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Abstract

In this thesis we give a connectionist model for natural language processing.
In contrast with previously proposed schemes, this scheme handles traditionally
sequential rule-based processing in a general manner in the network. Another
difference is the use of a computational scheme similar to the one used in the
Boltzmann machine (Fahiman et al. 1983). This allows us to formulate general rules
for the setting of weights and thresholds.

We give a detailed description of a parsing system based on context-free gram-
mar rules. Using simulated annealing, we show that at low temperatures the time
average of the visited states at thermal equilibrium represents the correct parse of the
input sentence.

The system is built from a small set of connectionist primisives that represent
the grammar rules. These primitives are linked together using pairs of computing un-
its that behave like discrete switches. These units are used as binders between con-
cepts. They can be linked in such a way that individual rules can be selected from a
collection of rules, and are very useful in the construction of connectionist schemes
for any form of rule-based processing.

We also consider two variations on the formalism of the Boltzmann machine.
First we show how the use of +1 and -1 as output values for the computing units fa-
cilitates the setting of thresholds. Secondly we introduce an alternative energy func-
tion. Using this function we are able to choose a set of weights, such that only the
state of the network that corresponds to the correct parse of the input sentence has
the lowest possible energy.
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CHAPTER 1

Introduction

Recently, work on parallel architectures has become a major part of research
in artificial intelligence (Fahlman, Hinton and, Sejnowski 1983; Feldman and Ballard
1982). Such architectures consist of a large number of processing elements, also
called computing units, which work on a single task. An important motivation behind
this research is the belief that the application of parallel architectures will lead to the
development of algorithms that differ fundamentally from existing sequential algo-
rithms and are better suited to handle cognitive tasks. In chapter 2 we will give an
overview of existing computing models for parallel architectures for artificial intelli-
gence (AI) and discuss their performance with respect to some typical Al tasks.

Most of the research on these architectures concentrates on low-level vision
tasks. Some research, though, has been done on the application of parallel architec-
tures in other AI domains, like natural language understanding. Pollack and Waltz
(1984) and Small and Cottrell (1983) give parallel processing schemes, based on the
deterministic continuous connectionist scheme (McClelland and Rumelhart 1981; Feld-
man and Ballard 1982), which handle word-sense and syntactic disambiguation. Reilly
(1984) uses a similar scheme for anaphora resolution. A central aspect of these
models is that they process the different sources of knowledge used in NLU, such as
lexical and world knowledge, in a highly integrated way; for example the syntactic
and semantic processing are integrated. The work on these models has been very
promising with respect to the disambiguation task. This might be explained by the
fact that connectionist models are closely related to discrete marker passing systems,
which have proven to be useful in disambiguation tasks (Hirst 1983).

In chapter 3 we will discuss the major existing schemes. Instead of concentrat-
ing on their strong point, disambiguation, we will focus on the major limitation of
these schemes; a very limited capability for tasks such as parsing and case filling which
seem to require processing to be based on a set of rules. For example, Small and
Cottrell (1983) give a network for parsing the sentences "Bob threw up a ball” and
"Bob threw up dinner”. In this network ‘Bob’ is only linked to the agent case and not
to the object case, so the fact that ‘Bob’ is likely to be the agent of the sentence is
directly implemented in the network. We propose a more general network, where
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‘Bob’ is linked to both the agent and the object case using two intermediate units,
called binder units. In this scheme syntactic information is used to activate one of the
binder units to indicate the case role of ‘Bob’ in the particular input sentence.

In chapter 4 we will present a detailed connectionist system for rule-based pro-
cessing. This system parses an arbitrary input sentence up to a given length using
context-free grammar rules. Schemes for rule-based processing, integrated with
schemes that concentrate on disambiguation might lead to a general connectionist
model for NLU. Such a model should also incorporate ways to directly store
knowledge, and be able to use this knowledge for the processing of other sentences.
We will not address this problem in detail.

A problem that we will discuss in detail is the setting of weights and thres-
holds in a connectionist scheme (chapter 4). In work done so far on connectionist
models for NLU, this problem has not been given much consideration. However, it
became clear to us from running simulations of some connectionist models that the
choice of the set of weights and thresholds is far from trivial and that the perfor-
mance of the model is highly dependent on the chosen weights. In chapter 4 we will
give general rules for the setting of weights and thresholds in our parsing scheme.
These rules are based on symmetry considerations and the analysis of parts of the net-
work in isolation. We will consider an example network, with weights and thresholds
set according to these rules, and give simulation results showing that the network
finds the correct parse for a set of sentences used as test data. We will also describe
the effect of certain changes in weights and thresholds on the performances of this
network.

In our system we use the computational scheme of the Boltzmann machine
(Hinton and Sejnowski 1983). This stochastic scheme has some formal properties
which make it easier to analyze than the deterministic continuous scheme (Feldman
and Ballard 1982). In chapter 4 we will discuss the advantages of this stochastic
scheme over the deterministic one.

In chapter 5 we will consider two modifications of the computational scheme
of the Boltzmann machine. One modification is of practical interest; it facilitates the
implementation of symmetrical interdependency relations between hypotheses in the
connectionist scheme. The other modification is of theoretical interest; it allows us to
prove that for a certain set of weights and thresholds the network will always give a
consistent global behavior, that is, it will find the correct parse of the input sentence
(provided of course that the sentence is part of the language defined by the grammar).



Our motivation behind this research is twofold. On one hand we believe that,
at least part of the natural language understanding process can be handled by a con-
nectionist architecture and that this form of integrated, parallel processing facilitates
the parsing process. On the other hand, we believe that these schemes can only be of
practical interest for NLU if they are able to handle rule-based processing, like syn-
tactic parsing, in a general and efficient way and are understood well enough to set
the weights and thresholds correctly in large networks.




CHAPTER 2

Massively parallel architectures for Al

2.1 Introduction

In this chapter we will discuss the current research on parallel computer archi-
tectures for artificial intelligence. As an introduction, we will look at the motivation
behind the current interest in parallel architectures from three different perspectives:
anatomy, computational complexity, and technology.

Von Neumann (1958) points out that large and efficient natural automata (like
the human brain) are highly parallel, while large and efficient artificial automata (like
the Von Neumann machine) are more serial. He shows that the choice of a particular
architecture has far-reaching consequences upon the form of optimal algorithms, com-
puting time, and required storage space. '

Currently there are two different approaches to research on new parallel ar-
chitectures. One approach is that of the connectionist models in cognitive science
(McClelland and Rumelhart 1981; Feldman and Ballard 1982; Fahiman, Hinton, and
Sejnowski 1983). These models make an attempt to model the actual behavior of the
neural-net that constitutes the animal brain. Another approach, which resulted for
example in marker-passing systems (Fahlman 1979), applies parallelism to carry out
cognitive tasks but does not explicitly attempt to model the neural-net of the brain.

Let us now consider the aspect of computational complexity. The computa-
tions in the animal brain are carried out by relatively slow (milliseconds) neural com-
puting elements in a complex network. Relatively complex cognitive tasks are carried
out in a few hundred milliseconds (Posner 1978). This means that such tasks are car-
ried out in less than a hundred time steps. Current Al programs for similar tasks re-
quire millions of time steps on conventional serial computer architectures. Apparently
time is the critical factor in the use of those programs. Therefore, although basic au-
tomata theory shows that the difference between parallel and serial processing is not
a fundamental one, computation time can have a tremendous effect on the style of



computing that is chosen.

There are many operations and algorithms that are computationally quite
feasible on a parallel machine but would never be seriously considered on a serial
machine because they would take too long. An example of such an operation is the in-
tersection of two large sets, which can be very useful in recognition tasks. On a serial
machine we go to great lengths to avoid this operation, as it takes time proportional
to the size of the sets. On some parallel machines, as we see later, it takes only a few
cycles, regardless of the size of the sets.

One of the factors that will determine whether the work on parallel architec-
tures will have a direct impact on Al research is the availability of the technology to
build such architectures. It seems that the rapid developments in VLSI techniques
will make it feasible to build those architectures in the near future. Up to now none
of the proposed vast parallel machines have actually been built. Their properties have
been studied using simulations on serial machines.

One useful way to classify parallel architectures is by the type of signals that
are passed among the eclements. Fahiman (1982) proposes a division of these systems
into three classes: message-passing, marker-passing, and value-passing architectures.

Message-passing systems form the most powerful family. They pass messages
of arbitrary complexity, and perform complex operations on these messages. In such
networks there may be severe contention and traffic congestion problems. Messages
passed between neurons are of limited complexity (Feldman and Ballard 1982); there-
fore message-passing systems are not suited to modeling information processing in the
brain. Message-passing systems are in general referred to as distributed computing
systems. Applications of these systems in Al are a topic of current research; see for
example Lesser and Corkill (1983). Since, up to now, no applications in natural
language understanding have been studied, we won’t discuss message-passing systems
in this thesis.

Marker-passing systems are the simplest class of parallel architecture, and the
most limited. Communication among the computing elements is in the form of mark-
ers. A marker consists of a small group of bits. Each unit can store a limited number
of markers and can combine them using simple Boolean operations. In section 22
these systems are discussed in more detail.

Value-passing systems pass continuous quantities or numbers and perform sim-
ple arithmetic operations on them. An interesting subclass of these systems are the
connectionist systems. Connectionism refers to the fact that all the knowledge in
these systems is stored in the connections (links) between the computing units. Con-



nectionist models are sometimes referred to as relaxation models, because the way
they compute is similar to that of solving partial differential equations using the re-
laxation method. These models will be discussed in section 2.3.

2.2 Marker-Passing Architectures

The best-known example of a marker-passing system is NETL, developed by
Fahlman (1979, 1981). It was designed to be implemented in hardware, although this
goal has not yet been achieved. NETL is representative of the family of marker-
passing systems. In this section we will give a short description of how NETL
operates.

The human mind can store a tremendous quantity of knowledge and can access
whatever knowledge it needs very quickly and in a flexible manner, as will be illus-
trated with an example later on. An Al system, if it is to serve as a model for human
knowledge-handling abilities, must exhibit comparable capacity, speed, and flexibility.
Because much of the information we use in everyday life is not stored explicitly but
must be deduced from other information, a seemingly simple query may give rise to a
very substantial amount of deduction and search.

Suppose, for example, that we tell you that Clyde is an elephant. Informed of
this simple fact, you will know considerably more about Clyde than explicitly told.
You will be able to tell us, for example, how many legs Clyde has, what color Clyde
is, whether Clyde can fly etc. (all with a fair degree of certainty). It appears unlikely
that most of this knowledge is stored explicitly. A more likely explanation is that
most of the above questions are answered by using some form of deduction from the
fact that Clyde is an elephant. Therefore, in an Al system we store the name Clyde
in the knowledge base with a link to the concept elephant. In this case the link
represents an IS-A relation (see Winston 1984). Certain properties of Clyde, for ex-
ample his color, follow directly from the general properties of an elephant. To find
these properties, we have to search the knowledge base. Figure 2.1! gives a portion of
a possible hierarchy of which Clyde is a member.

