PAGE
397

<CN>4</CN>
<CT>Requirements Engineering for Trust-Based Interorganizational Networks</CT>
<CA>Günter Gans, Matthias Jarke, Stefanie Kethers, Gerhard Lakemeyer, and Dominik Schmitz</CA>
<H1>4.1 Introduction<H/1>
In this chapter, we report on the application and extension of the i* framework in the context of a requirements engineering methodology to support interorganizational networks. In cooperation with sociologists, a model for success and failure of such networks was developed (Gans, Jarke, Kethers, & Lakemeyer, 2003) that identifies three central concepts: trust (in individuals), confidence (in the network as a whole), and distrust (both formalized in network monitoring rules and individualized). Our multiperspective modeling methodology organizes modeling viewpoints around these central concepts in order to make explicit the interplay between structure, agent planning and action, and communicative actions to manage expectations. The methodology builds on the i* framework, but extends it in several ways, in particular by the explicit integration with dynamic perspectives (plans and speech acts). Utilizing a system that turns graphical network representations (based on extended i*) into executable programs is valuable because it provides a tool for network participants to simulate various network scenarios whose outcomes give valuable information regarding the risks and benefits of taking certain actions. Additionally, we argue that requirements engineering in organization networks needs to be a continuous process accompanying the evolution of the real network by modeling and simulation in order to recognize problems early and help the network define appropriate rules to handle them.

In section 4.2, we introduce the application domain of interorganizational networks and present the sociologically based Trust-Confidence-Distrust (TCD) model of success or failure of such networks. Section 4.3 describes how this model can be supported by a multiperspective modeling methodology integrating four perspectives: strategic goals, strategic dependencies, plans (ConGolog), and speech acts. In the same section, the integration of the static strategic rationale perspective and the more dynamic plan perspective are elaborated in more detail. In section 4.4, we present our tool SNet, a modeling and simulation environment. We focus on the simulation aspects, such as an agent-local decision-theoretic planning component. Section 4.5 describes two application examples. The first concerns trust relationships between wards along a clinical pathway and nicely demonstrates the static aspects of our methodology. The second illustrates the currently implemented simulation facilities. The chapter ends with a discussion of related work, and an outlook on future work.

This chapter combines a set of conference, workshop, and journal papers. The modeling methodology (sections 4.2 and 4.3) was originally presented at the RE conference (Gans et al., 2001), and an extended version was published in the RE journal (Gans, Jarke, Kethers, & Lakemeyer, 2003). The instantiation (described in section 4.3.2) was in part introduced in Gans, Schmitz, Jarke, Arzdorf, and Lakemeyer (2004), but has been elaborated here.
 The mapping from strategic rationale diagrams to ConGolog (section 4.4) was proposed in Gans, Lakemeyer, Jarke, and Vits (2002) and Gans, Jarke, Lakemeyer, and Schmitz (2003), and the second paper was expanded into Gans, Jarke, Lakemeyer, and Schmitz (2005). Of course, all these parts have been revisited and slightly improved. Section 4.5.1 is based on Kethers, Gans, Schmitz, and Sier (2005), and section 4.5.2 has not been published before. Finally, the discussion of related work in ection 4.6 has been expanded from the discussion in Gans et al. (2005).

<H1>4.2 Understanding Interorganizational Networks</H1>
Interorganizational social networks promise to combine the benefits of two traditional coordination mechanisms of modern societies (Powell, 1990): the flexibility and speed of competitive market relationships, and the stability and long-term duration of cooperative organizational relationships. We follow Weyer’s (2000) definition of a social network as an autonomous form of coordination of interactions whose essence is the trusting cooperation of autonomous, but interdependent, agents. These agents cooperate for a limited time and consider their partners’ interests because they can thus fulfill their individual goals better than through noncoordinated activities. Agents in this general definition can mean organizations or people. In our case of organizational networks, the usual meaning is a combination: people representing, or working for, organizations or parts thereof.

As a case study, in an interdisciplinary collaboration with sociologists, we have been studying the social networks that have evolved around large technical universities in the United States and Germany (MIT and RWTH Aachen) to promote high-tech entrepreneurship, and their information systems support (Jarke, Klamma, & Marock, 2003). In another case study, commissioned by Southern Health, a large metropolitan health service in southeastern Melbourne, Australia, we investigated trust relationships between wards along a clinical pathway (Kethers et al., 2005). In both cases, our goal was to identify both successful and detrimental patterns of cooperation and IS support, and to find out whether systematic and continuous requirements engineering methods can be developed to keep such networks successful.

