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Articulatory Knowledge in the Recognition
of Dysarthric Speech

Frank Rudzicz, Student Member, IEEE

Abstract—Disabled speech is not compatible with modern gen-
erative and acoustic-only models of speech recognition (ASR). This
work considers the use of theoretical and empirical knowledge of
the vocal tract for atypical speech in labeling segmented and unseg-
mented sequences. These combined models are compared against
discriminative models such as neural networks, support vector ma-
chines, and conditional random fields. Results show significant im-
provements in accuracy over the baseline through the use of pro-
duction knowledge. Furthermore, although the statistics of vocal
tract movement do not appear to be transferable between regular
and disabled speakers, transforming the space of the former given
knowledge of the latter before retraining gives high accuracy. This
work may be applied within components of assistive software for
speakers with dysarthria.

Index Terms—Articulatory models, discriminative methods,
dysarthria.

I. INTRODUCTION

HERE are several simplifying assumptions in automatic

T speech recognition (ASR) that have become particularly
ingrained. One such assumption is that the acoustics of speech
can be adequately described while being agnostic to non-sur-
face phenomena. Although ASR takes a few important cues
from the biological perception of speech, such as the Mel scale
[1], it rarely models physical production explicitly. Secondly,
modern ASR is often built assuming that models trained on a
sufficiently large set of speakers will adequately capture enough
inter-speaker variability to be usable by a typical user. The fur-
ther one’s voice deviates from this aggregate, however, the less
likely an ASR system is to function as intended, as shown next.
Each of these simplifications can appear to be useful in certain
contexts but their utility in the presence of more atypical patterns
of production can be contentious, especially in cases of speech
disorder. One group of such disorders, called dysarthria, is pri-
marily an endogenous phenomenon distinguished by its aber-
rant mechanics of articulation resulting in highly unintelligible
speech that is not accommodating to the traditional assumptions
of speech recognition. This paper describes work whose goal is
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to improve speech recognition accuracies for dysarthric individ-
uals by augmenting acoustic models with articulatory informa-
tion. The relationships between acoustics and articulation are
especially relevant for these speakers, for whom normal speech
production is compromised. After an introduction to the effects
of dysarthria, this paper presents a new database of dysarthric ar-
ticulation and several experiments in articulatory modeling for
recognition of atypical speech.

The purpose of this work is to discover how traditional
acoustic modeling of dysarthric speech can be improved with
articulatory information and to expand on recent work in this
area [2], [3].

A. Dysarthria

Dysarthria is a set of congenital and traumatic neuromotor
disorders that impair the physical production of speech. These
impairments reduce or remove normal control of the primary
vocal articulators but do not affect the regular comprehension
or production of meaningful, syntactically correct language.
Congenital causes of dysarthric speech are often caused by
some sort of asphyxiation of the brain, inhibiting normal de-
velopment in the speech—motor areas. Of these causes, cerebral
palsy is among the most common, affecting approximately
0.5% of children in North America [4], 88% of whom are
dysarthric throughout adulthood [5]. Later-onset causes are
more typically traumatic, including cerebro-vascular stroke
affecting approximately 1% of the population aged 45 to 64,
and 5% of those aged 65+, with the severity of impairment
varying with the amount of cerebral damage [5]. Other sources
of dysarthria include multiple sclerosis, Parkinson’s disease,
myasthenia gravis (i.e., blocked acetylcholine receptors), and
amyotrophic lateral sclerosis (ALS).

Neurological bases of dysarthria involve damage to the cra-
nial nerves that control the articulatory musculature of speech
[6]. For example, damage to the glossopharyngeal nerve typi-
cally reduces control over vocal fold vibration (i.e., phonation),
resulting in either guttural or grating raspiness. Inadequate con-
trol of soft palate movement caused by disruption of the vagus
cranial nerve may lead to a disproportionate amount of air being
released through the nose during speech (i.e., hypernasality).
More commonly, a lack of tongue and lip dexterity often pro-
duces heavily slurred speech and a more diffuse and less differ-
entiable vowel target space [7]. The lack of articulatory control
often leads to various involuntary sounds caused by velopharyn-
geal or glottal noise, or noisy swallowing problems [8].

Dysarthric speech can be up to 17 times slower than regular
speech, at about 15 words per minute in severe cases [9]. Apart
from being more laborious for the speaker and listener, slow
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speech has several acoustic consequences. For example, human
listeners often mispartition words and syllables prolonged by
lengthened vowels or extended occlusions preceding voiceless
plosives [10]. Other types of disfluency commonly associated
with dysarthria (especially in conjunction with apraxia) include
hesitation (e.g., false starts) and repetition (e.g., stuttering),
although these actually result from higher-level linguistic
causes [11]. These sorts of disfluencies can produce severely
atypical phrasing which is difficult to comprehend at the utter-
ance level. Despite a great amount of inter-speaker variability,
dysarthric individuals who can maintain a regular speaking rate
are able to repeat individual speech units with fairly normal
consistency [7].

Standardized Assessments: Clinical assessments of motor
function and intelligibility in speakers with dysarthria are often
used by speech therapists for rehabilitation [11]. The Frenchay
Dysarthria Assessment, for example, is a standard series of tests
that individually measure respiration, reflex, speaking rate, the
strengths of various articulators, and word and phrase intelligi-
bility on 9-point scales [12]. Since intelligibility correlates well
with ASR accuracy [13], these assessments are used to find
correlations between particular speech deficits and observations
across several speech classification models. For instance, the
degree of tongue disability is a theoretical indicator of poorer
discrimination between front and back vowels.

B. Representations for Speech Production

Articulatory features (AFs) are quantized abstractions of
speech production according to distinctive configurations of the
vocal tract.! They provide an inventory of the types of sounds
humans can produce [1], [18]. The study of AFs in recent
phonetics dates back at least to Chomsky and Halle [19], who
represented sounds of speech as vectors of binary features (e.g.,
nasal/non-nasal, voiced/voiceless). That work showed that
some context-sensitive phonetic variation could be specified
by transformational rules based on phoneme sequences and
syntactic trees (e.g., /p/ is aspirated if it begins a syllable onset
consonant cluster, as in prim, but not aspirated if it ends that
onset, as in spin).

Here, articulatory features are collected into seven categories,
each with a number of possible values. For example, a segment
of speech can be concurrently voiced, nasal, and static, which
represent values for three distinct features. Parallelizing streams
of information in this manner allows asynchronous modula-
tion of speech acts across phoneme boundaries, which can par-
tially account for coarticulation effects and speaker variability
[20], which are particularly exacerbated in dysarthric speech.
Other useful properties reported of AFs include language-in-
dependence and reliable recovery from acoustics among reg-
ular speakers [21]. The features used here are based on those
of Wester [22] and are listed in Table 1.

In the absense of AF annotations, AF values can be derived
directly from phoneme annotations. In this study, we assign

! Articulatory features are sometimes called phonological features in the liter-
ature (e.g., by Clements [14] and by King and Taylor [15]). However, the latter
term has largely been superseded by the former in the literature (e.g., by Kirch-
hoff [16] and by Metze [17]). In this paper, the term articulatory feature must be
differentiated from articulatory measurements, which refer to direct recordings
of the vocal tract.