An exhaustive search in a large Al system based on a serial model requires, in
most cases, an unacceptable amount of time, especially if the IS-A hierarchy is al-
lowed to branch upwards and downwards and is very broad. The search algorithm
has to visit sequentially a large number of nodes at each level, and this number grows
rapidly as one gets farther away from the starting level. Therefore one must provide
certain heuristic rules to guide the search process. A problem with these rules is that
they are strongly-domain dependent, so one must provide specific rules for each

1 The figures 2.1, 2.2, and 23 were taken from Fahlman (1981).
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Figure 2.1 A portion of an IS-A hierarchy containing Clyde.

knowledge domain. NETL provides an exhaustive search mechanism with a search
time proportional to the depth of the hierarchy in which the knowledge is stored.

The basic components of the NETL system are given in figure 22. In NETL,
concepts are represented by very simple hardware computing units. Relationships
between the concepts and simple assertions about those relationships are represented
by additional hardware elements called links. There are different types of links, each
type representing a certain relation, for example IS-A, PART-OF or COLOR-OF.
(The A- and B-wire are just labels for convenient reference to the figure.) The com-
puting units and the links are all attached through a shared, party-line bus to an
external controller, a conventional serial computer. The controller is able to "shout”
simple commands to all of the units and links together, or to specified subsets of
them, or to individual units and links for which it knows the name or the serial
number. Selected units are able to reply by placing their own name or serial number
on the shared bus. The units can send 16 different markers (each marker consists of
four bits) over the wires.



Party-line Bus

to All Nodes
and Links
(EunEsEREEEE "]
l—— Node
*Elephant”
B-wire
” ls-A [1] 1
Link
A-wire
anssssmamnna]
Node
l'clydell
Note: Wires are
actually connected
via switching network.
Serial
Control
Computer

Figure 22 The basic hardware components of NETL.

A simple example illustrates how this machinery can handle exhaustive search
and deduction. Consider the hierarchy given in figure 2.3, and suppose we want to
determine the color of Clyde. First, the control computer tells the Clyde node to set
marker #1 on its surrounding wires. Next, all IS-A links that sense marker #1 on
their A-wire are told to place a copy of marker #1 on their B-wire. In these two
operations we have simultaneously marked all units one level above Clyde in the IS-A
hierarchy. (Note that the use of the A-wire and B-wire prevents the markers from go-
ing downwards.) These two operations are repeated until the top unit, called THING,
receives a marker #1. At this point we have marked all units above Clyde in the IS-
A hierarchy, that is all the units from which Clyde is supposed to inherit properties.
We now send a command to all COLOR-OF links with a marker #1 on their A-wire,
telling them to send marker #2 to the unit tied to the B-wire. Finally, we tell all un-
its with marker #2 to place their names on the bus. There will be one such unit,
GRAY, the desired answer. This example illustrates one of the strongest points of a
marker-passing system, namely a very efficient computation of the closure of transi-
tive relations. In section 2.4 we will consider several other computational problems,
and discuss whether they can be handled by a marker-passing system.
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Figure 23 Finding the color of Clyde.

NETL has never been implemented in hardware. The problem is not to imple-
ment computing units and links, because with current VLSI technology it is feasible
to put a thousand or so of these elements on a single chip. The real difficulty lies in
having to wire together new nodes and links as new knowledge is acquired. There-
fore, a large switching network between the units and the nodes is necessary. The
design of this network is very complicated. Up to now, NETL has been studied using
simulations on serial computers. On a PDP-10, for example, such simulations are lim-
ited to about 10,000 elements, not enough for real-world applications.

2.3 Connectionist Models

2.3.1 Introduction

We will first define the variables that will be used in the description of the
various types of connectionist models. Figure 2.4 gives the general form of a connec-
tionist model consisting of three computing units. Each unit has several inputs and
one output. The units are numbered, to be able to refer to specific ones. They are
linked together, and each link has a certain weight (strength of connection). One of
the inputs of a unit is not linked to any output. This external input, 7, is used to pro-
vide the system with information from outside. Each unit also has a certain threshold
6. Input values below this threshold value don’t have any influence on the system.
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Figure 2.4 The general form of a connectionist system consisting of three computing units.

The output of a unit at time ¢ +A¢ is a function of the output at time ¢, the set
of weighted input values, the external input, and the threshold of that unit at time ¢.
Thus the output value of the j** unit is given by

"](‘ +A') = f (3,(‘),{‘9,13,(‘)},1'](‘), 01), (2.1)

where s, is the output of the j ** unit with threshold 0,, w; is the weight of the link
between the output of the i** unit and the input of the j** unit, v, is the value pro-
vided to the external input of the j™® unit. We will only consider relaxation schemes
with discrete time steps; therefore we assume that Az is a fixed finite value. The state
of the system at time ¢ is defined as the set of output values at time ¢, {s;(z)}.

A connectionist system computes in the following way. Assume the system is
in a state {s;(0)} at =0 and we provide the system with input data, {n;(0)}. Conse-
quently the system computes the next state {s;(Az)} using (2.1). If we now provide
the system with the next set of input values, the system can compute the state at time
2At, etc. When the function f is deterministic, and we provide the system with a
static set of input values it will eventually settle into a stable state! (a state in which
the system will stay forever, provided that the input is constant). Which stable state
the system reaches depends on the input data, the initial state, and the set of weights
{wy}. When the function f is non-deterministic, the system will reach an ‘equilibri-
um’; that is, it will visit a set of states such that the frequency with which it visits a
particular state in this set is time-independent.

1 We assume that the system does not oscillated.
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: It is usual to consider only systems with symmetncal connections between the
units, so that for all links

Wu = Wﬂ . (2.2)

Figure 2.5 gives a simple, and often-used representation of a symmetrical connection-
ist system consisting of thres computing units. In this diagram the actual inputs and
the output of the computing units are not shown.

Figure 25 The system given in figure 24 with symmetrical connections (for example
wo = wap).

We have now defined the general framework of the connectionist model; the
specific choice of the function f in equation (2.1) will define the type of connectionist
model. Hopfield (1982) uses a deterministic, binary function. We will refer to his
model as the determinitic binary model. Fahlman, Hinton and Sejnowski (1983) use a
stochastic, binary function in their Boltzmann machine. And, McClelland and
Rumelhart (1981; Feldmann and Ballard 1982) use a deterministic, continuous func-
tion. We named this model the deterministic continuous model. These models will be
discussed below.

Before doing so we would like to point out, that although there are superficial
similarities between connectionist models and perceptrons (Minsky and Papert 1968),
the connectionist models are much more powerful (in a computational sense) because
they allow feedback, while in perceptrons activation flows only in one direction. An
example of the limited computing power of perceptrons is the fact that they can’t
determine whether or not all parts of a geometric figure are connected to one anoth-
er.

-11-



2.3.2 The deterministic binary model

The dynamic behavior of a deterministic binary system (Hopfield 1982) is given

by

?

1 if EW'JS‘ —01 > 0
i)

SJ(""A‘) = (23)
0 ifEW‘jS‘-OJSO
i»)

\

So the function f in (2.1) is in this case a binary function, and the computing units
have binary output values. Input data is supplied to the model by keeping the output
of a set of units (inpur units) at a fixed value; so these units won’t take part in the up-
dating process (‘clamping’ the output values of the input units).

We will call the computing unit j active if s;= 1; otherwise the unit is inactive.
Other terminology, introduced by Hinton and Sejnowski (1983a), will facilitate the
discussion of this model with regard to Al applications. They refer to a computing
unit as an kyporhesis: if s;= 1 the hypothesis associated with the j*™ unit is true; oth-
erwise it is false. The weights on the links between the units are referred to as con-
straints between the hypotheses.

First we will consider a simple example which shows how knowledge can be
stored in the weights. Assume we have a deterministic binary connectionist system in
which unit #1 stands for the hypothesis ‘John is a dog’ and unit #2 stands for the hy-
pothesis ‘John is a cat’, and the name ‘John’ refers to one object. We can store the
knowledge ‘John can’t be both a dog and a cat’ by assigning large negative values to
the weights w,; and w,,. From (23) we see that, given these weights, it becomes very
unlikely that both s, and s, are equal to 1.

Another example will show us how this parallel system can be used to perform
a cognitive task, namely that of recognizing an object from partial input data. Con-
sider a machine consisting of nine units and a knowledge base containing two objects
A and B. Instead of associating each object with just one computing unit, as we did
in section 2.2, we associate the presence of each object with a pattern of active and
inactive units. These patterns are given in figure 2.6a. This form of representation is
called the distributed or global representation (versus the local representation; one -

! In this model the computing units update asynchronously; Az is the average time
between updates.



unit for each object, as in the previous example). Figure 2.6b shows a possible set of
weights which represents the objects A and B in the system (each unit has a small
negative threshold to prevent spontaneous activation). Now assume the machine is in
an arbitrary state and we supply the partial information: so= 1 and sg= 1. After a
number of time steps, it follows from equation (23) that the output of the unit s, will
become 1 and the other outputs will become 0. Thus the system has found the best
match between the input data and the knowledge in the system, namely object B.

—— excitatory link with weight 10
.—.i(ﬂuu'“zhl:ﬂt:'"h"d t -10
6 r—()—)

100 001

010 010 S0l (3) (4 ) (5) |50

001 100

object A object B (0} (1) [2)

(a) ®)

Figure 2.6 Part (a) shows the distributed representations of objects A and B. Part (b) gives an
example of a connectionist network in which these concepts are stored. (Only the connections
with non-zero weights are drawn.) '

The given examples only illustrate the ideas behind the model; the actual
power of the model appears only when one considers large systems. A problem with
larger systems is to determine the set of weights representing the knowledge in the
system. To determine these values in an efficient way one must analyze the dynamic
behavior of the system. The dynamic behavior, as given by (23), is very hard to
analyze for time-varying input data. But in the case of constant input data it can be
shown (Hopfield 1982) that the system behaves in such a way that it minimizes a glo-
bal quantity E given by

E = -1/2 EW‘jS‘SJ + EG‘S,, (2.4)
i i
Because this expression is very similar to the expression for the energy of binary

models in solid state physics (see for example the Ising model, Binder 1978), the quan-
tity E is called the energy of the system.



A simple way to find a local minimum of the energy is to repeatedly switch
each unit into whichever of its two states yields the lower total energy given the
current state of the other units. When the system reaches a local minimum, no unit
will be switched any more, because such a switch would increase the total energy.
Apparently a local minimum of the energy can be associated with a stable state (pro-
vided the constant input data). From (2.2) and (24) it follows that the energy
difference AE; between a state with s;= 0 and a state with s;= 1 is given by

AEJ ’gWﬂS‘ - 0] (25)

So the procedure for minimizing the total energy as described in the preceding para-
graph results in the dynamic behavior given by (2.3), provided the input data is con-
stant.

From (2.4) we see that the energy E is actually a measure of how badly the
current pattern of active and inactive units in the system fits the external input data
and the internal constraints (the connections with the associated weights). This obser-
vation reveals one of the problems of the deterministic binary model. In recognition
tasks, we are interested in finding the best match between external input data and
internal constraints, that is, we want to find the global minimum of the energy. How-
ever, when the system first reaches a local minimum it will never find the global
minimum (because the deterministic system can only decrease its energy, see (2.3) and
(2.5)). In the next section we will discuss a model in which this problem does not oc-
cur because it can escape from a local minimum and continue searching for a global
minimum. This is achieved by introducing a stochastic component in the system.

