[touch(steam_vent),get_burned]),(20,[touch(steam_vent),get_burned]),(21,[tou

ch(steam_vent),get_burned]),(22,[touch(steam_vent),get_burned])]

WITH INJURIES: [(1,[attach(kneading_blade,baking_pan)]),(2,[pour(water,baking_pan_interior)]),(3,[pour

(flour,baking_pan_interior)]),(4,[pour(yeast,baking_pan_interior)]),(5,[open(lid)]),(6,[insert(baking_

pan,main_body_interior)]),(7,[close(lid)]),(8,[press(breadmaker_on_button)]),(9,[raise_temp(main_body)

]),(10,[raise_temp(main_body),touch(main_body),get_burned]),(11,[steamify(main_body),touch(main_body),

get_burned]),(12,[raise_temp(main_body),touch(main_body),get_burned]),(13,[raise_temp(main_body),touch

(main_body),get_burned]),(14,[raise_temp(steam_vent),touch(main_body),get_burned]),(15,[raise_temp(ste

am_vent),touch(steam_vent),get_burned]),(16,[raise_temp(steam_vent),touch(steam_vent),get_burned]),(17

,[raise_temp(steam_vent),touch(steam_vent),get_burned]),(18,[raise_temp(baking_pan),touch(steam_vent),

get_burned]),(19,[raise_temp(baking_pan),touch(steam_vent),get_burned]),(20,[steamify(baking_pan),touc

h(steam_vent),get_burned]),(21,[raise_temp(baking_pan),touch(steam_vent),get_burned]),(22,[raise_temp(

baking_pan),touch(steam_vent),get_burned]),(23,[flash(complete_light)]),(24,[open(lid)]),(25,[remove(b

aking_pan,main_body_interior)]),(26,[remove(bread,baking_pan)])]

Making interpretations...

INTERPRETATIONS: [(1,attach(kneading_blade,baking_pan)),(2,pour(water,baking_pan_interior)),(3,pour(fl

our,baking_pan_interior)),(4,pour(yeast,baking_pan_interior)),(5,open(lid)),(6,insert(baking_pan,main_

body_interior)),(7,close(lid)),(8,press(breadmaker_on_button)),(9,raise_temp(main_body)),(9,raise_temp

(main_body)),(9,touch(main_body)),(9,get_burned),(9,steamify(main_body)),(9,raise_temp(main_body)),(9,

raise_temp(main_body)),(9,raise_temp(steam_vent)),(9,raise_temp(steam_vent)),(9,touch(steam_vent)),(9,

get_burned),(9,raise_temp(steam_vent)),(9,raise_temp(steam_vent)),(9,raise_temp(baking_pan)),(9,raise_

temp(baking_pan)),(9,steamify(baking_pan)),(9,raise_temp(baking_pan)),(9,raise_temp(baking_pan)),(10,f

lash(complete_light)),(11,open(lid)),(12,remove(baking_pan,main_body_interior)),(13,remove(bread,bakin

g_pan))]

PATTERNS: [(9,heating_period)]

Making SPL...

Done.

spawn ~/penman/penman

Allegro CL 4.2 [SPARC; R1] (2/3/95 0:50)

Copyright (C) 1985-1993, Franz Inc., Berkeley, CA, USA. All Rights Reserved.

;; Optimization settings: safety 1, space 1, speed 1, debug 2

;; For a complete description of all compiler switches given the current

;; optimization settings evaluate (EXPLAIN-COMPILER-SETTINGS).

USER(1): :pa penman

#<The PENMAN package>

PENMAN(2): :ld lexicon

; Loading /homes/neat/a/da/thesis/penman/lexicon.

PENMAN(3): :ld comb.loom

; Loading /homes/neat/a/da/thesis/penman/comb.loom.

.+.+.+.+.+-.+.+.+.+.+.+..++..++...++...++..++..++..++..++..++...++..+..++..+..++..+..++..+..++...++..+

+..++

64

Warning # 31 -- The SPL macro SPEECHACT is being redefined.

PENMAN(4): :ld bread.spl

; Loading /homes/neat/a/da/thesis/penman/bread.spl.

PENMAN(5): (dolist (x plan)(print (say-spl x)))

"Attach the kneading blade to the baking pan."

"Pour the water into the baking pan."

"Pour the flour into the baking pan."

"Pour the yeast into the baking pan."

"Open the lid."

"Insert the baking pan into the main body."

"Close the lid."

"Press the ON button."