<H2>4.2.1 Trust, Confidence, Distrust</H2>
The literature, as well as our observations, demonstrates that the distinguishing factor of social networks is their reliance on the mutual trust of the network partners as the main coordination and reproduction mechanism. Though this idea has been recognized in the literature, there has been little research on exploiting it for the design and ongoing support of networked organizations in the way that business process modeling supports traditional organizations and requirements engineering supports information systems. Moreover, the equally important issue of distrust in organizational networks has been largely ignored or oversimplified.

A typical definition in the network literature describes trust as “the willingness of a party to be vulnerable to the actions of another party based on the expectation that the other will perform a particular action important to the trustor, irrespective of the ability to monitor or control that other party” (Mayer, Davis, & Schoorman, 1995, p. 712). There is no formal agreement on reciprocity, that is, the relationship between give and take, investment and return, where the partners profit mutually from the other partners’ actions. Based on her expectations, the truster
 makes an explicit decision to rely on another party, thereby making herself vulnerable. If an expectation is not fulfilled, the truster sustains some kind of loss or damage (Luhmann, 1988). Coleman (1994) considers trust as a decision under risk. Trust is given by a truster if her expectations of gain (G) and estimated probability of the trustee’s trustworthiness (p)
 are greater than her expectation of loss (L) and the trustee’s untrustworthiness <DE>(1 − p): p ·G > (1 − p) · L.</DE>
Often, the concept of trust is defined in a rather vague and misleadingly standardized way, disregarding the focal point of network research: What is the relationship between trust in a given situation that the truster exhibits toward concrete persons or organizations, and the confidence in the network as a whole? The network as a whole consists of a mesh of dependencies that is neither manageable nor controllable, nor even completely visible to the truster, thus requiring confidence in the system (“Systemvertrauen” [Luhmann, 1988]; see also the distinction between personal and institutional trust [Zucker, 1986], and between “facework” and “faceless commitments” [Giddens, 1990; cf. also Loose & Sydow, 1994; Scheidt, 1995]). Participation in a network therefore results in a double vulnerability: the truster is vulnerable to identifiable opportunists and to the generally incomprehensible mesh of dependencies of all network partners. Where confidence is present, significant efficiency gains ensue: if the truster is confident that her network will somehow solve the subtasks, she can rapidly engage in commitments without taking the time to find and gain explicit commitments from possible subcontractors.

This distinction between trust and confidence plays an important role in the regulation and control of social networks. Networks need to develop binding rules regulating members’ behavior. These rules aim at facilitating trust-based interaction, such as ensuring the confidentiality of information exchanged among partners, supporting network culture (fair play), reputation, regulation of access (Jones, Hesterly, & Borgatti, 1997; Staber, 2000), or explicitly defining sanctions for breaches of trust (Loose & Sydow, 1994; Ortmann & Schnelle, 2000). The question of what kinds of rules need to be defined is essential for the efficiency and long-term success of social networks.

Finally, although coordination by means of trust and confidence can enable and facilitate cooperation, it also creates costs. In networks, both trust and confidence need to be watchful; that is, the partners need to be continually aware of their investments and, thus, the risks that they incur. This watchfulness leads to a continuous (and potentially costly) monitoring of the individual partners’ behavior (trust) and the perceived efficiency of the network as a whole (confidence). On the other hand, watchfulness may also be caused by distrust of individuals, where distrust is defined as the expectation of opportunistic behavior from partners, which would break the reciprocity of trust-based interaction.

Distrust has so far been largely neglected by sociological research; exceptions are, for example, Luhmann (1988) and Gambetta (1988). If it is considered at all, distrust is usually treated as danger that needs to be avoided (see, e.g., Scheidt, 1995), and only rarely as an opportunity for making network structures less rigid, and thus more suitable for innovation (Kern, 1998). Investigations on conflict and distrust in organizations (Kramer & Tyler, 1996; Lewicki, McAllister, & Bies, 1998) have established that distrust is an irreducible phenomenon that cannot be offset against any other social mechanisms. Ellrich, Funken, and Meister (2002)
 suggest the use of distrust for operationalizing latent conflicts in networks not uncovered by traditional viewpoint methods. In addition to the well-known options of “exit” (leaving the network) and “voice” (making distrust explicit) (Hirschman, 1970), a third option is open to each dissatisfied network member: the agent can cultivate but hide her distrust. This means that the agent continues as a network member, postponing her decision for “voice” or “exit.” But she starts to collect information (which is costly and time-consuming), and interprets it in a subjective way that is strongly influenced by her distrust. Hence, distrust has an inherent tendency to become stronger (Luhmann, 1988).