2.3.3 The Boltzmann Machine

In the Boltzmann machine, Hinton and Sejnowski (1983a, 1983b) introduce a
non-deterministic component in the updating scheme of the deterministic binary
model, to allow the system to escape from a local minimum. They introduce a proba-
bility p; given by

1
P = =T (2.6)
; 1+ 28/T
in which AE; is given by equation (2.5) and T is a formal parameter denoting the
computational temperature, whose role will be explained below. Using the probabili-
ty p; the dynamic behavior of the Boltzmann machine is given by

-14-



4

1 with a probability of p,

5; (t +A‘) = (2'7)
0 with a probability of 1-p,.

\

This decision rule is the same as the one that determines the thermodynamic
behavior of a physical system consisting of particles which have only two energy
states. At thermal equilibrium the probability distribution of the global states of such
systems is given by the Boltzmann distribution. So, at thermal equilibrium for each
pair of states a and B of a network using updating rule (2.7) the following equation
holds:

P —(B. -
== = B BT (28)
Py
in which P, is the probability that the system will be in state a with energy E,. Just

like ‘real’ physical systems, the networks will at each temperature eventually reach a
thermal equilibrium.

From (2.6) and (2.7) it follows that when T approaches zero the Boltzmann
machine becomes a deterministic binary connectionist machine; equation (2.7) reduces
to (2.3). On the other hand, if T approaches infinity, the state of the machine will be
a random pattern of active and inactive units, because each unit has a chance of 0.5 to
become active. So apparently at very low temperatures the system will not be able to
increase its energy and therefore the system can’t escape from local minima; while at
very high temperatures the state of the system will become independent of the energy
and therefore independent from internal constraints in the system.

The computational scheme used in the Boltzmann machine is a special form of
the Monte Carlo method (Binder 1978), and is often used in statistical mechanics to
study multi-variable energy functions. Kirkpatrick et al. (1983) describe how one can
find the minimum value of an multi-variable function using this form of the Monte
Carlo method, namely by starting at a high temperature and subsequently lowering
the temperature to zero (when T approaches the freezing temperature of the system
the temperature should be lowered very slowly). This method is called simulated an-
nealing because of its analogy with the growing of ‘perfect’ crystals. Here, one starts
in the liquid state and lowers the temperature. When one approaches the freezing
point the temperature should be lowered very slowly until finally all the material has
crystallized. The perfect crystal state is the state with minimal internal energy.



Hinton and Sejnowski (1983a) apply a simulated annealing scheme in the
Boltzmann machine, but-do-not-lower the temperature below.T = 1. In this way.each
hypothesis (or computing unit) can still change its state; the average time spent in the
true state is a measure of the belief in the truth of the hypothesis. The following ex-
ample illustrates the advantage of this approach.

Consider the Necker cube in figure 2.7. In a connectionist system there will be
two alternative collections of hypotheses that form equally plausible interpretations
of this figure. The Boltzmann machine at T = 1 will occasionally flip between these
two alternatives (spending on the average half of the time in one of the two alterna-
tive states). However, when we further lower the temperature to zero the system will
settle down in one of the two alternatives, and the other plausible interpretation
would be hidden in the system.

Figure 2.7 The Necker cube, showing two equally plausible interpretations.

Hinton and Sejnowski (1983a, 1983b, 1984; Hinton, Sejnowski, and Ackley
1984) give a learning procedure for the Boltzmann machine. The procedure requires a
set of pairs of inputs and desired outputs (a training ser) to train the system. During
the training period, the system finds the regularities in the training-set and stores this
knowledge by adjusting its weights. In general, it is difficult to find an appropriate
training set, but in low-level vision applications this task is relatively easy. So far, no
learning algorithms have been found for the other types of connectionist models.

Another positive feature of this model is that there is an equation that relates
the weight on a link between two units, each representing an hypothesis, and the
inter-dependency of these hypotheses expressed in terms of conditional probabilities.
We will discuss this in more detaili in section 53.
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2.3.4 The deterministic continnons model

In the deterministic continuous model (McCLelland and Rumelhart 1981; Feld-
man and Ballard 1982), the output of a computing unit is a continuous value on a
fixed interval; a common choice is an output value between —10 and +10. The dynam-
ic behavior of a commonly used version of this model is given by
Sj(‘ +At) = S,(‘) + Ew,j ls "(‘x (2.9)
in]
in which,

(

$; (‘ )—0‘ iff L1 (‘ )> 0,

$i1(t) = (2.10)
0 iff s;(t)= 0;

\

In the application of this model, the value of the output of a unit is used as a measure
of the belief in the truth of the hypothesis which is represented by the unit.

The fundamental premise of all connectionist models is that computing units
do not exchange large amounts of information (this is based on the observations that
individual neurons seem to transmit only small amounts of information). The entier
function in (2.9) is needed to assure that the deterministic continuous model satisfies
this fundamental premise; in each time step, only log, 21 bits of information need to
be transferred between two units (there are 21 integers on the interval [-10, +10]).

An important difference between this model and both the deterministic binary
model and the Boltzmann machine is that in this case there is no known global quanti-
ty which is being minimized by the system. Therefore the behavior of the system is
very hard to analyze (even in the case of a constant input). This makes it difficult to
choose an appropriate set of weights to store knowledge in the system. So far, no
efficient procedure (for example a learning method) to determine this set has been
developed.

2.4 Computational problems

In this section we will discuss briefly the use of parallel architectures in some
computational problems. We will only consider operations that are relevant for Al
applications. A more detailed discussion can be found in Fahlman et al. (1983).

-17-



Set-intersection. Pattern recognition in its simplest form can be viewed as a
set-intersection problem. Therefore, we can associate with each observable feature a
set of objects that exhibit this feature, which we will call the object set. When given
a number of features, we want to find the item(s) that exhibit all those features; that
is, we have to intersect all the object sets associated with the given features. On a
serial machine this operation takes time proportional to the size of the smallest set.
On a marker-passing machine this operation requires only one step, once the members
of each set are marked with a different marker. The system simply asks for the units
that have collected all the markers.

A connectionist system can also carry out set-intersection in one step, after
marking all the members of each set with a small amount of activity. The system asks
for all units with activation above a certain threshold. For the deterministic binary
machine and the Boltzmann machine this operation is less straightforward. Hinton
(1981) describes a method for doing set-intersection with the Boltzmann machine, at
least in simple cases.

Transitive closure. In a knowledge-based system, one frequently wants to com-
pute the closure of certain transitive relations (for example the IS-A relation). On a
serial machine this operation takes time proportional to the size of the answer set. In
a marker-passing system it takes. time proportional to the longest chain of relations
that has to be followed, as we saw in section 22. A deterministic connectionist sys-
tems, using the local representation, can simulate the marker-passing systems in this
task, which leads to a similar performance. (Marker-passing can be simulated by ac-
tivating the set of units of which one wants to determine the transitive closure; subse-
quently one follows the activation which is spreading in the system.) So far, no gen-
eral method for computing the tramsitive closure with the Boltzmann machine has
been developed.

Best-match recognition. The recognition procedure described above requires
that the features be discrete, noise-free, and that every member of a class exhibits all
the associated features. In a real-world recognition task, these requirements are sel-
dom fulfilled. Thus, a perfect match between given features and a stored description
does not exist in most recognition problems. In such cases one is interested in the
best-match. Marker-passing systems handle this problem very poorly, whilst a connec-
tionist machine handles this task very well. In a connectionist network each observed
feature (represented by one or more units) sends activation to a number of units.
The amount of activation depends on the level of confidence in the observed feature
and the weight(s) of the link(s) between the unit(s) representing the feature and the
unit(s) representing some object. After a number of time steps a continuous deter-
ministic system will reach a stable state, that represents the best match between the
given features and the stored description. In the Boltzmann and the deterministic
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binary system, the best-match is given by the state with the lowest energy.

Gestalt recognition. Gestalt recognition is basically a search mechanism which
combines top-down and bottom-up processing to find the best-match between given
features and stored descriptions (in the discussion on best-match recognition we con-
sidered only the bottom-up processing). Palmer (1975) argues that gestalt recognition
is useful in real-world recognition problems: the whole object can only be identified
on the basis of its features, but the features can only be identified in relation to one
another and to the emerging picture of the whole. If taken out of the contéxt, each
feature is ambiguous. A very similar problem occurs in word sense disambiguation in
NLU; the meaning of a text can only be determined on the basis of the meaning of its
words, but the meaning of the ambiguous words can only be determined in relation to
one another and to the emerging meaning of the whole text. The Boltzmann machine
bandles this task in an elegant way. The observations provide the input to the
machine. The set of observed features forms the input to the system and the set of
weights represents stored descriptions. To determine the optimal set of weights a
learning method as given by Hinton and Sejnowski (1983a) can be used when a train-
ing set is available. The energy function over the possible states of the system is a
measure which combines these sources of information. Thus, in the search for the
global minimum in the energy (the best match) both sources of information are simul-
- taneously used. Using a deterministic binary system, there is a risk of reaching a local
minimum, from which the system can’t escape. A deterministic continuous connec-
tionist system is in principle able to handle gestalt recognition tasks, but it will be
difficult in large systems to find the optimal set of weights to store this set of descrip-
tions.
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CHAPTER 3

Connectionist systems for natural language understanding

3.1 Introduction

In this chapter we will discuss the use of parallel architectures in natural
language understanding (NLU). First, in section 3.2, we will give an overview of pre-
viously proposed connectionist models for NLU. These models show how connection-
ism can be used to handle several ambiguity problems in NLU. They are also intend-

ed to be cognitive models of the way people deal with ambiguity.!

In our work the emphasis has been on extending the natural language process-
ing capabilities of these models; we are not making explicit claims about the psycho-
logical validity of our approach (except in so far as the connectionist model itself is a
cognitive model of human information processing). Before we introduce our model in
section 3.4 we will first consider the major shortcoming of the previous models, name-
ly their limited capacity of rule-based processing, in section 3.3.

3.2 Disambiguation

3.2.1 Introduction

An important aspect of any natural language processing system is its ability to
disambiguate. Consider, for example, lexical ambiguity; Gentner (1982) found that
the 20 most frequent nouns have an average of 7.3 senses each, and the 20 most fre-
quent verbs have an average of 12.4 senses each. It is interesting to note, that people
are able to handle lexical disambiguation quite easily, even though the task requires
knowledge from many sources.

1 It should be noted that we intérpreted the term disambiguation in a broad sense;
that is we treat for example anaphora resolution as a disambiguation problem.
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Most research on marker passing and connectionist models in NLU, so far, has
been concerned with lexical disambiguation. The main reason for this is that both
marker passing and connectionism provide a good mechanism to find semantic associa-
tions between concepts; semantic associations are relevant in lexical disambiguation,
~ because of a phenomenon called semantic priming. Psycholinguistic research shows
that semantic priming speeds up a person’s lexical disambiguation. Semantic priming
refers to the phenomenon that the activation of concepts in the brain speeds up the
reaction time for judgements involving associated concepts (Collins and Loftus 1975).
An example of semantic priming was found in the study of partial reading by McClel-
land and Rumelhart (1981). They show that the presence of a printed letter in a brief
display is easier to determine when the letter is presented in the context of a word
than when it is presented by itself.

It should be noted that marker passing is studied for its use as a separate com-
ponent of conventional NLU systems to facilitate disambiguation. In the connection-
ist approach our final goal is an independent connectionist system that handles many
aspects of natural language processing. The main motivation behind this approach is
the belief that natural language processing should handle different sources of
knowledge, like syntax, semantics and pragmatics, in an integrated manner.