"Do not touch the main body during the heating period."

"Do not touch the steam vent during the heating period."

"The ``complete'' light will flash."

"Open the lid."

"Take the baking pan out of the main body."

"Take the bread from the baking pan."

B.3 Output for the breadmaker/toaster combination do-

main

spawn prolog

Quintus Prolog Release 3.2 (Sun 4, SunOS 5.3)

Copyright (C) 1994, Quintus Corporation. All rights reserved.

301 East Evelyn Ave, Mountain View, California U.S.A. (415) 254-2800

Licensed to Dept. of Computer Science, University of Toronto

| ?- ['~/prolog/comb'].

% compiling file /homes/neat/a/da/prolog/comb.pl

% comb.pl compiled in module user, 1.630 sec 23,528 bytes

yes

| ?- run.

GOAL STATE: do(remove(bread_slice,bread_slot),do(pop_up,do(raise_temp(bread_slice),do(raise_temp(bread

_slice),do(raise_temp(bread_slice),do(raise_temp(bread_slice),do(raise_temp(bread_slot),do(raise_temp(

bread_slot),do(raise_temp(bread_slot),do(raise_temp(bread_slot),do(press(on_lever),do(insert(bread_sli

ce,bread_slot),do(slice(bread_slice,bread),do(remove(bread,baking_pan_interior),do(remove(baking_pan,m

ain_body_interior),do(open(lid),do(flash(complete_light),do(raise_temp(steam_vent),do(raise_temp(steam

_vent),do(raise_temp(steam_vent),do(raise_temp(steam_vent),do(raise_temp(main_body),do(raise_temp(main

_body),do(steamify(main_body),do(raise_temp(main_body),do(raise_temp(main_body),do(press(breadmaker_on

_button),do(close(lid),do(insert(baking_pan,main_body_interior),do(open(lid),do(pour(yeast,baking_pan_

interior),do(pour(flour,baking_pan_interior),do(pour(water,baking_pan_interior),do(attach(kneading_bla

de,baking_pan),s0))))))))))))))))))))))))))))))))))

Inserting injuries...

INDEX: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]

[22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34]

POINTS: [(10,[touch(main_body),get_burned]),(11,[touch(main_body),get_burned]),(12,[touch(main_body),g

et_burned]),(13,[touch(main_body),get_burned]),(14,[touch(main_body),get_burned]),(15,[touch(steam_ven

t),get_burned]),(16,[touch(steam_vent),get_burned]),(17,[touch(steam_vent),get_burned]),(26,[touch(bre

ad_slot),get_burned]),(27,[touch(bread_slot),get_burned]),(28,[touch(bread_slot),get_burned]),(29,[tou

ch(bread_slot),get_burned]),(30,[touch(bread_slot),get_burned]),(31,[touch(bread_slot),get_burned]),(3

2,[touch(bread_slot),get_burned])]

65

WITH INJURIES: [(1,[attach(kneading_blade,baking_pan)]),(2,[pour(water,baking_pan_interior)]),(3,[pour

(flour,baking_pan_interior)]),(4,[pour(yeast,baking_pan_interior)]),(5,[open(lid)]),(6,[insert(baking_

pan,main_body_interior)]),(7,[close(lid)]),(8,[press(breadmaker_on_button)]),(9,[raise_temp(main_body)

]),(10,[raise_temp(main_body),touch(main_body),get_burned]),(11,[steamify(main_body),touch(main_body),

get_burned]),(12,[raise_temp(main_body),touch(main_body),get_burned]),(13,[raise_temp(main_body),touch

(main_body),get_burned]),(14,[raise_temp(steam_vent),touch(main_body),get_burned]),(15,[raise_temp(ste

am_vent),touch(steam_vent),get_burned]),(16,[raise_temp(steam_vent),touch(steam_vent),get_burned]),(17

,[raise_temp(steam_vent),touch(steam_vent),get_burned]),(18,[flash(complete_light)]),(19,[open(lid)]),

(20,[remove(baking_pan,main_body_interior)]),(21,[remove(bread,baking_pan_interior)]),(22,[slice(bread

_slice,bread)]),(23,[insert(bread_slice,bread_slot)]),(24,[press(on_lever)]),(25,[raise_temp(bread_slo

t)]),(26,[raise_temp(bread_slot),touch(bread_slot),get_burned]),(27,[raise_temp(bread_slot),touch(brea

d_slot),get_burned]),(28,[raise_temp(bread_slot),touch(bread_slot),get_burned]),(29,[raise_temp(bread_

slice),touch(bread_slot),get_burned]),(30,[raise_temp(bread_slice),touch(bread_slot),get_burned]),(31,

[raise_temp(bread_slice),touch(bread_slot),get_burned]),(32,[raise_temp(bread_slice),touch(bread_slot)

,get_burned]),(33,[pop_up]),(34,[remove(bread_slice,bread_slot)])]

Making interpretations...