TABLE I
ARTICULATORY FEATURES, A DESCRIPTION OF THEIR CHARACTERISTICS,
AND THEIR POSSIBLE VALUES

Feature Description (and values)

Manner (M) high-level categorization of speech sound
approximant, fricative, nasal, retroflex,
silence, stop, vowel

Place (PI) location of primary constriction

alveolar, bilabial, dental, labiodental,
velar, silence,nil
ventral position of the tongue
high, mid, low, silence, nil
anterior position of the tongue
front, central, back, nil

High/Low (HL)

Front/Back (FB)

Voice (V) presence/absence of glottal vibration
voiced, unvoiced

Round (R) circularity of the lips
round, non-round, nil

Static (S) movement of articulators (e.g., diphthong)

static, dynamic

(b)

Fig. 1. Example configuration of electromagnetic articulography. (a) shows a
subject connected within the recording environment, and (b) shows the typical
locations of receiver coils on the midsagittal plane (i.e., V velum, TD tongue
dorsum, TB tongue body, TT tongue tip, UI upper incisor, LI lower incisor, UL
upper lip, and LL lower lip).

to each MFCC frame of data a seven-dimensional vector
of AF values based exclusively on the phoneme annotation
at that frame. This assignment is derived directly from the
phoneme-to-AF transformation table in Frankel et al. [21]. This
incorporates recommendations by Wester et al. [23] in which
the Front/Back feature includes the normally excluded central
value, and diphthongs are split in half into their component
vowels, which are mapped to their corresponding AFs. Unlike
Frankel et al. [21], we label the Place feature of phonemes /b/
and /m/ as bilabial rather than labiodental.

A more empirical approach to production knowledge is de-
rived from direct measurement of the vocal tract during speech
with semi-invasive procedures such as electromagnetic articu-
lography (EMA), magnetic resonance imaging (MRI), X-ray
microbeam analysis [24], or electropalatograph. These proce-
dures capture motions of external (e.g., lips) and internal (e.g.,
tongue, velum) actuators with sufficient temporal and spatial
resolution to accurately reconstruct physical activity [25]. EMA
is the source of kinematic data used in our experiments next.
Here, the positions of the tongue, lips, and other articulators can
be accurately inferred at a rate of 200 Hz to within 0.5 mm [26]
relative to fixed transmitters around the speaker’s head that pro-
duce alternating magnetic fields. These systems produce no au-
dible noise, and the coils do not interfere with regular speech.
Fig. 1 shows typical configurations of the EMA cube and the
placement of the receiver coils.
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Fig. 2. Comparison of recognition accuracies for control and ataxic speakers
across Microsoft Dictation, Dragon NaturallySpeaking, and KES VoicePad Plat-
inum, from Hux et al. [29]. Boxes represent average accuracies, with errorbars
representing minimum and maximum accuracy over five trials.

II. PREVIOUS WORK

There have been a number of attempts at improving speech
recognition for speakers with dysarthria, and other attempts at
integrating articulatory knowledge into ASR, but these two ef-
forts have so far not converged. The following subsections de-
scribe the state of the art in each sub-domain.

A. Speech Recognition for Speakers With Dysarthria

Early work in applying ASR to individuals with dysarthria
almost exclusively involved the use of hidden Markov models
(HMMs) whose parameters were trained to the general pop-
ulation. Usually, these involved small-vocabulary recognition
tasks with word-recognition accuracies significantly lower for
speakers with dysarthria, often at least 26.2% lower than the
general population [27]. For example, given a vocabulary of 40
words, Noyes and Frankish [28] report mean word-recognition
accuracies of 58.6% for speakers with dysarthria compared
with 95% for the general population. Hux et al. [29] report sim-
ilar divergences with continuous sentences in three commercial
ASR dictation systems, namely Microsoft Dictation, Dragon
NaturallySpeaking (DNS), and Kurzweil Education Systems’
VoicePad Platinum. All systems performed significantly better
with regular speech, averaging between 83.4% (Microsoft) and
89.9% (Dragon) word-recognition, compared with between
50.9% (VoicePad) and 64.7% (Dragon) for speakers with
dysarthria. These results are shown in Fig. 2. Despite their
relatively poor results, however, such commercial ASR systems
have been shown to improve accuracy and speed in simple
text-entry for physically disabled individuals relative to other
modes of input (e.g., scan-and-switch) [30], [31].

Several projects have attempted to adapt to dysarthric speech
without considering the causes or features of dysarthria. For
example, feed-forward neural networks supplied with either
Fourier spectral coefficients or formant frequencies have been
shown to reduce error relative to commercial HMM-based sys-
tems by up to 40% on isolated word-recognition for cerebrally
palsied speech [32]. Adapting HMM acoustic models trained
to the general population given dysarthric data has also shown
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Fig. 3. Two-frame dynamic Bayes networks with articulatory features (DBN-F
(default), left, and DBN-F (sparse), right). Nodes Ph, Q, and O represent
phoneme, state, and MFCC observations. All other variables are highlighted in
Table I. Inter-frame conditional links are dashed for clarity.

to improve accuracy, but not as much as training those models
exclusively with dysarthric acoustics, especially in the more
severe cases [10], [33].

More recently, attempts have been made to improve ASR
accuracies by focusing on the types of errors made with
dysarthric speech. Polur and Miller [34], for example, produced
ergodic HMMs that allow for “backwards™ state transitions.
This ergodic structure is meant to capture aspects of dysarthric
speech such as stuttering and disruptions during sonorants (e.g.,
pauses) and reveals small but definite improvements over the
traditional baseline. Morales and Cox [35] improved word-error
rates by approximately 5% on severely dysarthric speech and
approximately 3% on moderately dysarthric speech by building
weighted transducers into an ASR system according to ob-
served phonetic confusion matrices. A commonality among
all this work is that the actual articulatory behavior of the
dysarthric speech has not been taken into account.

B. Speech Recognition With Articulatory Information

Discrete articulatory feature recognition has been applied
to identifying values for concurrent features (similar to those
in Table I), usually independently from phone recognition
or more general ASR [36]. Neural network discriminative
classifiers have been shown by King and Taylor [15], Kirchhoff
[16], and Scharenborg et al. [37] to correctly identify approx-
imately 53% of simultaneous multivalued AFs, on average,
for non-dysarthric speech (e.g., from TIMIT). More recently,
dynamic Bayes networks have been applied to this problem, on
similar data, and using structures similar to the sparser variant
in Fig. 3 [21]. This model correctly identified 57.8% of similar
multivalued AFs on non-dysarthric speech.

Articulatory knowledge has had relatively little historical
presence in ASR despite evidence that articulatory control is
often far more speaker-invariant than the resulting acoustics
[38]. Typically, such knowledge is manifested as decision
trees that support state-tying in semi-continuous ASR systems
[39]. Here, knowledge of common articulatory features (e.g.,
nasality in /m/ and /n/) allows states in HMM models for
different phones to be trained on shared data. There have,
however, been a few attempts to build more explicit production
knowledge into phoneme- and word-recognition systems. For
example, appending articulatory measurements to acoustic
observations has shown to reduce phone-error relatively by up
to 17% on a speaker without dysarthria in a standard HMM
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system (however, if those articulatory measurements are in-
ferred from acoustics, this improvement disappeared) [40].
Similar work on incorporating AFs learned discriminatively
with maximum mutual information into HMM systems have
reduced word-error rates from 25% to 19.8% on English spon-
taneous scheduling tasks [17]. Along the same lines, systems
incorporating discrete AFs derived by NNs from acoustics
into HMM-based ASR have shown some improvement over
the acoustic-only baselines [41], [16], although these results
were often statistically insignificant except in the presence of
extreme environmental noise [36].