<HH2>4.2.2 Success or Failure of Networks: The TCD Model</HH2>
Summarizing the above discussion, Ellrich et al. (2002) postulate a TCD model of network success or failure.
 This model is shown in the three “columns” (thick arrows) of figure 4.1, each leading up from actions in the network to changes in the structure, with a feedback loop downward to the actions via rules created by the structure. In the left column, confidence-based decisions to incur strategic vulnerabilities create mutual dependencies; in the middle column, trustful decisions for risky and traceable investments increase reputation, goodwill, and moral integrity, and the watchful distrust on the right aggregates latent conflicts by collection, storage, and (usually negative) interpretation of events. A balanced mix of all three aspects forms the small corridor for success in networks. The upper part of the figure shows three possible ways of failure caused by imbalances. On the upper left, too many dependencies and goodwill without trust may lead to “successful failure,” that is, too-tight, family-like, or even Mafia-style relationships. On the upper right, overaggregated distrust may cause “final conflict,” and thus the demise of the network. Finally, the balanced mix cannot be ensured by simply creating many “network rules,” because then the network will devolve into an organization (“switch to organization”), losing the network-specific advantages, such as flexibility.

[Figure 4.1 Here]
<H1>4.3 A Multiperspective Modeling Methodology</H1>
The discussion in the preceding section has shown that trust, confidence, and distrust in social networks are complex phenomena that are not easily captured by simplistic, single-faceted models. Previous work in requirements engineering has attempted to address such complex multiviewpoint situations by explicitly modeling multiple, possibly conflicting, perspectives or viewpoints (Ghezzi & Nuseibeh 1998, 1999), and by managing their static and dynamic interrelationships through reasoning and/or simulation mechanisms. In this section, we describe the methodology for the TCD approach that we proposed in (Gans, Jarke, Kethers, et al., 2003).

<H2>4.3.1 Overview</H2>
To ease adoption of our methodology, we have taken care to employ extended versions of well-known modeling notations rather than invent new ones. We therefore build on a multiperspective framework for the modeling and (static) analysis of cooperation processes, Co-MAP (Kethers, 2000; Nissen, Jeusfeld, Jarke, Zemanek, & Huber, 1996).
But the problem at hand strongly generalizes this setting. Our goal is to formulate a technically supported multiperspective framework that includes the aspects of individual trust, confidence, and distrust. The discussion in section 4.2 illustrates that, first, such a methodology must allow the dynamic, simulation-oriented analysis of social networks—trust, confidence, and distrust manifest themselves in specific behavior patterns, and these impacts must be made explicit and simulated in a model. We thus integrate a logic-based, high-level planning mechanism called ConGolog (De Giacomo, Lespérance, & Levesque, 2000; Lespérance, Kelley, Mylopoulos, & Yu, 1999) into our methodology to make the related modeling and simulation capabilities available to our framework.

Second, the discussion above shows that the dynamics of trust, confidence, and distrust are heavily influenced by the perceived relationships between communication acts of the agents and actual actions performed relating to these communication acts. From this observation, we conclude (in contrast, for example, to Yu’s approach) the need to include an explicit speech-act perspective in our framework. The speech- act protocol is a linguistic formalism proposed as a means for cooperative workflow description by Winograd and Flores in their Coordinator system (Winograd & Flores, 1986). It consists of a basic coordination and negotiation cycle for delegation that comprises primitives such as request, commit, perform, and evaluate,
and has been shown in a number of empirical studies to model cooperative delegation-based work settings more effectively than the usual process modeling formalisms (Schäl, 1996). In our framework, this speech-act workflow protocol interacts with the planning perspective provided by ConGolog, as shown in detail in Gans et al. (2003).