INTERPRETATIONS: [(1,attach(kneading_blade,baking_pan)),(2,pour(water,baking_pan_interior)),(3,pour(fl

our,baking_pan_interior)),(4,pour(yeast,baking_pan_interior)),(5,open(lid)),(6,insert(baking_pan,main_

body_interior)),(7,close(lid)),(8,press(breadmaker_on_button)),(9,raise_temp(main_body)),(9,raise_temp

(main_body)),(9,touch(main_body)),(9,get_burned),(9,steamify(main_body)),(9,raise_temp(main_body)),(9,

raise_temp(main_body)),(9,raise_temp(steam_vent)),(9,raise_temp(steam_vent)),(9,touch(steam_vent)),(9,

get_burned),(9,raise_temp(steam_vent)),(9,raise_temp(steam_vent)),(10,flash(complete_light)),(11,open(

lid)),(12,remove(baking_pan,main_body_interior)),(13,remove(bread,baking_pan_interior)),(14,slice(brea

d_slice,bread)),(15,insert(bread_slice,bread_slot)),(16,press(on_lever)),(17,raise_temp(bread_slot)),(

17,raise_temp(bread_slot)),(17,touch(bread_slot)),(17,get_burned),(17,raise_temp(bread_slot)),(17,rais

e_temp(bread_slot)),(17,raise_temp(bread_slice)),(17,raise_temp(bread_slice)),(17,raise_temp(bread_sli

ce)),(17,raise_temp(bread_slice)),(18,pop_up),(19,remove(bread_slice,bread_slot))]

PATTERNS: [(9,heating_period),(17,heating_period)]

Making SPL...

Done.

spawn ~/penman/penman

Allegro CL 4.2 [SPARC; R1] (2/3/95 0:50)

Copyright (C) 1985-1993, Franz Inc., Berkeley, CA, USA. All Rights Reserved.

;; Optimization settings: safety 1, space 1, speed 1, debug 2

;; For a complete description of all compiler switches given the current

;; optimization settings evaluate (EXPLAIN-COMPILER-SETTINGS).

USER(1): :pa penman

#<The PENMAN package>

PENMAN(2): :ld lexicon

; Loading /homes/neat/a/da/thesis/penman/lexicon.

PENMAN(3): :ld comb.loom

; Loading /homes/neat/a/da/thesis/penman/comb.loom.

.+.+.+.+.+-.+.+.+.+.+.+..++..++...++...++..++..++..++..++..++...++..+..++..+..++..+..++..+..++...++..+

+..++

Warning # 31 -- The SPL macro SPEECHACT is being redefined.

PENMAN(4): :ld comb.spl

; Loading /homes/neat/a/da/thesis/penman/comb.spl.

PENMAN(5): (dolist (x plan)(print (say-spl x)))

"Attach the kneading blade to the baking pan."

"Pour the water into the baking pan."

"Pour the flour into the baking pan."

"Pour the yeast into the baking pan."

"Open the lid."

"Insert the baking pan into the main body."

"Close the lid."

"Press the ON button."

66

"Do not touch the main body during the heating period."

"Do not touch the steam vent during the heating period."

"The ``complete'' light will flash."

"Open the lid."

"Take the baking pan out of the main body."

"Take the bread out of the baking pan."

"Cut the bread slice from the bread."

"Insert the bread slice into the toaster's bread slot."

"Press the ON lever."

"Do not touch the toaster's bread slot during the heating period."

"The bread slice will pop up."

"Take the bread slice out of the toaster's bread slot."

67

Appendix C

The SPL �les

This appendix contains the SPL corresponding to the instructions generated for the toaster and

breadmaker domains. The SPL for the toaster/breadmaker combination is very similar to the

concatenation of the SPL for the toaster and breadmaker domains; it has been omitted for this

reason.