3.2.2 Marker passing

The idea to use marker passing to find semantic associations between concepts
‘was introduced by Quillian (1968). Quillian’s Teachable Comprehender (1969) uses
the concept of semantic association to resolve some simple disambiguation problems.
His work demonstrated the applicability of marker passing in disambiguation tasks.
Since then, this technique has become much more sophisticated; as an example we
will consider a recent system developed by Hirst (1983).

Hirst introduces a general mechanism to handle disambiguation: Polaroid
Words. Polaroid Words are embedded in a NLU system developed at Brown Univer-
sity, and use marker passing as a disambiguation tool. The NLU system uses the Frail
knowledge representation language which contains a built-in marker passer (Charniak,
Gavin and Hendler 1983). Strictly speaking, the marker passer in Frail is a message-
passing system, because each marker consists of a list of names of nodes that have al-
ready been marked. However, because only the length of a path is used for the lexi-
cal disambiguation, we will call the system a marker passing system.

Frail is a frame-based knowledge representation language. Given the name of
a node (a frame, a slot, or an instance) in the knowledge base, as a first step the
marker passer marks all nodes directly linked to the given node. In the next step the
marker passer marks all nodes linked to the nodes marked in the previous step. Re-
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peating this process, paths of any length between nodes can be found. Because a link
in the knowledge base represents a relation (for example an IS-A or a PART-OF rela-
tion), a path, consisting of one or more links between two nodes, represents a seman-
tic association between them. A simple example, given by Hirst, will illustrate how
this can be used in lexical disambiguation.

Consider the sentence
Nadia’s plane taxied to the terminal. (3.1)

This sentence contains three ambiguous words: plane, taxi and terminal. The NLU
system will process the sentence from left to right, marking the frames representing
each known meaning of each word. Consequently, the marker passer will find a path
consisting of only one link between the frames airplane and airport-building, which
were the starting points of plane and terminal. Another path of short length would
be found between airport-building and aircraft-ground-travel. Aircraft-ground-travel
was the starting point of raxi. These short paths indicate a strong semantic associa-
tion, therefore the program can infer that air-plane, airport-building and aircraft-
ground-travel correspond to the meanings of plane, taxi, and terminal in (3.1). If we
put a certain limit on path lengths, then no paths will connect the frames representing
the other meanings of the ambiguous words, namely wood-smoother, taxicab, and
computer-terminal.

It will be clear that the marker passing system will find many paths that pro-
vide no useful disambiguation information. In the extreme case where we allow paths
of arbitrary length, the system will find a path between each two nodes in the
knowledge base (assuming that the knowledge base has no disconnected subgraphs).
Apparently we must constrain the marker passing process.

In general the strength of the semantic association between nodes decreases
with increasing path length. Therefore, we can assume that paths longer than a cer-
tain length n are irrelevant for the disambiguation process (n should be chosen to be
small in comparison with the size of the knowledge base). Thus a useful constraint
will be a limit on the path length. The disambiguation process can also be improved
by restricting the types of paths. In Frail, the user can specify certain restrictions on
the types of paths. For example, he can choose to pass markers only upwards in the
IS-A hierarchy and not downward, so markers are passed to more general concepts.
Restrictions that are the most useful should be determined experimentally.
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Using these constraints, the marker passer might still find more than one path
from a frame representing the meaning of a word to frames representing the different
meaning of an ambiguous word. In this case we need a way to compare the strength
of the semantic association represented by the different paths. Hirst uses the follow-
ing heuristic rules:

- The shorter the path, the stronger the path.
- The more links that leave a node, the weaker the connections through that
node.

Hirst points out that these methods (the constraints and the heuristic rules)
are needed in the current version of the Polaroid Words, but are unsatisfactory be-
cause they rely on magic numbers (for example the maximum path length). As a pos-
sible improvement, he proposes some extra features as path strength and the weaken-
ing of activation when it gets further from the origin. The weakening of activation
could be implemented by assigning weights to the links between the nodes. Interest-
ingly, this resembles the type of activation spreading in connectionist systems.

3.2.3 Connectionism

Waltz and Pollack (1984; Pollack and Waltz 1982) and Cottrell and Small (1983;
Small, Cottrell, and Shastri 1982) give connectionist models for NLU. Both models
use the continuous deterministic scheme (section 23.3) and handle disambiguation
problems. '

Cottrell and Small use a representation scheme similar to the one used by
Schank (1975) in his work on conceptual dependency. Syntax plays only a minor role
in their scheme. In the work of Pollack and Waltz the syntax plays a more important
role. Their system, for example, resolves syntactical ambiguity by using semantic
knowledge. We will now give a more detailed description of these models.

In the model by Small et al. one can distinguish three levels. The first level is
called the lexical level. This is the input level of the system; incoming words will ac-
tivate the associated units. The second level is called the word sense level. This level
gives the different senses of the words at the lexical level. The last level is called the
case logic level. This level expresses the possible relationships between the predicates
and objects presented at the second level. An example network will clarify their ap-
proach.

Consider the following input sentence:
A man threw up a ball. (32)

Figure 3.1a gives the state of the network, given by Small et al., after receiving



a man threw as an input. (The actual values of the weights on the excitatory and inhi-
bitory connections were not given.) The number of plus signs represents the level of
activation:—A unit-is called-active if-it-has-one or-more-plus signs:—(The-level of ac-
tivation is a continuous value, so, for example, one plus sign refers to a value between
¢ and 2c, where c is a positive number.) One should note that the links are symmetri-
cal, so activation can flow in either direction between two linked units.

The phrase a man activates the units a and man. These units activate the unit
someman. The article a will also excite, for example, somewoman (not shown in figure
3.1a), but an inhibitory link between someman and somewoman prevents them from
being both active (we assume a person can’t be both).

The unit threw excites propel and vomit, but as we will see in the next diagram
the vomit unit needs more input to become active Thus only the unit propel becomes
active. Although not explicitly shown in the figure 3.1a, the weight on the link
between threw and vemit is smaller than that of the link between threw and propel,
this represents the fact that a man threw is commonly associated with throwing an
object. (Small et al. use a special type of link between threw and vemit, but simply
decreasing the weight of that link suffices.) Moreover, the inhibitory link between
propel and vomit will prevent them from both being active. The units someman and ]

propel will activate propelagt.

The pattern of activity will change drastically when the word up is given as the
next input, figure 3.1b shows this new pattern. The units threw and up activate vomit.
Now, the unit vomit will become more active than propel, and because of the inhibito-
ry link the activation of propel will decrease. The system will now settle in a new
stable state, representing the fact that the phrase threw up mostly refers to vomiting.

Finally, the system will receive the'input a ball , which reinforces the unit pro-
pelobj and inhibits the analogous vomitobject. The system will now settle in the stable
pattern shown in figure 3.1c. This pattern represents the correct interpretation of
(3.2). (Links are symmetrical; thus, someball excites propelobj, which excites propel.)

In the model of Waltz and Pollack (1984) we can distinguish four levels: an in-
put level, where the network receives its input data; a syntactic level, that represents
the syntactic parse of the input data; a lexical level, that represents the different
senses of the incoming words; and a contextual level, that represents the context in
which the sentence should be interpreted. This network is not part of some large net-
work that processes an arbitrary input sentence, but has to be constructed for each
specific input sentence. The sentence is run through a conventional chart-parser to
construct the syntactic layer of the network; the lexical layer is constructed from all
possible senses of the words, and the contextual layer is constructed from recent con-

-24-



o @n inhibitory link

—— an excitatory link

(a) a man threw

+

(c) a man threw up a ball

Figure 31 The responses for different inputs of an example network by Small et al.
(1982).



textual information, as will be discussed below. (The way in which these layers are
interconnected is reasonably straightforward.)

In order to construct the context layer, Waltz and Pollack propose a connec-
tionist scheme for contextual priming. The scheme contains a set of units that
represent concepts and a set of units representing microfeatures of these concepts.
Each concept is connected to a representative subset of the set of microfeatures; for
example ‘weekend’ will be connected to ‘day’ and ‘week’, but also to ‘restaurant’,

‘bar’, and so forth.! Each concept will have at least one microfeature in common with
another concept, and most concepts share many microfeatures with other concepts.
Therefore, in general, all units will be indirectly connected to one another. In such a
scheme the activation of a specific concept will activate related concepts, because the
activation will spread throughout the network. The level of activation of a particular
unit represents the strength of its relation to the priming concept. The current con-
text is given by the state of the network at that moment, when new sentences come in
and therefore new concepts will be activated, this pattern of activity may change,
representing a change in context.

The main problems in the approach of Waltz and Pollack are the choice of a
representative set of microfeatures and the setting of the weights in their scheme.
Results obtained in psycholinguistic research on free word association might be of use
when choosing the right set of weights. These results suggest that such a scheme re-
quires the use of asymmetric connections; for example Deese (1961) finds that ‘yellow’
strongly primes ‘color’, however ‘color’ hardly primes ‘yellow’, but instead strongly
primes ‘blue’.

The given examples show how connectionist systems can be used for some
forms of lexical and syntactical disambiguation. Reilly (1984) proposes a similar ap-
pfoach towards anaphora resolution. He discusses an example discourse, but does not
give explicitly the connectionist network which handles this discourse. Therefore, it
is difficult to evaluate the applicability of his model.

3.3 Rule-based processing

We consider again the example network given in figure 3.1a. In this network
‘Bob’ is only linked to the agent case and not to the object case. Apparently the func-
tional structure of the sentence is preprogrammed in the network. In a general con-
nectionist model one would like to explicitly represent the fact that ‘Bob’ can be ei-

1 Interestingly, the use of a set of microfeatures is closely related to the distributed
representation of concepts (section 232). In fact, the set of microfeatures that
characterizes a certain concept can be viewed as a distributed representation of that
concept.
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ther an agent or an object; and represent a rule that specifies which of the two roles
‘Bob’ plays in a particular input sentence, based on the functional structure of the
sentence.

In the model by Waltz and Pollack the syntactic layer of the network is con-
structed from the input sentence using a conventional chart parser. Also in this case,
a more general model would require an explicit encoding of the grammar rules in the
network, so that the same network would be able to handle a large number of input
sentences. The problem we encounter here is a general one in connectionist schemes,
namely, how to handle forms of processing that seem to require sets of rules.

Riley and Smolensky (1984) propose a connectionist model for rule-based pro-
cessing in the domain of problem solving (the analysis of simple electronic circuits).
As the most serious disadvantage of their approach, they mention the difficulty of
performing symbol manipulation. Because of that, their model is capable of analyzing
only one specific electronic circuit. And even for such a specific task they had to im-
plement Ohm’s law for each component of the circuit, i.. there is a sub-network
representing Ohm’s law (or more precisely, the changes in voltage V, current I, and
resistance R that are in agreement with Ohm’s law) for each component in the circuit.
Ideally one wants a system with Ohm’s law stored only once and the ability to apply
this law to a component in the system whenever that is necessary for the analysis of
the circuit. This is achieved easily in a symbolic processing system where one stores a
law in a general form, e.g. V, =I, R, where x is refers to any one of the components,
but becomes difficult in connectionist models.