Finally, we agree with Yu (see chapter 2 of this book), Coleman (1994), and many others that the explicit modeling of goals and dependencies is crucial with respect to networks in general, and to our special focus on trust, confidence, and distrust in particular. We therefore include Yu’s Strategic Rationale diagram, as well as his Strategic Dependency diagram, as perspectives in our approach. However, our view here is again more dynamic than in previous work (cf. Kethers, 2000), which leads to a much closer integration with the other two perspectives than has been investigated in previous research: strategic dependencies are treated as reasons for speech-act-based delegations, and the latter are evaluated partially with respect to the former. Conversely, planning based on strategic goals (captured in the strategic rationale diagram) can generate strategic dependencies among agents if the planning agent discovers that it is more efficient to delegate certain subgoals or tasks to other agents.

Thus, a requirements management environment for social networks has to deal with a dynamic mutual influence among the perspectives, mediated by trust, confidence, and distrust. Our methodology supports patterns such as the following:
<BL>

· Existing core trust in specific network agents will increase the incentives for network action rather than individual action, and thus will augment the capabilities of the network (modeled by creating more strategic dependencies and more speech-act commitments).

· Existing network trust (confidence) will enable agents to commit more rapidly to customer requests without prior communicative acts with possible subcontractors/collaborators. This strongly increases the responsiveness of the network as a whole. In contrast, lack of trust will prolong the offer phase within a speech act, and make the network slow and bureaucratic.

· Both of the above will have an impact on the complexity, reliability, and speed of the collaborative action plans generated.

· Performance monitoring, and thus the evolution of trust, distrust, and confidence, will be based on relationships between goals, expectations (defined by communication activities described as speech acts), plans, and actual processes. A certain degree of institutionalized network distrust is offered by monitoring rules.

· Individual distrust is not symmetrical with lack of trust, but will instead lead to changed plans by adding monitoring actions, thus creating overhead and reducing network effectiveness and efficiency in the long run.</BL>
Our TCD-based requirements modeling and management method can be summarized as follows:

<BL>
· Goal hierarchies following Yu’s Strategic Rationale approach are created and maintained dynamically for each agent, as well as mapped to operational (base) plans using the ConGolog formalism that composes a plan from declarative building blocks with pre- and post-conditions.

· Strategic dependencies, following Yu’s Strategic Dependency modeling formalism, are in part statically derived from a priori goal and capability analysis, and in part dynamically created on the basis of an agent’s recognition that certain parts of a plan are better delegated to others.

· Plans and dependencies, often initially based on required agent role types rather than concrete network partners, are mapped to specific communicative actions (speech acts) in order to establish a strategic dependency with a specific contract.

· The modalities of trust, confidence, and distrust will shape the way this is done. They then also indirectly shape how these contract patterns gradually refine the base plans into network cooperation plans.

· Monitoring in the network can be performed systematically, based on network rules that are encoded as preconditions of actions or speech-act patterns. Furthermore, individual agents can monitor other agents’ activities outside the agreed procedures because of distrust. In both cases, monitoring results help to recompute, among other things, the trust, distrust, and confidence values. The influence function is a variable of the methodological framework that requires further research.</BL>
[Figure 4.2 Here]

Figure 4.2 summarizes these model interrelationships in graphical form. The i* strategic perspectives are shown in the upper part, and the related operational level models in the lower part. The left part of the figure shows the intra-agent modeling aspects (goals and plans), and the right part shows the interagent aspects (strategic dependencies and their implementation in delegation processes). Solid lines indicate the nature of interrelationships between the perspectives, and broken lines show the mutual influence between these perspectives and the submodels of trust, confidence, and distrust. A common meta-metamodel, formalized in Telos
(Mylopoulos, Borgida, Jarke, & Koubarakis, 1990), serves as the mediator through which the different perspective submodels and tools in our approach can exchange information or be transformed into each other.

Due to space limitations, the meta-metamodel and the details of the speech-act perspective have to be omitted here; for details we refer the reader to Gans et al. (2003)
 and (Kethers (2000) for the integration of the i* perspectives and speech acts. We also do not discuss the implementation of the trust components in detail, but focus on their general interaction with each other and with the four perspectives. (See section 4.6 for references to detailed numerical models.) We will now discuss the adaptations of the i* framework that enable a closer integration with the dynamic perspectives, especially ConGolog.