More recently, Bayes networks have seen increased use in
modeling interdependencies between articulation and acoustics
in regular speech [42]. Stephenson et al. [43] showed that simple
Bayes networks relating MFCC observations with Wisconsin’s
X-ray microbeam articulatory data [24] resulted in a 9% word-
error rate reduction when compared with a baseline acoustic-
only ASR system. Markov et al. [44] followed this work with a
series of simpler Bayes networks that estimated the likelihood of
acoustic observations given discretized articulatory parameters,
achieving similar results when combined with an HMM-based
ASR system.

A commonality among all of this work is its reliance on non-
dysarthric data where articulatory and acoustic patterns are less
disordered than in speakers with cerebral palsy and other neu-
romotor disabilities [20].

III. DATA

Three speech databases are used in this study. The first
consists of dysarthric acoustics, but without direct vocal tract
measurements. The second includes vocal tract measurements,
but only for speakers without dysarthria. The third database
includes EMA recordings of speakers with dysarthria, and is
currently being recorded at the University of Toronto. These
databases are described next.

A. Nemours Database

The Nemours database is a popular source of phonemically
annotated dysarthric acoustics consisting of 11 dysarthric
males and one non-dysarthric male each uttering 74 syntacti-
cally invariant short sentences and two additional paragraphs
[45]. Here, phonemic annotations were automatically derived
by HMM-based forced alignment given known orthography
and corrected manually by the authors of that database. Each
speaker is also associated with a complete Frenchay assess-
ment of motor function. Since no physiological information
is included, articulatory features are derived directly from
phonemic annotations as described in Section I-B and provide
the bases for production knowledge in Section V.

B. MOCHA Database

The University of Edinburgh’s MOCHA database consists of
460 sentences derived from TIMIT [46] uttered by a male and
a female British speaker [47]. All acoustic data are temporally
aligned with EMA and laryngograph measurements. For this
study we use eight bivariate articulatory parameters, namely the
upper lip (UL), lower lip (LL), upper incisor (UI), lower incisor
(LI), tongue tip (TT), tongue blade (TB), tongue dorsum (TD),

and velum (V). Each parameter is measured in the two dimen-
sions of the midsagittal plane, resulting in a 16-dimensional ar-
ticulatory configuration.

C. TORGO Database of Dysarthric Articulation

The TORGO database [48] is an ongoing project that con-
sists of aligned acoustic and articulatory recordings for the pur-
pose of learning statistical relationships between dysarthric and
non-dysarthric speech production. This database currently con-
sists of seven dysarthric subjects with either cerebral palsy or
amyotrophic lateral sclerosis (ALS), and gender-matched con-
trols. Each participant has recorded 3 hours of data (approxi-
mately 500 utterances from each speaker with dysarthria and
1200 from speakers without dysarthria) split across multiple
sessions in two 3-D measurement environments, namely EMA
and a 3-D reconstruction given binocular video recordings of
phosphorescent facial markers [49]. In general, video provides
more facial motion data (e.g., the depressor anguli oris muscle)
but excludes any tongue motion. Since speakers with dysarthria
are in the minority and susceptible to fatigue, collecting data
from this population can be particularly challenging. Most pub-
lished experiments typically include no more than three or four
speakers with dysarthria [50], often producing only about 25 ut-
terances each [32] for on the order of 100 samples in total. Sim-
ilarly, Yunusova et al. [51] recorded 15 speakers with ALS and
Parkinson’s disease, but each speaker repeated only ten word
stimuli each.

In this paper, we concentrate on our EMA recordings, which
constitute approximately 60% of our data. Unlike the MOCHA
database, our recordings include points outside the midsaggital
plane, namely the two lip corners and one point behind each ear,
but not on the velum. In addition to typical issues of speech data
collection such as the need to suppress environmental noise, the
development of the TORGO database has incurred some addi-
tional challenges specific to the population. Decreased control
of salivation and an increased risk of a severe gag reflex among
cerebrally palsied participants can make placing coils on the
tongue very difficult, so approximately 12% of EMA data from
dysarthric individuals does not include the rearmost tongue po-
sitions. Involuntary movement such as shaking or extension of
the neck also presents a problem for video recording, as the
points on the face become occluded.

Stimuli are read by the participants from an LCD screen and
are randomized at runtime within smaller collections to ensure
direct comparability between speakers who complete data at dif-
ferent rates. Single-word stimuli include repetitions of the Eng-
lish digits, the international radio alphabet, the 20 most frequent
words in the British National Corpus, and words selected by
Kent et al. to demonstrate relevant articulatory contrasts (e.g.,
alveolar-palatal fricatives, front-back vowels, stop-nasals) [52].
These contrasts are especially relevant given speakers with artic-
ulatory disorders. Single-word stimuli are useful to study vari-
ation in isolation without boundary detection. Sentence stimuli
are derived from the Yorkston—-Beukelman assessment of intel-
ligibility [53] and the TIMIT database [46]. Sentences in the
Yorkston—-Beukelman assessment are designed to highlight per-
ceptual contrasts in speech that are relevant to speaker intelli-
gibility. We complement these with sentences from TIMIT in
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Fig. 4. Repetitions of /iy pcl p ah/ over 1.5 s by (a) a male speaker with athetoid
CP, and (b) a female control in the TORGO database. Dysarthric speech is no-
tably slower and more strained than regular speech.

order to more readily compare results performed with our data-
base with those performed with others. The use of sentences in
general allow for the use of higher-level syntax and language
modeling in ASR.

Fig. 4 exemplifies some typical acoustic contrasts between
dysarthric and non-dysarthric speech in TORGO. On average,
dysarthric vowels are 116.7 ms while control vowels are 45.5
ms. This might partially be explained by an increase of brief
staccato gaps in exhalation during sonorants. Dysarthric vowel
acoustics are also slightly more variable, with an average vari-
ance across the first seven mel-scaled frequency cepstral coef-
ficients of 12.1, against 9.8 in control data. Notably, speakers
with dysarthria mispronounce plosives in word-initial, -medial,
and -final positions 16%, 20%, and 19% of the time, respec-
tively, and substitutions in this class are exclusively from un-
voiced to voiced. By comparison, only 5% of corresponding
plosives are mispronounced in regular speech, either dropped
in the final position or incorrectly voiced in word-medial po-
sitions. Also, our dysarthric data often includes many deleted
affricates in word-final and fricatives in word-initial positions,
almost all of which are static and alveolar. This does not occur
in the corresponding non-dysarthric data.

All data are being phonemically annotated to the TIMIT
phone set [46] by a speech-language pathologist to allow
supervised frame-level training of phone-dependent acoustic
and kinematic models. These annotations are further checked
by two naive listeners for consistency, although automatic
phonemic labeling by forced alignment on similar data has
been shown to be sufficient for certain tasks [54]. Additionally,
all dysarthric participants are diagnosed by a speech-language
pathologist according to the standardized Frenchay Dysarthria
Assessment (Section I-A). The following experiments make use
of data from two speakers with dysarthria (male and female)
and two speakers without (male and female) whose data are
fully annotated at the time of this writing.

IV. CLASSIFICATION METHODS

Throughout the following experiments we apply five classifi-
cation methods which are described next.

A. Hidden Markov Models (HMMs)

The default baseline is a tristate left-to-right triphone HMM
with observation likelihoods at each state computed over mix-
tures of 16 Gaussians through marginalization amenable to

normal expectation-maximization training with Baum—Welch
and Viterbi decoding. An HMM is evaluated by the Forward
algorithm, in which the probability of the observation sequence
o is modeled by

ZP

which sums over all possible sequences of hidden states q.
These quantities are also used in computing the objective func-
tion during Baum—Welch training [18]. Prior to training each
HMM, the Gaussian mixtures for all states are first initialized to
a common Gaussian mixture obtained by performing k-means
clustering with full covariance over all data for the associated
triphone. If fewer than five examples of the triphone exist,
data for the associated monophonic root are used instead. This
approach to dealing with sparse triphone data is taken for all
other classification methods as well.