C.1 SPL for the toaster instructions

(setq plan '((ID1 / insert

:actor (hearer / person)

:actee (ID2 / bread_slice

:determiner the)

:destination (ID3 / bread_slot

:determiner the)

:tense present

:speechact imperative)

(ID4 / press

:actor (hearer / person)

:actee (ID5 / on_lever

:determiner the)

:tense present

:speechact imperative)

(ID6 / touch

:actor (hearer / person)

:actee (ID7 / bread_slot

:determiner the)

:exhaustive-duration (ID8 / heating_period

:determiner the)

:tense present

:speechact neg-imperative)

(ID9 / pop_up

:actor (ID10 / bread_slice

:determiner the)

:tense future

:speechact assertion)

(ID11 / remove

68

:actor (hearer / person)

:actee (ID12 / bread_slice

:determiner the)

:source (ID13 / bread_slot

:determiner the)

:tense present

:speechact imperative)))

C.2 SPL for the breadmaker instructions

(setq plan '((ID1 / attach

:actor (hearer / person)

:actee (ID2 / kneading_blade

:determiner the)

:destination (ID3 / baking_pan

:determiner the)

:tense present

:speechact imperative)

(ID4 / pour

:actor (hearer / person)

:actee (ID5 / water

:determiner the)

:destination (ID6 / baking_pan_interior

:determiner the)

:tense present

:speechact imperative)

(ID7 / pour

:actor (hearer / person)

:actee (ID8 / flour

:determiner the)

:destination (ID9 / baking_pan_interior

:determiner the)

:tense present

:speechact imperative)

(ID10 / pour

:actor (hearer / person)

:actee (ID11 / yeast

:determiner the)

:destination (ID12 / baking_pan_interior

:determiner the)

:tense present

:speechact imperative)

(ID13 / open

:actor (hearer / person)

:actee (ID14 / lid

:determiner the)

:tense present

:speechact imperative)

(ID15 / insert

:actor (hearer / person)

:actee (ID16 / baking_pan

:determiner the)

:destination (ID17 / main_body_interior

:determiner the)

:tense present

69

:speechact imperative)

(ID18 / close

:actor (hearer / person)

:actee (ID19 / lid

:determiner the)

:tense present

:speechact imperative)

(ID20 / press

:actor (hearer / person)

:actee (ID21 / breadmaker_on_button

:determiner the)

:tense present

:speechact imperative)

(ID22 / touch

:actor (hearer / person)

:actee (ID23 / main_body

:determiner the)

:exhaustive-duration (ID24 / heating_period

:determiner the)

:tense present

:speechact neg-imperative)

(ID25 / touch

:actor (hearer / person)

:actee (ID26 / steam_vent

:determiner the)

:exhaustive-duration (ID27 / heating_period

:determiner the)

:tense present

:speechact neg-imperative)

(ID28 / flash

:actor (ID29 / complete_light

:determiner the)

:tense future

:speechact assertion)

(ID30 / open

:actor (hearer / person)

:actee (ID31 / lid

:determiner the)

:tense present

:speechact imperative)

(ID32 / remove

:actor (hearer / person)

:actee (ID33 / baking_pan

:determiner the)

:source (ID34 / main_body_interior

:determiner the)

:tense present

:speechact imperative)

(ID35 / remove

:actor (hearer / person)

:actee (ID36 / bread

:determiner the)

:source (ID37 / baking_pan

:determiner the)

:tense present

:speechact imperative)))

70

Bibliography

Advanced Technologies Applications, Inc. (1994). DocExpress: Documentation made easy. Infor-

mation pamphlet.

Agre, P. E. and Horswill, I. (1992). Cultural support for improvisation. In Proceedings of the AAAI

Conference, pages 363{368.

Black & Decker (1994). Instruction manual for All-In-One Automatic Breadmaker.

Delin, J., Scott, D., and Hartley, T. (1993). Knowledge, intention, rhetoric: Levels of variation

in multilingual instructions. In ACL Workshop on Intentionality and Structure in Discourse

Relations, pages 7{10.

Di Eugenio, B. (1992). Understanding natural language instructions: The case of purpose clauses.

In Proceedings of the 30th ACL Conference, pages 120{127.

Feiner, S. K. and McKeown, K. (1990). Coordinating text and graphics in explanation generation.

In Proceedings of the AAAI Conference, pages 442{449.

Goldberg, E., Driedger, N., and Kittredge, R. (1994). Using natural-language processing to produce

weather forecasts. IEEE Expert, 9(2):45{53.

Halliday, M. A. K. (1976). System and Function in Language. Oxford University Press, London.

Edited by G. R. Kress.