Instead of representing all possible instances of rules, like Riley and Smolen-
sky, we propose to represent concepts only once in our scheme and use intermediate
computing units to represent the possible bindings, given by the rules, between them.
So, for example, instead of connecting ‘Bob’ to only the agent role, as is shown in
figure 3.1, we link ‘Bob’ to both the agent and the object roles using some intermedi-
ate units. These intermediate units, functioning as binders, are linked to another part
of the network that handles the syntactic parse of the sentence. The units represent-
ing the parse tree of the input sentence, and therefore the functional structure, will
activate one of the intermediate units and thus indicate what role ‘Bob’ plays in the
particular input sentence. We will discuss the implementation of a set of rules in de-
tail in chapter S, where we describe the representation of grammar rules in a connec-
tionist network.

Finally we would like to mention that certain forms of rule-based processing
in natural language understanding, such as logical inference to resolve complicated
anaphora, are actually processed in a sequential manner, and therefore one should not
model this processing in a parallel scheme. As a matter of fact, we find it question-
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able whether the form of rule-based processing used in the analyses of electrical cir-
cuits is of a true parallel nature. A similar question arises with respect to the work
on connectionist systems for logical inference by Ballard and Hayes (1984).

3.4 An integrated approach

In research on NLU systems there has always been much discussion as to what
extent different forms of processing should be done in a parallel, integrated manner.
Most conventional NLU systems follow a model where syntactic processing functions
as a front end of the system. Thus, syntactic and semantic processing are strictly
separated. Charniak (1983) proposes to add a marker-passing component which runs
in parallel with the syntactic and semantic component of the NLU system. The mark-
er passing facilitates disambiguation in the system and results in a more intergrated
form of processing; in general it seems that disambiguation tasks in particular require
a high degree of integration between the different forms of processing.

An important claim made in the work on connectionist models for NLU is that
these models process in a completely integrated manner different sources of
knowledge. However, we saw that previously developed models only handle a small
part of the processing that is needed in NLU. We believe that these systems can only
become of practical interest for NLU if they are also able to handle rule-based pro-
cessing in a general way. Examples of rules, relevant in natural language processing
are: grammar rules, rules for case filling, rules for definite noun phrase resolution,
etc.

Therefore, we propose a connectionist NLU scheme which incorporates rule-
based processing by using intermediate computing units that function as binders (as
discussed previously) and handles different sources of knowledge in an integrated
manner similar to that in previously proposed NLU schemes.

A complete NLU system has the ability to store the meaning of the incoming
sentences in a knowledge base. The stored knowledge can be used in the processing
of new input. Our proposed connectionist scheme does not have this ability, because,
up to now, no efficient mechanism for direct storage and retrieval of knowledge in a
connectionist model has been developed.

The design of a network that handles both disambiguation and rule-based pro-
cessing would require many ad hoc decisions on the topology and the setting of
weights and thresholds of the network. Therefore, we decided to focus in this
research on rule-based processing. We choose to model parsing based on some
context-free grammar rules. We will discuss the results of this work in the next
chapter.
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CHAPTER 4

A connectionist parsing system

4.1 Introduction

In this chapter we discuss a connectionist model for computing the syntactic
parse of a sentence. The model is based upon a context-free grammar. This is not
essential for our approach. The choice of another grammar, for example a transfor-
mational grammar, would complicate the design of the connectionist network, but
would not require changes in the basic principles underlying our model. Our major
concern has been to to demonstrate that rule-based, traditionally sequential, symbolic
processing can be done in a highly parallel fashion, using a connectionist scheme. In
this introduction we will discuss some general features of the model and motivate
several design choices.

The syntactic categories of the grammar are represented in a localist manner,
that is each syntactic category is represented by a unit in the network. We use binder
units (explained later) to represent the different possible links between syntactic
categories in a parse tree. This localist approach allows us to represent the grammar
rules in a very straightforward manner and consequently determines the set of non-
zero weights (giving the topology of the network), as we will see in the next section.

The grammar rules and the chosen representation determine how the units are
interconnected. To set the weights on these connections we have to consider which
updating function (or computational scheme) we are going to use. We choose the sto-
chastic Boltzmann scheme (with a slight variation, namely output values of —1 and +1
instead of 0 and +1, section 5.3) over a deterministic scheme on the following
grounds: .

® Local minima. Using a deterministic scheme, the network might end up in
only a local minimum. There are two approaches towards resolving this problem.
One approach is to introduce some noise in the system as is done in the ISCON simu-
lator (Small et al. 1983). This is basically equivalent to the simple random sampling
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Monte Carlo method (Binder 1978) and is known to be inefficient in many cases as an
optimization method. Another approach is to tune the set of weights in such a way
that the system settles directly in the desired state given a certain input. This method
requires many simulations for different inputs, because the behavior of the system is
difficult to predict. These considerations lead us to the computational scheme of the
Boltzmann machine. The Monte Carlo algorithm used in this scheme, introduced by
Metropolis et al. (1953), is known to be much more efficient than the simple algorithm
mentioned above. Also the chance of ending up in a local minimum is considerably
smaller (theoretically this chance is zero, but only for an infinite number of comput-
ing steps). Moreover, as we argue below, the setting of the weights is easier than in
the stochastic scheme.

@ Formal basis. The Boltzmann machine formalism allows an interpretation of
the weight between two units in terms of the conditional probabilities (section 5.3)
and the chance of occurrence of a state is directly related to its energy. These pro-
perties are useful in the analysis of a network and facilitate the setting of the weights.
(The deterministic model lacks such properties.)

4.2 The system

4.2.1 Topology

We distinguish two layers in the parsing system. The input layer consists of a
number of computing units representing the terminal symbols of the grammar. An in-
put sentence will activate some subset of these units. Connected to this input layer is
a network that represents the parse trees of all non-terminal strings in the language
whose length is not greater than the number of units in the input layer. This network,
called the parsing layer, is constructed from connectionist primitives, which represent
the context-free grammar rules. Figure 4.1 gives two examples of such primitives.
The activation of all units of a primitive corresponds to the use of the associated
grammar rule in the parse. The number of units in the parsing layer depends on the
particular context-free grammar rules and the number of input units. The different
parse trees are not represented by completely disjoint sets of units, but share common
substructures. This will keep the size of the network manageable.

We use intermediate computing units to link the primitives together. These
units play the role of binders in the network and, are therefore called binder units.
The computing units representing the terminals and variables of the grammar are
called main units.
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Figure 4.1 Some examples of connectionist primitives and their associated grammar rules.
These primitives are the building blocks of the parsing network.
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Figure 42 An example of the use of binder units (units 1, 2, 3 and 4). This network represents
the grammar rules given in (4.1).

Figure 4.2 gives an example of the use of binder units. The four binder units
are used to represent the fact that the main unit #0 is part of three grammar rules:

VP - VP PP (4.1a)
VP -~ verb (4.1b)
VP - verb NP (4.1¢c)

The binders are linked in such a way, using inhibitory and excitatory connections, that
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when the network reaches a global energy minimum the active binders (output equals
+1) tell us which one of the three possible grammar rules is used in the parse of the
input sentence to decompose the verb phrase represented by unit #0. So, if binder
#1 stays active rule 4.1a is used in the parse, if binder #2 and #3 stay active rule 4.1b
is used and if binder #2 and #4 stay active rule 4.1c is used.

4.2.2 Computational scheme

In this section we will consider the way in which the network finds the parse
of a sentence. In the input layer of the network, the units are placed in inpur groups.
Each group contains a unit for each terminal symbol of the grammar. The input

groups are numbered; the n** group is associated with the n* word in the input sen-
 tence. Initially the computing units of both the input and the parsing layer of the net-
work are inactive (their output is —1). As a sentence comes in, each word of the sen-
tence activates the computing unit(s) representing its associated syntactic category or
categories. So the first word of the sentence activates one or more units (depending
on the number of syntactic categories associated with the word) in input group #1,
the second word one or more units in input unit #2, and so on. After receiving input
data, the network starts the relaxation process. During this process, the outputs of
the activated computation units in the input groups are fixed at +1, while the outputs
of other units in the input layer are fixed at —1, so that the network can find the op-
timal match between the input data and the internal constraints representing the
grammar rules; this match will represent the correct parse of the input.

In our model we use a variation on the computational scheme of the
Boltzmann machine (Fahlman, Hinton and Sejnowski 1983) and apply the simulated
annealing scheme of Kirkpatrick et al. (1983) to find the optimal match. Our scheme
differs from the original in that we use —1 and +1 as output values of our computing
units instead of 0 and +1. This facilitates the representation of symmetrical inter-
dependency relations between hypotheses in the scheme; there exists a one-to-one
mapping between this scheme and the original (section 53).

The fact that this scheme searches for a global energy minimum and that at
equilibrium the relative probability of a particular state of the system is given by its
energy enables us to formulate general rules for the setting of the weights on the con-
nections and the thresholds of the computing units.

We compute the average value of the output of each unit at the different tem-
peratures used in the annealing scheme. In an example given below, we will see how
these average values will change during cooling of the system; finally, at a tempera-
ture just above the freezing point of the system, the units with outputs close to +1
will represent the parse of the sentence. To find the temperature just above the



freezing point of the network, we consider statistical data on the behavior of the net-
work during simulated annealing.

4.2.3 The setting of weights and thresholds

The setting of weights and thresholds is probably the most difficult problem in
the design of a connectionist scheme. The set of weights and thresholds represents
the internal constraints and therefore the knowledge in the system. So far we have
described how units are interconnected in our parsing scheme; that is the set of links
with non-zero weights. In this section we will discuss what values should be chosen
for the weights on these links; we will also discuss the setting of the thresholds of the
computing units.

In the Boltzmann formalism, the behavior of the system during relaxation can
be described as a search for a global minimum in the energy function given in equa-
tion 24. From this equation, it follows that the contribution of a unit, k, to. the ener-

gy is given by
Ejger = (—1/23wy;5;40;) 5, 42)
J

From (4.2) it follows that we can calculate the contribution of one unit to the energy
of the network from the output value of that unit and its nearest neighbors (that is
those units with a link to that unit). Using equation 4.2 we can write for the total en-

ergy
E = %Eloc.k (43)

Given the fact that the network searches for a global energy minimum, we
can, to a first approximation, analyze the behavior of the network by assuming that
each unit and its direct neighbors will choose output values such that E,,., becomes
minimal. However this method gives only a rough approximation of the actual
behavior, because minimizing E;,. for one particular unit often conflicts with minimiz-
ing E,,. of other units. To get a better insight in the behavior of the system we there-

fore consider the contribution to the global energy of small groups of units.! Because
of the homogeneous structure of our network we only have to consider a limited
number of cases.. From these considerations follows a set rules for setting weights
and thresholds in our parsing scheme. These rules are given below.