P(o|q) ey

B. Latent-Dynamic Conditional Random Fields (LDCRF's)

The discriminative latent-dynamic conditional random field
is a sequence classifier differing from the HMM in that its es-
timation of the distribution over a sequence of labels 1 (where
the sth label /; € £ for some vocabulary of labels £) does not
model the observation prior P(0), as shown in (2). This model
extends traditional conditional random fields in that it models an
intrinsic sequential substructure using hidden states, and differs
from “hidden state” CRFs in that labels are assigned dynami-
cally on a frame-by-frame basis, rather than once to the entire
sequence [55].

In CRFs, the parameter set 6 defines the weights (0, € 6)
applied to feature functions f; of the graphical model, which
are analogous to state and observation variables in HMMs (see
Lafferty et al. [56]). In fact, the parameters £ are analogous to
logarithms of the conditional probabilities present between vari-
ables in HMMs (i.e., transition probabilities and state-specific
observation probabilities) and are initialized randomly. In this
approach, we wish to measure the likelihood of a particular la-
beling 1 of an observation sequence o given some parameteri-
zation 6. This quantity must be computed over all possible se-
quences of hidden states (where q is a particular state sequence)
that produce that label sequence, where each state ¢; comes from
the set Q;, of states associable with a particular label /; at time s.
For example, an LDCRF model for phoneme /m/ might have
three hidden states (i.e., |Q,,| = 3) which are distinguished
from the states in the other phoneme models. In other words,

S~ P(lq,0,6)P(qlo, ) )

qQ:¢:;€Q;

P(l]o,0) =

where P(qlo, ) is the standard conditional random field for-
mulation that defines state and transition functions [56], [55],
namely

exp(2_ O Fi(q, 0))
2r exp(Xy, i Fi(r, 0))
where F(q, o) is the sum over all state transition feature func-

tions applicable to q and observation feature functions appli-
cable to o.

P(qlo,0) = 3)
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TABLE II
NUMBER OF HIDDEN UNITS PER NN, GIVEN TARGET FEATURE

Feature # hidden units | Feature # hidden units
Manner 300 Voice 100
Place 200 Round 100
High/Low 100 Static 100
Front/Back 200

Given a training set of labeled sequences (0;,1;) where i =
1... N, we apply conjugate gradient ascent to find the optimal
parameter values §* = arg maxg L(6) given the following ob-
jective function:

N
1
L(0) =Y log Pllilos,6) = s IO
=1

which is the log-likelihood of the parameterization given
by the conditional log-likelihood of each training sequence
log P(1;|0;,6) and the Gaussian prior likelihood of 6 with
variance o2, If the parameter space 6 is uniformly distributed,
as we assume here, o approaches infinity and we discount the
second term. Further details on training LDCRFs can be found
in Morency et al. [55].

The label sequence hypothesis 1* is obtained by marginal-
izing over the sets of states Q;, given the label /; at time ¢

>

q: Vi tet

P(qlo, 8%). 5)

I* = arg max
1

C. Neural Networks (NN)

Despite their general popularity, NNs are rarely studied with
regards to dysarthric acoustics, with some exceptions [32].
The two types of NN we consider here are the feed-forward
multi-layer perceptron (MLP) and the recurrent Elman network
(ELM) [57], which are primarily distinguished by the latter’s
time-delayed replication of the hidden layer as additional
contextual input. The output of each AF NN consists of n
nodes, where n is the cardinality of the class being modeled
(i.e., either AF or phone), and the ¢th node is uniquely active
when training the sth value of that class. Given the presence of
21464 triphones in our data, this approach is not tenable for
NNs that recognize triphones. Here, 15 output neurons are used
in which each of the 2! possible binary output combinations
are mapped to a unique triphone (or a “null” triphone not
considered in classification). The sizes of hidden layers in
AF neural networks are based empirically on similar work on
non-dysarthric speech [37], [21] and shown in Table II. All NN
triphone classifiers contain 500 hidden units.

Activation functions at each node are tan-sigmoid (i.e.,
a(z) = [2/(1+e72¥)] — 1) in the hidden layer, and linear in the
output layer, given a weighted sum of all inputs z = ) Wi,
where a; is the activation of node j and wj is the weight of
the connection from node j to the current node, as usual. All
NN training is performed by resilient back-propagation, which
adjusts update values according to sign changes in partial
derivatives. Here, the degree of updates is reduced if weights
oscillate over several iterations and is increased when weights

continually change in the same direction. This approach is
faster than standard steepest descent on our data, while only
requiring a modest increase in memory.

All networks are fully connected between layers and select
the class having the highest posterior probability.

D. Support Vector Machines (SVMs)

General maximum margin classifiers are of increasing in-
terest in ASR due to their robustness against both sparse data
[58] and rapid transient changes in acoustic sequences [59].
SVMs explicitly minimize an upper bound on the expected clas-
sification error by orienting a hyperplane between classes such
that the norm of its orthogonal vector maximizes the margin be-
tween the nearest data. We use a soft-margin SVM here and ex-
tend the process to k-class discrimination by training k(k—1)/2
binary classifiers, each delineating two class regions [60].

SVMs depend on kernel functions « to describe the distance
between two points of data. We consider two of these that differ
slightly in the form of their input. The first kernel is a symmetric
radial basis function (RBF), that generalizes to nonlinear deci-
sion boundaries using the following function:

M)

202

KRBF(X,y) = exp <— (6)
given vectors x and y, and width parameter o.

The second kernel xkpTw is a sequence kernel that can be
generalized to arbitrary sequences u and v having non-equal
lengths, as proposed recently by Wan and Carmichael [58]. This
kernel exploits the notion of distance between sequences in-
herent in dynamic time warping (DTW), and converts it to a
form amenable for use in SVMs. The approach is to convert
local Euclidean distances between frame vectors to angles by
projecting these d-dimensional vectors onto a unit hypersphere
H centered « units from their origin in the (d + 1)st dimen-
sion. Namely, every vector u; is converted to the unit vector ;
sharing an origin with H by

L 1 U;
Ui_\/u?+a2{o‘} @

Given two unit vectors, 7; and ©; that define points on the
surface of H, the angle between them is by definition

ds(uAi,’UAj) = defj = arccos(u},v}). (8)

Now, given these local distances, we apply symmetric DTW
on whole sequences u and v and get the minimum global dis-
tance from the nonlinear aligned Viterbi path I" with

1 1T
Dglobal(u7 V) = ml'i'n m Z dS (’LZ\P? UAP) (9)
p=1

This distance is then converted to the kernel
(10)

kpTw (W, V) = c08 Dglobai (U, V)

which is symmetric if the symmetric version of DTW is used,
which is a requirement for use in SVM classification. In order
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TABLE III
CLASSIFIER ACCURACIES AVERAGED OVER SPEAKERS WITH DYSARTHRIA (BEST OF ROW IN BOLD) FOR AF RECOGNITION

Average accuracy (%)
DBN-F NN SVM

Feature Input HMM  default sparse LDCRF MLP ELM RBF DTW u o

Manner 23.8 36.5 32.1 69.1 22.1 302 66.8 65.4 433 190
Place 339 39.6 347 58.8 35.5 419 583 56.5 449 104
Hi/Low 48.6 529 49.0 56.2 53.0 58.7 557 559 53.8 33
Voice MFCC (window) 76.1 71.8 76.3 79.2 78.7 81.3 768 78.1 78.0 1.6
Front/Back 49.0 48.4 49.4 54.0 48.2 52.1 55.1 55.7 51.5 2.9
Round 60.4 64.5 60.6 64.8 68.9 69.7 553 540 | 623 5.4
Static 61.3 65.2 63.6 70.2 64.2 66.5 67.3 692 | 659 28

for the quadratic programming problem to have a definite solu-
tion, the kernel must either be a valid dot product [61], or sat-
isfy Mercer’s condition, which is to say that given a real-valued
kernel k(z,y), all square integrable functions g(z) will give
| [ Kz, y)g(x)g(y)da dy > 0 [62]. While the cosine over an
aggregate of sequences is not strictly a dot-product, it has been
shown to be empirically useful in speech classification nonethe-
less [58].