<H2>4.3.2 An Extended Version of i*</H2>
Though it is a key characteristic of early-stage requirements engineering that the knowledge about the domain is incomplete and imprecise, there is some need for precision to enable simulations and a more quantitative reasoning instead of the purely qualitative reasoning i* originally provided. Since the SD diagram is sufficiently high-level to be used “as is,” this section continues with a more detailed presentation of the extensions we have added to the SR diagram (see Gans et al., 2003; Gans et al., 2005)
 by looking at an example taken from the entrepreneurship domain, which focuses on the roles Venture Capitalist, Entrepreneur, and Faculty Member (see figure 4.3). Despite its simplicity, it covers the core “business idea” of an entrepreneurship network. A venture capitalist’s goal is to earn money. A risky, but also potentially highly profitable, way to achieve this goal is to invest in an entrepreneur. The risk can be reduced by asking a knowledgeable research institution (faculty member) to evaluate the entrepreneur’s business idea. In figure 4.3, the venture capitalist’s task choose promising entrepreneur is decomposed into two subtasks. The task suggest business idea is delegated to the entrepreneur, and either a Faculty Member or the Venture Capitalist on her own can provide an evaluation of such an idea.

[Figure 4.3 Here]
<H3>4.3.2.1 Pre- and Post-Conditions (Effects)</H3>

Though the original i* framework supports task decomposition, it is completely oblivious to the order of the subtasks (or subgoals). In early requirements modeling, the ordering aspect is not important, but for simulations it definitely is. Thus, similar to Wang and Lespérance (2001), who independently also proposed to amalgamate i* and ConGolog, we introduced means to enable the specification of an ordering. But in contrast to Wang and Lespérance, we decided that a single new modeling element suffices. The precondition/effect element (denoted by a triangle) allows us to define arbitrary preconditions (attribute formula) for, and effects (attributes fluent and function) of, connected tasks or goals. For convenience, we also allow for sequence links. Such a link is a shortcut omitting the triangle symbol, and indicates that one subtask (or goal) has to be executed after the other (i.e., the precondition to the following task is the completion of the preceding task). In figure 4.3, there is such a sequence link between the subelements of choose promising entrepreneur: obviously, an entrepreneur has to suggest a business idea before the venture capitalist can ask for an evaluation.
<H3>4.3.2.2 Duration</H3>
While pre- and post-conditions allow a relative ordering of subtasks and goals, for simulations we also have to explicitly take time into account. Therefore, our simulation environment supports a discrete, linear time model, as proposed by Reiter (2001). Consequently, we allow for the specification of the duration of primitive (i.e., not further decomposed) tasks when instantiating the generic role description. In our example, we have chosen to let the external evaluation last twice as long (four time units) as the internal evaluation (two time units) (not shown in the figure). The duration aspect comes into play when different alternatives are evaluated via the agent-internal decision-theoretic planning component (see section 4.4.1).

<H3>4.3.2.3 Restricted Reading Direction of Goal Elements</H3>
In i*, goals can be viewed in two ways. One view is forward-directed, with goals representing the post-conditions of the tasks that fulfill them. The other is backward-directed or intentional, that is, starting from a goal, one asks what would be the best way of achieving this goal, given a number of possible alternatives. The original i* framework did not commit to a reading direction. But in order to make the model description executable and to resolve ambiguities, we had to define how a task can be triggered, and thus we commit to the second, goal-driven reading direction. For example, in figure 4.3, the venture capitalist can choose (at run-time in a simulation) to do the evaluation herself or to ask an external Faculty Member to do it for her.

This restriction emphasizes the role of softgoals. Although a goal is used to describe the main intention, the more interesting and decisive scenario aspects are represented by softgoals that, as in the original i* framework, help to decide between different alternatives. See, for example, the Venture Capitalist in figure 4.3. Her main goal is, of course, to earn money and make a profit, and there are different ways to achieve this goal. The Venture Capitalist has to look at the details: given her current situation, which of the given alternatives would perform best? Consequently, the goal itself is not of interest, but its “performance parameters” are. These are represented as softgoals, to which the various alternatives contribute in different ways.

<H3>4.3.2.4 Quantitative Softgoals and Contributions</H3>
As described above, the softgoal elements are the decisive criteria that an agent uses to choose between possible alternatives. However, to enable deliberation within simulations, these softgoal elements have to be operationalized. Consequently, the modeler has to assign a utility function to each softgoal that maps the collected (numerical and other) contributions to a utility value between 0 and 1. It is up to the person modeling a concrete network/scenario to identify a suitable range of values and a corresponding utility function for each of the softgoals. In our example, the different alternatives for getting an evaluation contribute differently to the softgoal report quality; for instance, the instantiation of an external faculty member can provide a higher contribution (800 vs. 100 for the internal alternative), which the monotonically increasing sigmoid utility function
 maps to a higher utility value.