1 Of course, for an exact analysis one would have to consider all possible states of the

(total) network; this becomes clearly infeasible for networks with more than about 25
nodes.
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® Excitatory links. Symmetry considerations and the fact that there is no dis-
tinction between bottom-up and top-down parsing in the network lead directly to the
choice of weights on the excitatory links. Figure 4.3a shows some excitatory links in a
typical configuration. The network represents two grammar rules

VP - verb (4.4a)
VP - verb NP (4.4b)

Rule 4.4a is represented by the units 0, 1, and 3; rule 4.4b by the units 0, 2, 4, and 5.
During the relaxation process, our network has to decide between rule 4.4a and rule
4.4b or neither of them. There is no a priori preference of one rule over the other.
Therefore, because unit #2 is connected to two other units representing the left-hand
side of rule 4.4a and unit #1 is connected to only one unit representing the left-hand
side of rule 4.4b, we have to make the weight on the link between units #1 and #3
twice as strong as the links between units #2 and #4 and between units #2 and #5.
(This can be easily generalized for grammar rules with more symbols; one choses the
weights such that the sum of the inputs at the binder units is-equal for all possible
grammar rules.) So we choose w; 4 and w, 5 equal to some positive constant a and we
set wy3 to 2.0 a. One should note that only the ratio of these numbers is of impor-
tance. The magnitude of these numbers is going to determine at what temperature in
our simulated annealing scheme the system is going to freeze, but the temperature is
only a formal parameter introduced to do simulated annealing and has no meaning for
our final result. ’

Figure 43 Part (a) shows some excitatory links and one inhibitory link in a typical
configuration in the parsing network. Part (b) gives an example of a state of the network that
we would like to prevent by making the inhibitory link stronger than the strongest excitatory
link.
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For the use of a grammar rule in the parse, the presence of each symbol in the
rule is equally important, and therefore we connect the units in a connectionist primi-
tive representing a grammar rule with links of equal strength, so w,s= a. And final-
ly, because bottom-up and top-down parsing is completely integrated and of equal im-
portance in our networks we choose wg =wg2=20a.

® Inhibitory links. Binder units are the only units with inhibitory connections.
Each binder unit is connected by an inhibitory link to another binder unit. As we dis-
cussed previously, they are used by the network to choose between grammar rules in
the parse of the input sentence. Therefore we must avoid states of the network
where both units of a pair of binder units are active; these would be meaningless
states of the network, because they would represent the simultaneous application of
two grammar rules to decompose a syntactic category in the parsing process. Figure
43b gives an example of the network given in figure 43a in a state that we must
avoid. A way to prevent this situation is by making the inhibition stronger than the
single excitatory link between unit #0 and #2; exactly how strong is directly related
to the threshold values of the binder units, as we will see below.

® Thresholds. So far we have implicitly assumed that all thresholds were
chosen equal to 0. Because we use the —1/+1 model, this means that the links
represent symmetric dependence relations between units (section 53). So the
influence of a unit with output —1 on its surrounding is opposite to, but of the same
magnitude as, the influence of that unit with output +1. This means in terms of ener-
gy that, for example, the energy of a connectionist primitive with all units on (output
is +1) is the same as the energy of that primitive with all units off (output is —1); this
follows from equation 43. This symmetry expresses the fact that there is no a priori
knowledge in the system on whether a certain connectionist primitive (or grammar
rule) should be used or not in the parse of an input sentence. However, with the
binder units we do have a priori knowledge which tells us that the dependency rela-
tion of those units should be asymmetrical. This is most easily demonstrated with an
example. In figure 4.4a we consider two states of a network with one main unit and its
two binders. When the thresholds of the units is zero the energies of the states A and
B are the same. However, we know a priori that only the state A can be part of a
correct parse of a sentence; therefore we would like to give this state a lower energy
than that of state B. This can be done by introducing a positive threshold in the
binder units. This positive threshold gives a binder unit a preference for staying inac-
tive and only becoming active if there is support from its neighbors ‘above’ and
‘below’ the unit. We don’t introduce such a threshold in the main unit because we
don’t have a priori knowledge which tells us that the main unit is more likely not to
be part of the parse than to be part of it.
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Figure 44 Part (a) gives two states which have equal energies in case the thresholds of the
computing units are equal to zero. To give state A a preference over state B we introduce a
positive threshold in the binder units (this results in E, < Ep). Part (b) and (c) show main
units in highly symmetrical configurations. We have to introduce a small negative threshold in
such units.

To choose the size of this threshold we have to take into consideration the
strength of the inhibitory connection between binders. The threshold and the weight
on the inhibitory link should be such that without support from surrounding units
both binders stay inactive; with support from active surrounding units one of the
binders is likely to become active; and finally the activation of both binders simultane-
ously is extremely unlikely. From the energy of a pair of binder nodes we can deduce
that setting the weight on the link between them to — P (where B is a positive value;
as explained above, this value should be larger than 2.0 a) and the threshold to g — a.
This will result in the required behavior.

Also, some of the main units need a non-zero threshold depending on their en-
vironment; see figures 4.4b, c. Figure 4.4b shows a main node surrounded by pairs of
binder nodes. In this case, if one unit in each of the pairs of binder units is active,
the main unit should be part of the parse and therefore be active. However, when
the main unit has a threshold equal to 0, the energy of the network with the main
unit on is equal to the energy of the state with main unit off. To remove this sym-
metry we have to choose a non-zero threshold, in this case one which favors the ac-
tive state; we choose 0= — 2 a.
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Finally we consider figure 4.4c. As we discussed above, a binder unit only be-
comes active if there is support for this unit coming from the unit above and the unit
below the binder. Therefore, because the two binders #4 and #5 cancel each other’s
effect on main unit #3, both unit #3 and unit #2 will stay inactive when the thres-
hold of unit #3 is zero. To solve this problem we give this unit a negative threshold
(we choose — 2 a), which leads to a consistent state of the network with both units
#1 and #2 active.

® Summary. Choosing @ = 1.0 and B = 3.0, the rules become as follows:

weight o cyiqiory it +1.0  in primitive with three units (4.5a)
+20 in primitive with two units (4.5b)
Weight ipipicory tine  —30 (45c)
threshold 0.0 main unit (4.5d)
=20 main unit in symmetrical environment (4.5e)
+20 binder unit. (4.56)

A main unit in a symmetrical environment is a main unit only linked to pairs of
binder units (that is connected to both binders) and at most one other binder unit.

Although the local analyses and symmetry considerations on which these rules
are based won’t guarantee the right global behavior, good simulation results of a net-
work with weights set according to these rules show that apparently such a local
analysis gives a reasonable estimate of the global behavior of the parsing network.
This is most presumably a consequence of the highly homogeneous structure of our
parsing scheme (the networks are built from a small number of primitives).

The setting of the threshold of the main unit in figure 4.4c is clearly the most
specific case discussed in this section and is easily overlooked in the design of a net-
work. We will therefore in section 4.4 consider what the consequences are if we
choose a zero threshold for this unit.

Instead of using a local analysis to set the weights and thresholds, one might
consider the use of a learning algorithm. So far, the only known learning algorithm is
the one developed by Hinton and Sejnowski (1983a, 1983b; Hinton, Sejnowski and,
Ackley 1984) for the Boltzmann machine (section 23.3). This algorithm has been suc-
cessfully used in some small-scale examples. In these examples large training sets
(several thousand samples) were used. It is not clear whether this algorithm can be
used to set the weights and thresholds in our network; the main problem is to define

an appropriate learning set.



An interesting alternative for the setting of weights and thresholds is a method
that combines local analysis with a learning algorithm. That is, first a local analysis is
used to find a rough estimate of the set of weights and threshold and subsequently
one uses learning algorithm to ‘tune’ the network. This is probably what happens in
the human brain, namely one is born with some inherited structures in the neural tis-
sue and during life a learning process adjusts the strengths of connections between the
neurons. (Feldman 1982 discusses changes in strenght of connections in neural net-
works.)

4.3 The design and testing of a network

To illustrate our model we will now consider an example. This network is
based on the following context-free grammar rules:!

S - NPVP NP - determiner NP2

S - VP NP - NP2
VP -~ verb NP - NP PP (4.6)
VP - verb NP NP2 - noun
VP - VP PP NP2 - adjective NP2

PP - preposition NP

We will represent five input groups. In a complete network each input group has a
unit for all terminals-of the grammar; however to make our example network less
complex, we will not represent each terminal in each input group.

For the grammar rules in (4.6), we can construct connectionist primitives simi-
lar to those given in figure 4.1. To build the parsing layer upon the input layer, using
these primitives, we consider the different possible ways in which the syntactic
categories can be grouped according to the grammar rules, and design a network that
represents those possibilities. One way we could have proceeded is by designing a set
of networks, each representing the parse of one unique input sentence, linking all
these networks to the input layer, and placing inhibitory connections between them.
These inhibitory connections should guarantee that after the parsing network is given
an input sentence, only the sub-network representing the parse of the input would
remain active.

Apart from the question whether the design of such a network is even feasi-
ble, there are several reasons why we did not take this approach. Firstly, many parse
trees have common sub-structures. So one can save computing units by representing
such structures by one set of units and linking that structure, using binder units, to
the different parse trees represented in the network. Secondly, in this model we try

1 These rules are taken from an example in Winograd (1983).
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to represent rule-based, symbolic processing in a connectionist scheme. We especially
would like to preserve the merits of such processing as much as possible. The power
of symbolic processing clearly comes from the fact that relatively few symbols can be
ordered in a large number of ways, each representing a different overall meaning. In
our scheme the symbols can be compared with the main units, and the binders units
are used to ‘order’ them in many different ways. Therefore we strive to keep the
number of main units small and use binders to be able to order them in many
different ways. Finally, main units do represent general concepts, such as ‘noun
phrase’; it is more likely that in the human brain these concepts are represented by

one structure’ than by many different ones. This is another reason why one should
try to minimize the number of main units. This should only be used as a guideline,
because it remains to be seen whether the concepts we use in our scheme are
representative for the concepts humans use to determine the structure of a sentence
(Stabler 1983).

So, instead of constructing a network from a set of separate networks, each
representing the parse of a sentence, we take an approach in which we try to share
common syntactic structures between parse trees and minimize the number of main
units. Following these guidelines we can construct from the input layer, using the
connectionist primitives, a network like the one given in figure 4.52 The weights and
thresholds in this scheme are set according to (4.5).

To test our network we use the following ‘sentences’:

noun verb preposition determiner noun (4.7a)
verb noun preposition determiner noun (4.75)
adjective noun verb determiner noun (4.7¢)
adjective noun verb (4.7d)

noun {noun verb} preposition determiner noun (4.7¢)

The sentence John ran down the hill is an example of an input sentence that
corresponds to (4.7a); (4.7¢) gives a syntactically ambiguous input activating two units
in input group #2 (John watches from the hill is an example of a corresponding input
sentence). The parse trees of these sentences are given in figure 4.6 (except for sen-

1 Whether this is a group of units as in the distributed representation or one unit as in
the local representation is irrelevant in this context, because in both representations
each concept has one unique representation; that is one specific pattern of activation
or one particular unit.

2 Some simple input sentences show that the multiple units for NP’s, NP2’s, and PP’s
are necessary; however, one could further minimize the number of VP’s. However,
this results in a network where the connectionist primitives are less visible, and which
is therefore harder to understand.
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Figure 45 An example parsing network based on the grammar rules given in (4.5). Input
group #1 consists of units 0, 1, and 2; group #2 consists of units 3, 4, and 5, and so forth.

tence (4.7e); its parse tree is equivalent to that of sentence (4.7a)). For each input
sentence we ran a simulation of the parallel network on a serial machine using a
simulated annealing scheme. To apply this scheme, one has to choose a descending
sequence of temperatures such that the system has a reasonable chance of finding the
state with the global energy minimum. Therefore one starts at a high temperature
and first cools rapidly; once the system approaches the freezing point (the point at
which it settles down in a state with a local or a global energy minimum; in this state
the temperature is too low to escape from this minimum) one should cool very slowly.
As we will see, we don’t have to freeze the system completely; the right parse of the
input sentence is found at a temperature just above freezing. At each temperature
above the freezing point one has to take sufficient computation steps to allow the sys-
tem to reach equilibrium at that temperature.