E. Dynamic Bayes Networks (DBNs)

We are not bound to learning relationships between inputs
and outputs by training the parameters of an otherwise “black
box,” but are free to explicitly provide the topological rela-
tionships between relevant variables in our models, which can
include measurements of kinematic data. Bayes networks pro-
vide a popular statistical framework that allows us to determine
precise instantaneous conditional relationships. Traditional
Bayesian learning is restricted to universal or immutable rela-
tionships and does not model dynamic systems or time-varying
relationships. Dynamic Bayes networks (DBNs) are directed
acyclic graphs connecting random variables that generalize the
stochastic mechanisms of Bayesian learning to time sequences.
Given an N -variable observation sequence Zl(:l}N) of arbitrary
length T, its likelihood is computed by “unrolling” a 2-frame
DBN to 7" frames, and multiplying all posteriors

P = T P (289100 (7))
=1

x ﬁ ﬂ Pp, o (2 Ipax (27)) (1)

t=2i=1

where conditional distributions, B,rrow are drawn over
adjacent frames in time for the ith state at time ¢, Zt(z) by
P(Z|Zi—1) = TIY, P(Z9|par(Z{")), given the parents
of 7, par(Z"). This temporal model generalizes both the
hidden Markov model and the Kalman filter [63]. Given a spec-
ified topology between variables and a data set D, the posterior
distribution over the model parameters 6 is learned either with
maximum likelihood for fully observed sequences, or with
expectation-maximization given hidden variables, enabling
state-based methods [64].

In all graphical depictions of DBN:s, filled and empty nodes
represent observed and hidden variables, respectively. Square
and round nodes are discrete and continuous, respectively.

V. EXPERIMENT SET 1: ACOUSTICS ALONE

We begin by considering the effects of dysarthria in systems
trained solely from acoustic data, which is a considerably more
common scenario than one in which kinematic data are avail-
able. However, given phonemic annotations, we can infer artic-
ulatory features as representative of articulatory knowledge, as
described in Section I-B. We train each classifier both to identify
articulatory features from acoustics and to identify phones given
both acoustics and their identified AFs. In all cases, acoustic
data are sampled at 16 kHz and converted to 42-dimensional
feature vectors of Mel-frequency cepstral coefficients (MFCC)
consisting of Oth- to 12th-order cepstral coefficients, log energy,
and 6 and 66 coefficients. Neither 6 nor 66 observations are
appended to AF components, due to the relative parsimony of
tracking changes in step functions. We apply tenfold cross-val-
idation on random permutations of 90% training and 10% test
data for each speaker in the Nemours database. Training sets
consist of approximately 93 000 frames per speaker on average.

We test two topologies of AF variables within DBNs. The first
is based on similar work by Frankel ef al. [21], and is shown in
Fig. 3(a). The second is a sparser version of that DBN with cer-
tain conditional dependencies removed, as shown in Fig. 3(b).
All AFs are observed in the DBN during training but inferred
during testing.

A. AF Classification With Acoustics

Frame-level accuracies for each AF averaged over all
speakers in the Nemours database are summarized in Table III
for each classifier. Both the LDCRF and SVM methods are
exceptionally proficient at classifying Manner and Place, which
are highly related, and poor at classifying the Round AF despite
its low cardinality. This suggests that there is some other aspect
of those AFs that affects discriminability, at least for SVMs.
The nil class is the most poorly recognized in three of the four
AFs having it. The most frequently confused pairs for each AF
are shown in Table IV, which is generally consistent with the
literature for speakers without dysarthria [16].

In general, SVM methods outperform NN on average by 4.9%
t0 9.3% absolute and provide a 19.8% relative error reduction on
dysarthric speech. On the control subject, AF models achieved
74.3% accuracy for MLP, and 77.6% for RBF, on average. Re-
sults of the SVM methods with this speaker were comparable
though slightly lower than in similar research on non-dysarthric
AF recognition by SVM [65], although that work included far
more training data. Other research on speaker-independent re-
current neural networks for AF recognition on regular speech
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TABLE IV
MOST FREQUENT ERRORS FOR EACH AF ([ACTUAL] — [HYPOTHESIS]
(% TOTAL ERROR))

Feature 1% ond
Manner [vowel]—[approx.] (12%) [vowel]—[retro.] (8%)

Place [nil]—[alv.] (10%) [nil]—[dental] (7%)
Hi/Low [nil]—[low] (14%) [mid]—[low] (11%)
Voice [unvoiced]—[voiced] (68%)  [voiced]—[unvoiced] (32%)
Front/Back [nil]—[central] (19%) [nil]—[back] (17%)
Round [non]—[nil] (26%) [nil]—[non] (22%)
Static [stat.]—[dyn] (54%) [dyn]—[stat] (46%)
80
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Fig. 5. Average classifier accuracy against assessed intelligibility level.

report frame-level accuracies between 85.9% and 91.8% given
~2.2 million frames [21].

1) Effects of Dysarthria: Fig. 5 shows the overall accuracy
of each classification technique according to speaker intelligi-
bility as determined by the Frenchay Dysarthria Assessment
(see Section I-A). These results show a general success of SVM
and LDCRF methods across all speakers, especially the less in-
telligible ones, and a global increase in accuracy with intelli-
gibility. Two speakers perturb this trend, however, with notice-
able drops in accuracy as indicated for speakers “RK” and “BB”
in the figure. These two individuals share exceptionally poor
tongue elevation and lateral movement relative to the rest of the
group which seems to account for their especially low accuracy
with High/Low and Front/Back AFs, which are predicated on
tongue movement and position. According to their Frenchay as-
sessments, “RK” and “BB” both had scores of 0/9 for tongue
elevation and scores of 0/9 and 1/9 for lateral tongue move-
ment, respectively. Only two other speakers, “SC” and “BK.,”
had similarly poor assessments of tongue control, with the latter
also having the lowest intelligibility of all speakers. Table V
shows the recognition accuracies for the two AFs under con-
sideration against the average of all other AFs given an HMM
system. Here, the four speakers identified as having particularly
bad tongue movement have recognition accuracies for Front/
Back and High/Low that are all between 5.3% and 10.2% lower
than for other AFs, on average. By contrast, Front/Back and
High/Low AFs are better recognized than other AFs, on average,
for all speakers without the identified tongue deficit.