<H3> 4.2.3.5 Instantiation</H3>
The original version of i* already allows for models in which an agent plays one or several roles or occupies several positions. But it does not provide any additional information on how the agent plays a role (or occupies a position). Again, these are details i* is not intended to address. Although in earlier versions of SNet we expected each agent instance to be modeled individually, this is not feasible for real-world networks since there are too many agents. Furthermore, a key feature of interorganizational networks is redundancy: despite minor differences, there are often several network members capable of performing the same task (e.g., several venture capitalists and entrepreneurs), and this competition between network partners enhances the flexibility of the network. Consequently, enforcing the explicit modeling of the same capability over and over again seems wasteful. However, we have to ensure that agents who play a particular role can differ in some way so that a choice between them makes sense. Thus, in Gans et al. (2004) we propose to separate the generic role modeling from the instantiation of these roles. The generic modeling leaves out some details that the instantiated roleprovides. Currently, we support the instantiation of (primitive) task durations and softgoal contributions (see above for examples). In the future, we may allow elaborating a task that is primitive on the role level.

Apart from these instantiation parameters that are derived directly from the model, there are also agent properties that affect the overall behavior of an agent:

<BL>
· The trust weight is a value between 0 and 1. A higher value indicates a greater tendency to maintain trust relationships, whereas a lower value characterizes a more (short-term) profit-oriented behavior.

· The experience task duration function is intended as an initial mechanism to model risk-averse, risk-neutral, and risk-loving behaviors. An agent can use the maximum, average, or minimum of the experienced durations for estimating the duration of a task, respectively.</BL>
Finally, for each activity that an agent can perform for another, there is a gain associated with it that is earned by the performer after successful completion (in addition to a trust update). The intention is that this reflects a short-term reward, such as money, as opposed to long-term trust relationships (see trust weight above).

<H2>4.3.3 ConGolog</H2>
The situation calculus is an increasingly popular language for representing and reasoning about the preconditions and effects of actions (McCarthy, 1963).
 It is a variant of first-order logic,
 enriched with special function and predicate symbols to describe and reason about dynamic domains. We will not describe the language in detail but will note the following features: all terms in the language are one of three types: ordinary objects, actions, or situations; there is a special constant S0 used to denote the initial situation (i.e., the situation in which no actions have yet occurred); there is a distinguished binary function symbol do, where do(α, s) denotes the successor situation to s resulting from performing the action α; relations whose truth-values vary from situation to situation are called relational fluents, and are denoted by predicate symbols taking a situation term as their last argument; similarly, functions varying across situations are called functional fluents and are denoted analogously; and, finally, there is a special predicate Poss(α, s) used to state that action α is executable (“possible”) in situation s.

Within this language, we can formulate theories that describe how the world changes as the result of the available actions. One possibility is a basic action theory of the following form (Levesque, Pirri, & Reiter, 1998):

<BL>

· Axioms describing the initial situation, S0.

· Action precondition axioms, one for each primitive action α, characterizing Poss(α, s). For example, the fact that a robot can pick up an object only if it is next to the object and is not holding anything can be formalized as follows:

<DE>Poss(pickup(r, x), s) ≡ NextTo(r, x, s) ((y.¬Holding(r, y, s.</DE>
We use the convention that free variables are implicitly universally quantified.

· Successor state axioms, one for each fluent F, stating under what conditions F(x, do(α, s)) holds as a function of what holds in situation s. These take the place of the effect axioms, and also provide a solution to the frame problem (Reiter, 1991). As an example, consider a simple model of time that progresses in a discrete fashion by one unit as a result of a special action clocktick. The time of a situation can then be specified with the help of a fluent time(s) and the following successor-state axiom:

<DE>time(do(α, s)) = t
 (α = clocktick (t = time(s) + 1) ((α (clocktick (t = time(s)).</DE>
· Domain closure and unique-name axioms for actions.</BL>
ConGolog (De Giacomo et al., 2000), an extension of Golog (Levesque, Reiter, Lespérance, Lin, & Scherl, 1997), is a language for specifying complex actions (high-level plans). It contains an interpreter that maps these plans into sequences of atomic actions assuming a description of the initial state of the world, action precondition axioms, and successor-state axioms for each fluent. Complex actions are defined using control structures familiar from conventional programming languages, such as sequence, while-loops, and recursive procedures, but also using nondeterministic actions, such as choosing nondeterministically between two actions or performing an action an arbitrary number of times. In addition, parallel actions with or without priorities are possible. Table 4.1 gives a complete overview of the available constructs.