8 (15)
VP (23)
PP (29)
NP (1s) NP (39)

NP2 (32) P (35) /N> (42)

nouu (1) verb (3) prep (6) der (11) noun (13)
(a)

s (15)
NP (13) VP (23)
NP2 (32) NP (39)

/N> (36) /N>| (42)

adj (0) noun (4) verb (6) det (11) noun (13)

S (15)

VP (16)
VP (28) PP (29)
NP (18) NP (39)
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verb (0) noun (4) prep (8) det (11) noun (13)

(®)
S (15)
NP (18) VP (23)
NP2 (32)
NP2 (36)

adj (0) noun (4) verd (6)
(d)

Figure 46 The parse trees of the sentences (4.7a) to (4.7d). The numbers between parentheses
are the numbers of the corresponding computing units in the parsing network.

To be able to choose the sequence of temperatures and the number of compu-
tation steps we did some test runs with the network. The sequence of temperatures
was determined by considering the following data accumulated during the annealing

process:
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e Changes in output values. At each temperature we determine for each unit
the. ratio between the number of times the output value of that unit changes and the
number of times the updating rule is applied. This ratio gives a good indication of
whether the system approaches the freezing point. (At the freezing point, the ratio is
zero for most of the units.)

® Energy distribution. At each temperature we determine the energy values of
the states visited by the system, and for each energy value we record the number of
times the system is in a state with that energy. Above the freezing point this gives us
the energy distribution of the system at equilibrium (provided that the number of
computation steps is large enough). The temperature dependency of this distribution
has been used to determine at what rate we can decrease the temperature during the
annealing process. When the energy distribution shows that the system only visits
states with the same energy, we can assume that the system is in a frozen state.

Based on these indicators, we choose a sequence of temperatures starting at
T = 10000 (to randomize the system), followed by T = 4.0, T = 2.0, and then in steps
of 0.2downto T =02.

To estimate the required number of computation steps at each temperature,
we considered the results of a sequence of simulations in which this number was slow-
ly increased. When the average output values of the units become independent of the
number of computation steps one can assume that enough steps have been taken to
scan the energy distribution of the system at equilibrium. Two thousand computation
steps (i.e. 2000 updates of each unit) per temperature turned out to be sufficient.

It should be noted that we did not try to minimize the number of temperatures
and the number of steps per temperature. For example, one could take less computa-
tion steps at the higher temperatures.

Figures 4.7a to 4.7e give the results of the annealing process for the input sen-
tences 4.7a to 4.7e; we give six temperatures. In these figures, each panel shows the
average output value of each computing unit at the temperature given below the
panel. The numbers 0 to 44 are the numbers of the computing units; the vertical posi-
tion indicates their average output value on the interval [—1,+1]. Comparison of
these results with the parse tree of this sentence given in figure 4.6 shows that the
time average of the outputs of the units, at a low non-zero temperature, corresponds
to the correct parse of the input sentence if one chooses the units with outputs close
to +1 as being part of the parse tree. At low temperatures there is a clear distinction
between units with output close to +1 and the other units, as can be seen in the
figures 4.7a to 4.7e.
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In each of the figures 4.7a to 4.7¢ we give the approximate temperature at
which the system freezes; below this temperature the system stays in one state.
Although the set of average output values of the units in these figures does not reveal
any significant differences between the system in a frozen state or just above the
freezing point; more information about the parse can be obtained at a temperature
just above the freezing point, as we will see in the next section.
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Figure 4.7 The results of parsing the sentences (4.7a) to (4.7¢) with the network given iz
figure 45. Represented are the average output values (along the y-axis) of each unit at
different temperatures used in the simulated annealing scheme. The numbers in the
graph correspond to the numbers of the computing units in the parsing network. During
the simulations, the outputs of units 1 to 15 were fixed. (Units 1 to 14 represent the in-
put; unit 15 gives some top-down priming. Fixing unit 15 does speed up the nmulatcd an-

nealing process, but is not necessary for finding the correct parse.)
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4.4 Changing weights and thresholds

The weights in the example network given above were set in accordance with
the rules given in (4.5). Because the setting of the weights and thresholds is an impor-
tant issue in connectionist models, we will now consider what happens if we change
some of them. We use the example network given in figure 4.5.

First we set the threshold of main unit #32 equal to zero; originally this thres-
hold was set to —2.0, following rule (4.5f). The simulation results show that in the
frozen state the system gives the correct parse, except for the main nodes #18 and
#32 and the binder #21; that is the average output values of those units are —1.0.
However the average of the output values of these units at a temperature just above
freezing is 0.0. So at that temperature these units are part of the parse of the sen-
tence for 50% of the time (all other average output values are close to —1.0 and +1.0,
consistent with the correct parse). This result can be explained as follows. Just above
the freezing point the system jumps between two states, namely:

— state a, all units of the correct parse are active; and
— state b, same as state a, except for the units 18, 21, and 32.

States a and b have approximately the same low energy; however to jump between
these states the system has to visit a state with a higher energy. At a temperature
above the freezing temperature there is enough thermal energy to visit the intermedi-
ate state with a higher energy; in other words the system has a reasonable chance to
visit in the intermediate state compared to the chance to be in the lower energy states
8, and b. Therefore, the system jumps between state a, and b and the average output
value of the units 18, 21, and 32 will be around zero. However, when the temperature
is lowered the system freezes, that is it will settle in one of the states a or b, and
there is not enough thermal energy to jump to the other state with minimal energy.

This example clearly demonstrates that the average output values of the units
give more relevant information when determined just above the freezing point of the
system than at or below that point. It also demonstrates how the Boltzmann mechan-
ism not only finds a global minimum in the energy, but just above the freezing point
the system jumps between a number of states with energies close or equal to the glo-
bal energy minimum. This is an important advantage over a deterministic scheme.
Even in case such a scheme manages to find one of the states a or b, it is very unlikely
that a deterministic scheme, just before finding a or b, would pass through the other
state with minimal energy. This example also shows that if we don’t follow all the
rules given in (4.5), the system does not behave as well as when we do; however the
model still comes up with a result close to the correct parse.
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We will now consider what happens if we increase both the strength of the in-
hibitory links between binder units and the thresholds of these units. We choose a
weight of ~20.0 on the inhibitory links and thresholds of +19.0. These values are in
accordance with the general rule for setting the thresholds on binder units and the
weights on inhibitory links between them (section 423). In this case we don’t find
any significant differences between the simulation resuits with this new choice of
weights and thresholds and those using the original values.

This is an interesting result, because with this choice of weights it becomes ex-
tremely unlikely, at low temperatures, to find a pair of binder units with both outputs
equal to +1.0. Such a pair would give a large positive contribution to the energy; see
equation (42). Therefore, the pairs are functioning as three-state switches with at
most one unit with output equal to +10. This is useful during the search for a
correct parse (or global energy minimum), because a pair with both outputs equal to
+1 corresponds to the obviously incorrect situation in which two grammar rules are
applied at the same time to decompose a syntactic category.

In figure 4.2 we saw two pairs of binder units linked in such a way that they
can choose the application of one specific grammar rule out of three. Using a similar
approach one can design a network from pairs of binder units that can select one rule
out of a large collection; such networks will be useful in general connectionist
schemes for rule-based processing.



CHAPTER 5

Modifications of the Boltzmann scheme

5.1 Introduction

The proper functioning of a connectionist model using the Boltzmann formal-
ism depends on the topology of the energy surface of the network. Firstly, this ener-
gy surface should, ideally, have an unique global minimum that represents the optimal
match between input data and the constraints in the network. Secondly, this surface
should be smoothly curved in such a way that the simulated annealing scheme easily
finds the global minimum. Studies of physical systems (Binder 1982) show that the
efficiency of the simulated annealing scheme strongly depends on the form of the en-
ergy surface. For example, if the surface contains two steep minima, a global one and
a local one, separated by a high energy barrier, then during the simulated annealing
scheme the system might end up in the local energy minimum, from which it has only
a very small chance to escape at low temperatures. In such cases the annealing
scheme becomes very inefficient.

In section 5.2 we will address the question of how we can set weights and
thresholds in a network such that the system will have a unique global minimum.
However, we do not study the actual form of the energy surface in detail; this should
be a topic of future research (section 6.2).

In section 53, we will discuss the use of —1 instead of 0 as an output value of
the computing units. This modification is of practical interest, because it facilitates
the setting of thresholds in our parsing network.

5.2 An slternative energy function

Equation (4.3), repeated here as (5.1), gives the energy as a sum over the con-
tributions of individual units.
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E = %E toc,k (5.1)

From equation (4.2), repeated here as (5.2), it follows that the contribution to the en-
ergy of an individual unit, E;,,, is given by the value of the output of that unit and its
neighbors.

Ejpex = (-1/2 %Wu-'j +6;) 5 (5-2)

As discussed in section 4.2.3 we can estimate the global minimum in the energy
by assuming that the surrounding of each unit is such that E;,. is minimal for that
unit; this will give only a rough estimate of the global energy minimum, because the
minimization of a contribution to the energy by a specific unit will often conflict with
the minimization of the contributions by its neighbors. We proceeded in section 4.32
by considéring the energy of small groups of units to get a better estimate of the glo-
bal energy minimum. However, an exact value of the global minimum in the energy
given by (5.1) and the corresponding states of the network can only be found by con-
sidering the network as a whole.

In this section we will discuss an alternative energy function, for which we can
show that, given a certain choice of thresholds and weights, the state of the network
that represents the correct parse of the input sentence gives the unique, global
minimum energy. The alternative energy function is.given by

E'= %E “Toc.k (53)
in which,

+1 iff Eje ;=0
E e = (54)
"1 iff E’”' k < 0

where E,, ; is given by (5.2). From (53) it follows that the global minimum value of
the energy of a network consisting of N units is equal to ~N .

Let us now consider our connectionist parsing system. We introduce the fol-
lowing terminology:
® A connectionist primitive is happy iff all its units are on (output is +1), or all its un-
its are off (output -1),
® A pair of binder units is happy iff at most one of them is on.

Using this terminology, it follows that a state of the network that represents a correct
parse consists of only happy primitives and happy pairs of binder units; and in all oth-
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er states some of them will be unhappy. As we will see below, it is possible to set the
thresholds and the weights in the network such that both in a happy primitive as in a
happy binder pair, all units contribute —1 to the energy, and if a primitive or a binder
pair is unhappy then at least one of its units will contribute +1 to the total energy.
So the state that represents the correct parse will be the only state with a global
minimum energy of —N. (We will assume that the context-free grammar on which
the network is based is unambiguous; therefore there will be only one correct parse
tree for each input sentence.)

We will now discuss an example to demonstrate that weights and thresholds
can be chosen such that all units of a connectionist primitive or of a binder pair will
contribute —1 to the energy if and only if the primitive or the binder pair is happy.
Therefore, we consider the network given in figure 5.1a. This network contains two
types of primitives and a binder pair in a typical configuration. In figure 5.1b we show
a state of the network in which the primitives and the binder pair is happy; from (5.3)
it follows that the energy is —7. Figure 5.1c gives a state of the network with two
unhappy primitives; its energy is —1. Considering all other possible states shows that

only when both the primitives and the binder pair are happy the energy, E *, is —7.

In this section we discussed how, using an alternative energy function, one can
design a parsing network with a unique energy minimum that corresponds to a state
of the network that represents the correct parse of the input sentence. The design
only requires a local analysis of small parts of the network. Because, the Ej, ; in
(5.2) is not a binary-valued function, a similar approach does not work for the energy
function given in (5.1).