TABLE V
RECOGNITION ACCURACIES (% CORRECT) OF FRONT/BACK AND HIGH/LOW
AFs COMPARED WITH THE AVERAGE RECOGNITION ACCURACIES ACROSS
ALL OTHER AFS FOR FOUR SPEAKERS AND THE AVERAGE OF ALL OTHER
SPEAKERS GIVEN AN HMM RECOGNITION SYSTEM

Front/Back  High/Low  avg. other AF
BK 31.2 325 37.8
SC 353 347 41.3
RK 37.1 36.9 47.1
BB 48.6 49.0 55.8
avg. of others 55.3 54.5 54.2
TABLE VI

PHONE CLASSIFICATION ACCURACIES (%) AT THE FRAME LEVEL AVERAGED
OVER SPEAKERS WITH DYSARTHRIA GIVEN VARIOUS TYPES OF OBSERVATION.
ESTIMATED AFS ARE COMBINED WITH MFCC OBSERVATIONS EITHER BY
USING AF ESTIMATORS OF THE SAME TYPE (MFCC+ AF) OR BY USING THE
LDCRF AF ESTIMATOR (MFCC + AFrpcrr)

Input type
MFCC AF  MFCC+AF  MFCC+AF,pcrr
HMM 338 7.4 36.3 37.6
DBN-F (default) 34.1 7.8 37.1 379
DBN-F (sparse) 334 7.5 37.0 38.1
LDCRF 41.2 16.0 41.5 415
NN-MLP 319 5.8 34.8 353
NN-ELM 36.7 11.7 40.2 40.7
SVM-RBF 384 16.2 38.7 40.1
SVM-DTW 39.6 17.9 41.0 41.3

Within these AFs, follow-up analysis revealed linear correla-
tion coefficients up to 0.95 between increased formant deviation
and decreased tongue function. While overall intelligibility may
be useful in predicting general trends in Fig. 5, it is an aggregate
measure of the functions of component articulators, and may be
overridden for speakers having more localized disabilities.

B. Phone Recognition With Acoustics

Finally, we consider whether AFs are useful in identifying
phones. For each of our modeling techniques, we construct three
triphone classifiers that differ by the nature of their observa-
tions. Each of these is trained either with acoustics, with esti-
mated AFs, or with acoustics and estimated AFs concatenated
together. Here, AF estimates are derived both from the outputs
of models having the same type as the phone classifier, or from
the outputs of the LDCRF model which represents the best av-
erage AF estimates achievable. No other heterogeneous com-
bination of models is attempted. Given that the LDCREF is the
most accurate AF classifier, we find it unlikely that other com-
binations would yield much greater accuracies.

All models are applied over whole unsegmented utterances
as continuous tasks. Specifically, each frame of speech is clas-
sified by NN and SVM methods given short windows of input
observations, as described earlier. Connected-state models
of the same type (i.e., either HMM, LDCRF, and DBN) are
connected together so that all phonemes are equally likely to
follow all others. This frame-based approach is taken to eval-
uate these models as substitutes of standard acoustic models,
as is our intention. The use of language models is explored
in Section VI-D. Accuracy is measured at the frame level by
converting estimated triphones to their monophonic roots.

The results in Table VI indicate relative error reductions of
8.8% and 11.2% merely by replacing an HMM model with an



RUDZICZ: ARTICULATORY KNOWLEDGE IN THE RECOGNITION OF DYSARTHRIC SPEECH 955

SVM-DTW and an LDCREF, respectively, given only dysarthric
acoustics, which is significant at the 99% confidence level. Here,
relative error reduction is the absolute difference between the
error rates of the two systems under comparison divided by the
higher error rate of the two. Extending observation vectors to
include AFs reduces error relatively by between 0.5% and 7.1%
over associated acoustic-only models, which represent signifi-
cant improvements at the 99% confidence level for all models
except LDCRF. This result shows a clear benefit of incorpo-
rating AFs into the input of all but one type of acoustic model.
Since the seven AFs are so rarely unanimously correct, they
alone cannot be used to infer the respective phone in practice,
and further research should investigate whether it is more useful
to limit the use of AFs to some subset. No explicit weighting
was applied between the MFCC and AF components of hetero-
geneous vectors, but the relative importance of these parts and
their covariances are inferred during training by each of these
classifiers implicitly.

VI. EXPERIMENT SET 2: INITIALIZATION WITH
ARTICULATORY MODELS

There is increasing evidence that replacing the Gaussian mix-
ture observation densities of HMMs with limited Bayes nets rep-
resenting spacial vocal tract kinematics can improve accuracy
over acoustic-only models for speakers without dysarthria [44].
Although it is impractical to perform articulography on each
speaker we wish to model, we can make use of publicly avail-
able databases such as MOCHA or TORGO to provide baseline
kinematic knowledge that we can adapt to speakers for whom
only acoustic data are available. This scenario is explored in this
section.

We conflate the instantaneous EMA position data from the
MOCHA and TORGO databases (see Section III-C) by first
reducing their dimension to N, = 4 or N, = 8 principal
components by singular value decomposition specific to each
phone in which K = 4, K = 8, or K = 16 mean vectors
are computed according to the sum-of-squares error function.
During training, the DBN variable A is the observed index of
the mean vector nearest to the current frame of EMA data at time
t. During inference, this variable is hidden and we marginalize
over all its values when computing the likelihood. In this way,
DBN-A is essentially a DBN representation of an HMM with
the hidden mixture index replaced by observed quantized artic-
ulation. Similarly, we follow the same procedure on the veloci-
ties and accelerations of the articulators, producing indices A
and A,. These variables are used in alternative DBN topolo-
gies DBN-A2 and DBN-A3. In the first, the observation vector
is trisected, with each 14-dimensional vector (i.e., MFCC, 6, and
86) being conditioned on P, Q, and one of A, A, and A,. The
second alternative structure, DBN-A3, conditions A, on A,
and A, on A and conditions the 42-dimensional observation
vector on all variables. The three kinematic DBN topologies are
shown in Fig. 6.

The MOCHA database uniquely includes velum position and
the TORGO database uniquely includes left and right lip cor-
ners. Both databases include three midsagittal tongue positions,
upper and lower lip, and lower incisor positions.

DBN-A DBN-A3

Fig. 6. Two-frame dynamic Bayes networks with EMA measurements dif-
fering by their connectivity. Nodes Ph, Q. O, A, A, and A, represent
phoneme, state, MFCC observations, and EMA position, velocity, and acceler-
ation, respectively. Inter-frame conditional links are dashed for clarity.

TABLE VII
ACCURACIES OF FRAME-LEVEL PHONE RECOGNITION ACROSS KINEMATIC
DBNS WITH VARYING QUANTITIES OF PRINCIPAL COMPONENTS N,, AND
GAUSSIANS K FOR SPEAKER-DEPENDENT, NON-DYSARTHRIC SPEECH. DATA
ARE OBTAINED FROM THE MOCHA AND TORGO DATABASES

DBN-A DBN-A2 DBN-A3

Np K | MOC. TOR. | MOC. TOR. | MOC. TOR.
4 57.6 58.9 56.9 57.4 57.8 57.5

4 8 66.8 67.2 66.5 67.2 66.8 67.1
16 68.9 69.0 69.1 68.8 69.3 69.3

4 63.3 62.7 63.4 63.0 63.8 63.6

8 8 71.0 70.8 71.1 71.3 71.3 71.6
16 724 724 722 72.1 72.7 72.7

4 64.7 65.0 65.1 65.2 65.2 65.2

16 8 725 72.6 724 724 72.7 725
16 73.6 73.8 73.6 73.9 74.0 74.1

A. Recognition With Non-Dysarthric Speech

The three DBN models are compared on non-dysarthric
speech across the number of principal components NV, and
the number of Gaussians K used in quantization. Reducing
dimensionality across heterogeneous acoustic/articulatory ob-
servations in this way has previously been shown to preserve
important features of both articulation and acoustics [40], [66].
Results of frame-level phone recognition are summarized in
Table VII. Across all topologies and data, N, = 16 is sig-
nificantly more accurate than N, = 8 at the 95% confidence
level and N, = 4 at the 99% confidence level. Results across
MOCHA and TORGO, and across the three topologies, are
statistically indistinguishable. However, both DBN-A2 and
DBN-A3 are several times slower than DBN-A to train.