Hovy, E. H. (1988). Generating Natural Language Under Pragmatic Constraints. Lawrence Erlbaum,

Hillsdale, NJ.

Kosseim, L. and Lapalme, G. (1994). Content and rhetorical status selection in instructional texts.

In Proceedings of the Seventh International Workshop on Natural Language Generation, pages

53{60.

Levesque, H. J. and Reiter, R. (1995). Concurrency and continuous time in the situation calculus.

Forthcoming.

71

Lin, F. (1995). Work in progress.

Mann, W. C. (1985). An introduction to the Nigel text generation grammar. In Benson, J. D., Free-

dle, R. O., and Greaves, W. S., editors, System Perspectives on Discourse: Selected Theoretical

Papers from the 9th International Systemic Workshop, volume 1. Ablex.

Mann, W. C. and Thompson, S. A. (1986). Rhetorical Structure Theory: Description and construc-

tion of text structures. In Kempen, G., editor, Natural Language Generation: New Results in

Arti�cial Intelligence, Psychology, and Linguistics, pages 279{300. Kluwer Academic Publishers,

Dordrecht, Boston.

Mann, W. C. and Thompson, S. A. (1988). Rhetorical Structure Theory: Toward a functional theory

of text organization. Text, 8(3):243{281. Also available as USC/Information Sciences Institute

Research Report RR-87-190.

Matthiessen, C. M. I. M. (1985). The systemic framework in text generation: Nigel. In Benson,

J. D., Freedle, R. O., and Greaves, W. S., editors, System Perspectives on Discourse: Selected

Theoretical Papers from the 9th International Systemic Workshop, volume 1. Ablex.

Mellish, C. and Evans, R. (1989). Natural language generation from plans. Computational Linguis-

tics, 15(4):233{249.

Moore, J. D. and Paris, C. L. (1989). Planning text for advisory dialogues. In Proceedings of the

27th Annual Meeting of the Association for Computational Linguistics, pages 203{211.

Paris, C. L. and Scott, D. (1994). Stylistic variation in multilingual instructions. In Proceedings of

the Seventh International Workshop on Natural Language Generation, pages 45{52.

Penman (1989). The Penman Documentation. USC Information Sciences Institute, Penman Natural

Language Group.

Pinto, J. A. (1994). Temporal Reasoning in the Situation Calculus. PhD thesis, University of

Toronto. Also available as Technical Report KRR-TR-94-1.

Pollack, M. (1986). Inferring Domain Plans in Question-Answering. PhD thesis, University of

Pennsylvania.

Reiter, E., Mellish, C., and Levine, J. (1992). Automatic generation of on-line documentation in

the IDAS project. In Third Conference on Applied Natural Language Processing, pages 64{71.

Reiter, E., Mellish, C., and Levine, J. (1995). Automatic generation of technical documentation.

Applied Arti�cial Intelligence, 9.

72

Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (sometimes)

and a completeness result for goal regression. In Lifschitz, V., editor, Arti�cial Intelligence

and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages 359{380.

Academic Press, San Diego, CA.

Rosch, E. (1978). Principles of categorization. In Rosch, E. and Lloyd, B., editors, Cognition and

Categorization, pages 27{48. Lawrence Erlbaum, Hillsdale, NJ.

R�osner, D. and Stede, M. (1994). Generating multilingual documents from a knowledge base: The

TECHDOC project. In Proceedings of COLING-94.

Sacerdoti, E. (1975). A structure for plans and behavior. Technical Report TN-109, SRI.

Sandewall, E. (1989). Combining logic and di�erential equations for describing real-world systems.

In Proceedings of the International Conference on Knowledge Representation. Toronto, Canada.

Tate, A. (1976). Project planning using a hierarchical non-linear planner. Dissertation Abstracts

International Report 25, University of Edinburgh, Edinburgh, U.K.

Vander Linden, K. (1993). Speaking of Actions: Choosing Rhetorical Status and Grammatical Form

in Instructional Text Generation. PhD thesis, University of Colorado. Also available as Tech-

nical Report CU-CS-654-93.

Wahlster, W., Andr�e, E., Finkler, W., Pro�tlich, H., and Rist, T. (1993). Plan-based integration of

natural language and graphics generation. Arti�cial Intelligence, 63:387{427.

Wahlster, W., Andr�e, E., Graf, W., and Rist, T. (1991). Designing illustrated texts: How language

production is in
uenced by graphics generation. Technical Report RR-91-05, DFKI.

73