We can use the alternative energy function in a simulated annealing scheme to
find the global energy minimum, because such a scheme is independent from the
specific form of the energy function (Kirkpatrick et al. 1983). In the simulated an-
nealing scheme we use the updating rule given in (2.7). To apply this rule we have to
calculate AE,; the energy difference between a state with s; = =1 and that state with
s; = +1. From (53) it follows that for the energy, E °, this quantity can’t be calculat-
ed on a strictly local basis, that is from the output values of the units directly linked
to unit j, the weights on these links and the threshold of unit j (equation (2.5)); in-
stead, we have to consider also the next-nearest neighbors, that is the units linked to
the units that are directly connected to unit j. This is a major drawback for the ap-
plicability of the energy function given by (5.3).

! This is a slightly simplified description of the actual situation; in the state with the
global minimum energy all binder pairs and primitives must be happy, but also all
triples consisting of a binder pair and its ‘parent’ unit must be in a state such that
when the parent unit is on, one of the binders must be on, and when the parent unit
is off, both binders must be off.
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—— Cxcitatory link with weight +1.0
o—o inhibitory Hak with weight —1.0
thresholds: 0.0, main unit

1.3, dinder unit

Figure 5.1 Part (a) gives the sctting of weights and thresholds such that the global energy
minimum is —N . Parts (b) and (c) give two states of the network with E  respectively -7 and
-1.

5.3 The —1/+1 model

Hinton and Sejnowski (1983b) show how the weights and the thresholds in a
connectionist model using the Boltzmann computational scheme are directly related to
the mutual dependency of the hypotheses that are represented by the computing units,
expressed in terms of conditional probabilities. For the hypotheses & and e,
represented by two connected computing units, they find at T = 1:

wy =ln2llh) g o _a2(R) 5)
p(eh) p(k)
in which p (k) is the probability that hypothesis k is rrue , which is identified with the
probability that the computing unit representing 4 has output value +1; p(e}h) is the
probability that e is rrue given that h is true; and & is the negation of k. From (5.5)
we see that the negation of ¢ has no effect on 4, and this also follows from the up-
dating rule (2.7); a computing unit with output equal to zero does not contribute to
the energy of its neighbors, and has therefore no influence on them. Hinton and
Sejnowski solve this problem by changing the threshold of unit 4:

0, = - mﬁ% — W,y (556)

in which



p(Elk)
When s, = +1 we have to compensate for this change; this can be done by changing
the weight on the link between the units:

Wo=wy, — W (5.8)

We propose a more direct way to represent the influence negation of e on 4,
namely by using —1 instead of +1 as an output value of the computing units. We will
show that there exists a one-to-one mapping between both models; and that the use of
—1 facilitates the representation of a symmetrical dependency relation (that is that
the influence of e on 4 is the of the same as of  on i).

First, we will consider the mapping between both models. Suppose we have
two networks A and A with symmetrical connections. A is given by {{s;}, {w;}, {6,}}
in which s; is 0 or +1, and A is defined by {{s "}, {w 7}, {67}} in which s is —1 or
+1. Both networks have N computing units. As we will show below, these two net-
works, both using the updating rule given in equation (2.7), will behave exactly the
same if

S“=2S'-l i=l,...,N
W'ij=.Wu i,j=1....,~
o (59)

o"=2°3"2Wu i=%...,N
J

That A and A ° behave in the same way follows from the following observation.
Both systems behave in such a way that they minimize their energy. Equation (2.4)

gives the energy of system A, and similarly the energy for system A ° is given by’
E‘=-123ws"s; + 307s7. (5.10)
i i

To minimize this energy, both models use the updating rule given in equation (2.7);
AE, plays a central role in the updating rule. In the —1/+1 model, this quantity, the
energy difference between a state with s;= —1 and a state with s;= +1, in networks
with symmetrical connections is given by

1 One should not confuse the E ° defined here as the energy function of the —1/+1
model, with the E ° introduced in section 5.2.
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AE ‘j =2 (zw ‘uS “ - 0‘,) (5.11)
i

Using (5.9) it follows that
AE ’j =2 AE i (5.12)

Therefore at a temperature T "= 2 T, a unit in network A ° will behave in exactly the
same manner as the corresponding unit in network A. (Because the temperature is
just a formal parameter, the difference in T “ and T is irrelevant.) So starting at the
same initial configuration, that is

S" =2S‘_1 i =1,...,N (5.13)

after a equal number of updates in network A at T, and network A“at T =2T,
equation (5.13) will still hold.

The advantage of the —1/+1 scheme follows when we consider a symmetrical
dependency relation between two hypotheses 4 and e of the following form:

p(hle) = p(4]e) (5.14)
We will assume that p (k) = p (&) (that is, no a priori knowledge whether 4 is true or
false). This assumption will simplify our calculation, but is not essential for our argu-
ment. In the 0/+1 model it follows from equation (5.6) that
Using equations (5.9) and (5.8) we find for the —1/+1 model:
0% = WiV
= _mggelh) gge:lh )
p(e|h) p(elh)

Now, it follows from condition (5.14) and, because p (eh|h) is equal to 1-p(e|h) and
p(e|h) is equal to 1-p (¢|k), that 87, = 0.

(5.16)

So, as one would intuitively expect, the threshold of unit 4 can be set to zero
in the —1/+1 model when the dependency relation between e and A is symmetrical.
This property was particularly useful in our parsing scheme, because for the connec-
tionist primitives equation (5.14) holds and also p(h) = p(h). Therefore the thres-
holds of most of the main units can be set to zero.



CHAPTER 6

Discussion

6.1 Conclusions

The major limitation of previously proposed connectionist schemes for NLU is
their limited capability to do rule-based processing. We proposed a scheme that in-
corporates rule-based processing in a general manner. This scheme uses pairs of in-
termediate units to express the possible bindings between the units that represent the
concepts in the connectionist model. One can choose the thresholds of the pairs of
intermediate units and the weights on the inhibitory links in between them such that
they function as three-state switches (both units on being a ‘forbidden’ state). These
pairs linked together in a binary tree structure can be used to select a particular rule
(for example, a grammar rule) out of a collection of alternatives. During the search
for an optimal match between-input data and the internal constraints in the network,
the binder pairs select different rules to test whether they should be used. Interest-
ingly, this bears a close resemblance to how a sequential processing scheme tries rule
after rule; the advantage of the connectionist scheme is that many rules, each part of
a different collection and represented in different parts of the network, can be ap-
plied in parallel, and also there is a complete integration of bottom-up and top-down
processing.

To illustrate the applicability of our model, we discussed an example network
for parsing based on a set of context-free grammar rules, a traditionally sequential
form of processing. We saw that the special properties of the computational scheme
of the Boltzmann machine made it possible to set the weights and thresholds by
analyzing the energy of small groups of units and some general symmetry considera-
tions. Another useful aspect of the Boltzmann scheme is that the network at tem-
peratures just above the freezing point visits a number of states with energies equal or
close to the global energy minimum of the network. Such states will, in general, show
only minor differences from the state of the network that represents the correct
parse; this makes the network less dependent on the particular choice of weights and
thresholds.



We also discussed two modifications of the Boltzmann machine. One
modification is to use —1 instead of 0 as one of the output values of a computing unit.
This facilitates the implementation of symmetrical dependency relations between con-
cepts, which enables us to set the thresholds of most units representing syntactic
categories in our example parsing network to zero. Another modification we con-
sidered was the use of an alternative energy function. Using this function, it becomes
relatively straightforward to choose weights and thresholds in a parsing network so
that the global minimum energy of the network is unique, and corresponds to the
correct parse of the input sentence. A disadvantage of this energy function is that
one has to consider the output values of next-nearest neighbors of a computing unit in
order to calculate the change in the energy of the network, when the output of that
computing unit changes its value. Therefore, a computational scheme of Boltzmann
machine using this alternative energy function will be much slower than a scheme us-
ing the original energy function.

The next logical step in this research is the addition of a semantic component
to our scheme, to extend the disambiguation capability. Such a model would incor-
porate rules for case filling.

6.2 Some open questions

In this section we will discuss some interesting open questions in the use of
connectionism in AI! The emphasis will be on the use of the Boltzmann scheme.

® Search. One of the most important aspects of Boltzmann-like architectures
is the fact that they provide us with a new, potentially very efficient, constraint-
satisfaction search technique. The efficiency is closely related to the particular shape
of the energy surface of the network. This shape is determined by the set of weights
and thresholds representing the knowledge stored in the system. Thus, there is a
direct relation between the setting of weights and thresholds and the efficiency of the
computational scheme. In general, the setting of weights and thresholds is a strongly
underdetermined problem; that is, many possible settings will represent the set of
internal constraints that must be stored in the network. (For example, in our parsing
network the weights were set according to rules containing constants that could be
chosen freely.) One could therefore tune the set of weights and thresholds in order to
increase the efficiency of the search. Note that, when using a distributed representa-
tion, one also has a considerable freedom in choosing the sets of units that represent

Issues concerning the application of connectionism in NLU have been discussed in
chapter 3.



the different concepts in the scheme (Hinton and Sejnowski 1984).2

® Knowledge representation and reasoming. It is generally accepted that
efficient knowledge representation schemes should incorporate some reasoning capa-
bilities. However, there are definite theoretical limits to what formal reasoning tech-
niques can accomplish. Unfortunately, the requirements of sophisticated knowledge-
based systems go well beyond these limits (Levesque 1984). It would be very interest-
ing to explore the applicability of a massively parallel non-deterministic search algo-
rithm, such as the Monte-Carlo method as is used in the Boltzmann Machine, to
resolve this problem. Such an algorithm would not guarantee an solution within rea-
sonable time limits, but would have a high probability of finding a good approximate
solution in a fixed period of time.

® Sequential processing. Hinton, Sejnowski, and Ackley (1984) point out that
there is a fundamental problem to model sequential symbolic processing with the
Boltzmann machine; the optimal match between input data and internal constraints is
given by the system at thermal equilibrium, when no consistent sequences exist. They
propose a system, composed of a number of internaily symmetrical modules that are
asymmetrically connected to one another, to model sequential symbolic processing
(for example production systems). Such a system would combine parallel and sequen-
tial processing. This raises the question of to what extent processing that seems to re-
quire sets of rules should be modeled in a sequential manner. Based on the positive
experience with our parsing system, we believe that in addition to parsing other forms
of traditionally sequential rule-based processing can be dealt with in a completely
parallel manner.

® Learning. An important issue with respect to the learning algorithm for the
Boltzmann machine is its speed. Experiments have shown that the algorithm is quite
slow, even when tested on small-scale examples (Hinton, Sejnowski, and Ackley,
1984). In these experiments one starts off with completely ‘blank’ networks, and
many iterations are needed to determine regularities in the training set. An interest-
ing alternative to explore is to start off with networks containing some ‘raw structure’
and to consequently tune the network in such a way that it efficiently represents a
certain body of knowledge (Hinton et al. briefly discuss the possibilities of ‘one-shot’

learning of facts). The raw structure might be obtained by considering the energy of
small groups of units in the network, like we did in our parsing scheme.

! In the localist approach each concept is represented by one unit; however, as we saw
in section 4.3, in our parsing scheme one still has some freedom in the design of the
network.
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