B. Retraining Dysarthric Acoustics

We retrain models initialized on non-dysarthric data given
new dysarthric acoustics. We retrain each kinematic DBN
with dysarthric acoustics by making indices A, Ay, and A,
hidden after training on non-dysarthric acoustic/articulatory data
(MOCHA and TORGO), and retraining on dysarthric acoustics
(Nemours and TORGO). All HMM and kinematic DBN models
are trained with EM and smoothed junction-tree inference, given
theirhidden variables. Whenretraining the HMM, DBN, NN, and
LDCRF models to dysarthric speech, we initialize new instantia-
tions with the distributions learned on regular speech and retrain
on speaker-specific acoustics until convergence. All training of
the fully observed DBN-F is with maximum likelihood, so adap-
tation involves concatenating the non-dysarthric and dysarthric
training data and learning once. SVM models from previous
sections are not included here, due to the dissimilar manner in
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TABLE VIII
AVERAGE FRAME ACCURACY (%) OF CORRECTLY LABELED PHONES OF
SPEAKER-DEPENDENT AND SPEAKER-RETRAINED (EMA-INITIALIZED)
MODELS, ACCORDING TO THE SEVERITY OF DYSARTHRIA

sev mod  mild ctrl
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which those models are trained. In all cases, training data include
all phones observed during testing and is applied to the 46 phones
that MOCHA, Nemours, and TORGO have in common. Data
are randomly split into 90% training and 10% test data. We
split all dysarthric data from Nemours and TORGO into three
categories according to the level of intelligibility as determined
by the Frenchay assessment [12]. Individuals with intelligi-
bility levels between 0 and 25% are “severe,” between 25% and
62.5% are “moderate,” and between 62.5% and 87.5% are “mild.”
are considered severely and moderately dysarthric, respectively.

Table VIII shows the frame-level accuracy of unsegmented
phone labeling on speaker-dependent and speaker-retrained
distributions for each model, according to the severity of
dysarthria. Here, DBN-A, -A2, and -A3 are trained to mixtures
of 16 Gaussian clusters determined by unreduced (16-dimen-
sional) articulatory data. These results show an increasing ben-
efit of retrained over dependent training on dysarthric speech as
intelligibility increases, with absolute rates of improvement of
0.86%, 1.96%, and 6.03% on severely, moderately, and mildy
dysarthric speech, respectively. Although speaker-dependent
kinematic models are more successful than other models, they
do not adapt as well as the DBN-F or LDCRF models.

These results are generally consistent with similar work that
retrained acoustic-only DBNs to Japanese kinematic data [44]
over 1 or 2 iterations of EM. That work showed error reduction
of between 0.7% and 3.8% on phone classification among a se-
lection of alternative DBNSs relative to a baseline DBN. The per-
formances of DBN-F and HMM are also consistent with similar
work on non-dysarthric models [21].

C. Effect of Sample Size

We examine the effect of increased sample size by retraining
non-dysarthric models with cross-sections of data selected
uniformly at random among all speakers with dysarthria in
Nemours and TORGO, and testing on proportionally increasing
test sets. Fig. 7 suggests that as the amount of dysarthric speech
is increased, the LDCRF model outperforms all others, with an
absolute error reduction of 1.2% over HMM with 670 training
utterances for retraining.

42r
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Fig. 7. Labeling accuracy with increasing amount of dysarthric retraining.

D. Use of Language Models

Although this work is concentrated on articulatory enhance-
ments to acoustic models, in practice the latter are rarely used
alone without some contextual information. Often, bigrams are
used in order to weigh the likelihood of transitioning from one
phoneme or word to another. Since our data consist of many
single-word utterances, we consider phoneme bigrams in which
the probability of one phoneme p; following another p,_; at
time ¢ is given by

P(Pt |Pt—1) =

where N(;,, ) is the total number of occurrences (i.e., whole
sequences of frames) of p; 1 in the data and N,,_, p,) is the
total number of times p; immediately follows p;_; in the data.
We gather these counts from TIMIT which includes 2472 unique
bigrams covering 172 460 adjacent pairs of phonemes, as deter-
mined by the included phonetic annotations. Similarly, the un-
igram probability of phoneme p; is determined from the same
data by
N VD)
P — W)
(v 220 Newy

where p is iterated over all 61 phonemes in the training data.
In order to implement systems that incorporate either bigram
and unigram information, we first train individual HMM and
DBN-A models for each phoneme, as before, where training
data consist of whole sequences of phonemes. The result is
61 HMMs and 61 DBN-A models, each consisting of three
states with reflexive and left-to-right transitions. We first con-
nect the HMMs together and the DBN-As together by creating
transitions from the last state of each phoneme model to the first
state of all other phoneme models of the same type. First, the
probabilities associated with these transitions are their bigram
probabilities of equation VI-D. Expectation—-maximization is
then performed for two iterations on each of the large connected
HMM and DBN-A models in order to learn reflexive transition
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TABLE IX
AVERAGE FRAME-LEVEL ACCURACY (%) OF UNSEGMENTED PHONEME
LABELING GIVEN ERGODIC HMMS AND DBN-AS WITH UNIGRAM AND
BIGRAM PHONEME TRANSITION PROBABILITIES

Severity HMM DBN-A
unigram  bigram | unigram  bigram
sev 17.2 20.8 17.4 21.0
mod 334 37.3 34.1 37.9
mild 60.1 63.5 60.5 63.7
ctrl 74.0 74.2 74.2 74.6

probabilities on the last state for each phoneme without over-fit-
ting. This is a common approach producing all-phoneme er-
godic models [67]. This process is then repeated, but with initial
transition probabilities between phoneme models being derived
from their unigram probabilities (equation VI-D).

Given these connected models, the same data as in
Section VI-B is used to measure the average proportion of
correctly labeled phones given phoneme models trained by the
speaker-dependent method. Table IX shows the frame-level
phoneme recognition accuracies of each model across the same
speaker intelligibility levels of Table VIII. While there are
clear improvements in accuracy, these are still lower than one
would expect if full word-level bigrams were used, given more
training data. Trigram models were not attempted due in part to
this relative sparsity of data and to inherent constraints of the
implementation.

VII. DISCUSSION

Preceding experiments have concentrated on recognition
tasks across an inventory of classifiers. This section explores
possible explanations for some of the behavior observed in
those experiments.

A. Synthesizing Dysarthric Acoustics

We compare the generative abilities of DBN-A and DBN-F
on our data. We iteratively set Ph to each phone in the available
DBN-A and DBN-F models and marginalize over all other vari-
ables to get the distribution on O from which we sample virtual
data for each phone. These generated likelihood functions are
fitted with Gaussians and compared with the true MFCC dis-
tributions of each phone by means of Kullback—Leibler relative
divergence. The likelihood functions generated by DBN-F di-
verge from true distributions by a factor of 0.22016 on regular
speech and by 0.2246 on dysarthric speech. However, while vir-
tual DBN-A data diverge from true data by a factor of 0.1690 for
regular speech, speaker-retrained DBN-As for dysarthric speech
diverge by 0.3378, on average, from true phone MFCC distribu-
tions. This disparity is exemplified in Fig. 8.

B. Statistical Transformation of Articulator Space

In order to better understand some recognition results, we re-
late the distributions of the vowels in acoustic and articulatory
spaces across dysarthric and non-dysarthric speech. Vowels in
acoustic space are characterized by the steady-state positions
of the first two formants as determined automatically by ap-
plying pre-emphasis and the Burg algorithm [68]. Vowels in
articulatory space are characterized by the positions of the ar-
ticulators when their accelerations are minimum. We fit Gaus-

-4
regular /ey/
-6
-

2nd MFCC

-14 -14
-40 -35 -30 -25 -20 ~-15 -10 -40 -35 -30 -25 -20 ~-15 -10
(a) (b)
-4 —4r
gmimmE iy severe /aa/ BROICIET N
6 g :| -6; Rt LLLET T

e ¥ g
'5:/ a0
&, 9,

e O ®
19) K ; oo -
- , e 8+
E Bl A ¥ 8
=%
—10F -10f
E ¢
R B 7 12
= 7, -~ L) i
".,./':-....___.:“,@
-14 LI TPt —14}
—40 35 -30 -25 -20 -15 -10 —40 -35 -30 -25 -20 -15 -10
(©) (d)

1st MFCC 1st MFCC
Fig. 8. Contours representing two standard deviations of Gaussians fitted to
real data (solid line), samples from DBN-F (dashed line), and samples from
DBN-A (dash-dotted line) on the first two mel-frequency cepstral coefficients.
Subfigures represent (a) regular speech (/aa/), (b) regular speech (/ey/), (c) se-
verely dysarthric speech (/aa/), and (d) severely dysarthric speech (/ey/).
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Fig. 9. Contours showing first standard deviation in F1 versus F2 space for
distributions of the six of the most frequent vowels in continuous speech for the
dysarthric and non-dysarthric males from the TORGO database.

sians to these data, as exemplified in Fig. 9 for the most frequent
vowels in TORGO and compute the entropy of the data within
these distributions. Surprisingly, the entropies of these distri-
butions were relatively consistent across dysarthric (34.6 nats)
and non-dysarthric (33.3 nats) speech, with some exceptions
(e.g., iy). However, vowel spaces overlap considerably more in
the dysarthric case signifying that, while speakers with CP can
be nearly as consistent as speakers without dysarthria in the
acoustic space, the locations of their targets in that space are
not as discernible. Moreover, we note linear correlation coeffi-
cients of over 0.95 between F2 standard deviation and the extent
of tongue protrusion, as determined by the Frenchay assessment
described above.

In an attempt to tease apart the acoustic targets in dysarthric
speech, and to give them meaningful conditioning articulatory
variables within the DBN framework, we learn statistical map-
pings between dysarthric and non-dysarthric speech. Namely,
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TABLE X
TRAINING DATA ARE A COMBINATION OF TRANSFORMED REGULAR ACOUSTICS
AND ARTICULATION, AND DYSARTHRIC ACOUSTICS AND ARTICULATION

Training Retraining Testing
Data Data Data Accuracy (%)
- Trans. acous. 72.9
Dys. acous. 72.6
Trans. acous.

Trans. acous. 73.7

U Dys. acous. -
Trans. artic Dys. acous. 73.4
: ’ Dys. acous. Trans. acous. 74.3
U Dys. artic. Dys. acous. 74.2

we learn two functions, f and g, which produce the expected
frames in the acoustic and articulatory spaces of a speaker with
dysarthria given corresponding frames for a regular speaker. For
each function, we define Gaussian distributions N( - ) for each
phone p by the means of the regular and dysarthric speech, re-
spectively, u” and 118, and the covariances, £5", of the reg-
ular speech. We can then apply the following statistical transfor-
mation function between non-dysarthric acoustic vectors x and
their dysarthric counterparts y:

f(x) = E(y[x)
P
N I ol o) 5@}
o [+ 50 (55 )
(12)
where
ha() = — (i ) (13)

Zle a; N (a;; Mgz)7 ng))

where «, is the proportion of the occurrences of phone p in
the data, and ZI(,W) is the cross-covariance matrix in phone p
across speakers with and without dysarthria. The function g is
identical in articulatory space, but with vectors defined by ar-
ticulator positions from EMA. We learn cross-covariance ma-
trices on aligned sequences from both sets of speakers. Since
each speaker in the TORGO database recites the same set of
phrases, we achieve frame-by-frame alignment by applying dy-
namic time warping on corresponding acoustic segments of pre-
annotated speech, and applying the resulting alignment on the
raw articulatory data. This is effectively the reverse of the ap-
proach suggested by Hosom et al., who propose transforming
dysarthric acoustic space to regular acoustic space in order to
be made more intelligible [69].

Once we have the transformed acoustic and articulatory
spaces of a control subject that resemble those of our speaker
with dysarthria, we quantize the latter using k-means clustering
and train the DBN-A model as described in Section VI. We then
update this model given either dysarthric acoustics only (see
Section VI-B), or aligned dysarthric acoustics and quantized
articulation. These three models are then tested with either
additional transformed acoustics, or actual dysarthric acoustics.
These results are shown in Table X. Notably, models tested
with the transformed speech show slightly higher accuracies of
recognition than models tested on the target dysarthric speech,
which may be an artifact of supersegmental effects of dysarthria

on intelligibility. We note that models initialized with trans-
formed regular speech perform better than any dependent or
retrained combination for dysarthric test data in Section VI-B.

VIII. CONCLUSION

This paper summarizes an extensive series of experiments
concerning the recognition of dysarthric speech given knowl-
edge of speech production. Our purpose is to discover which
combinations of articulatory knowledge and modeling give im-
proved accuracies of recognition for individuals with speech
disabilities. In general, these experiments include both theoret-
ical and empirical representations of the vocal tract, with data
obtained from the MOCHA database and from our own col-
lection of dysarthric and non-dysarthric speech. In situations
where no kinematic data are available, incorporating theoret-
ical articulatory knowledge into generative dynamic Bayes net-
works shows some improvement in phone recognition over tra-
ditional HMM models, but far greater improvements are pos-
sible through the application of discriminative methods, par-
ticularly latent-dynamic conditional random fields. However,
generative DBN models that are trained by aligned kinematic
electromagnetic articulographic data give the greatest improve-
ment over standard models, also outperforming acoustic-only
discriminative methods. We have also explored a few aspects of
dysarthric and articulatory data, including the severity of dis-
ablement and the statistical transformation between regular and
dysarthric kinematics in retraining.

Although our results may be applicable to improving current
ASR systems for the dysarthric population, these successes are
tempered by the relatively unconstrained nature of the under-
lying statistical methods and the short-time observation win-
dows. Several fundamental phenomena of dysarthria such as
increased disfluency, longer sonorants, and reduced pitch con-
trol [48] cannot be readily represented in any of the methods
described here. We are currently studying the articulatory dy-
namics of dysarthria in particular, and speech generally, within
the context of dynamical systems. Specifically, we are exploring
task-dynamic theory as a combined model of skilled articu-
lator motion and the planning of vocal tract configurations [70],
[71]. This theory introduces the notion that the dynamic pat-
terns of speech are the result of overlapping gestures, which
are high-level abstractions of goal-oriented reconfigurations of
the vocal tract such as bilabial closure or velar opening. Indeed,
the quantal theory of speech is based on the empirical observa-
tion that acoustics depend on a relatively discrete set of distinc-
tive underlying articulatory configurations [72], [73]. We be-
lieve that such a high-level model of the vocal tract may better
represent co-articulatory and long-distant effects in dysarthric
speech.
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