[Table 4.1 Here]

We will not describe the formal semantics of ConGolog here in detail. We note, however, that it uses conventional transition semantics defining single steps of computation and interpreting concurrency as an interleaving of primitive actions and test actions. For further details see De Giacomo et al. (2000).

<H2>4.3.4 Transforming i* Models into ConGolog</H2>
A key feature of our approach is the ability to run simulations. To achieve this, the (static) i* models must be transformed into (dynamic) ConGolog code. Wang and Lespérance (2001) also proposed a way to combine i* and ConGolog. The main difference of our approach is that we maintain the autonomy of the resulting agents by introducing general mechanisms (within a simulation environment; see section 4.4.1) to deal with delegations (using an appropriate delegation protocol) and alternatives (using a decision-theoretic planning component) at run-time. These mechanisms will be discussed in the next section; in this section, we focus on the transformation itself. The transformation defines a mapping for each modeling element and each link, depending on the element’s (or link’s) context. Generally, we distinguish between active elements that describe agents’ activities, and passive elements that represent circumstances.

<H3>4.3.4.1 “Active” Elements: Task and Goal</H3>

For the transformation of task elements, we have to consider two separate cases, primitive tasks and complex tasks. Following Reiter’s suggestion on how to represent processes with duration (Reiter, 2001), a primitive task element is mapped to a procedure whose body consists only of a sequence of a primitive starting action and a primitive finishing action. The duration is mapped to the precondition axiom of the finishing action. That is, the finishing action is executable if the current time equals the execution time of the starting action plus the duration of the primitive task, as defined by the user:

<DE>Poss(do_evaluation_post(vc, T), s) ≡

executed(do_evaluation_pre (vc, T1), s) (time(s) = T1 + 2.</DE>

A complex task is also transformed into a procedure, but its body is derived from subelements. The sequential relations between the subelements are reflected in the use of sequence and concurrency constructs. Similarly to the primitive case, there are primitive actions preceding and following the body, so that the preconditions to and effects of a complex task can be reflected in the program by mapping them to these primitive actions. In our example, we thus get the following code for the complex task choose promising entrepreneur:

<DIS>proc(choose_promising_entrepreneur(Agent, T), [choose_promising_entrepreneur_pre(Agent, T1),
suggest_business_idea_delegated(Agent, T2),
ask_evaluation(Agent, T3),
 choose_promising_entrepreneur_post(Agent, T4)]).</DIS>
Goal elements are transformed similarly to complex task elements, but the different alternatives are combined using the ndet construct (instead of the sequence and/or conc constructs). The preceding and finishing primitive actions exist for the same reason as for the complex task. Delegations are also mapped to such ndet procedures because they implicitly describe the choice between the different instances of the role to which the task or goal is delegated. In addition, the delegated elements are marked so that the planning component can treat them specially:
<DIS>proc(suggest_business_idea_delegated (Agent, T),
[suggest_business_idea_delegated_pre(Agent, T1),
ndet(delegate(suggest_business_idea(entrepreneur1, T2)), ndet(delegate(suggest_business_idea(entrepreneur2, T3)), …)),
suggest_business_idea_delegated_post(Agent, T4)]).</DIS>
Again, additional primitive actions preceding and following the ndet construct are created to, for example, update trust and experience values.

A task or goal element that is not in any way subordinate to any other task or goal (a top-level element) is a proactivity: from a modeling perspective, an agent is free to execute it at its own will. We map such an element to an exogenous action, adding parameters, such as the weights for the softgoals, that affect planning. Thus, the user of our tool can simulate the proactive behavior of agents and control the simulation run by means of these exogenous actions.

 <H3>4.3.4.2 “Passive” Elements: Precondition/Effect, Softgoal, Resource</H3>
Where possible, precondition/effect elements and sequence links are mapped to the generated program structure of the procedure body. But since both elements and links are also allowed to leave the scope of a decomposition, they are also mapped to the appropriate precondition axiom. That is, for each task or goal element, the incoming sequence links or links originating at precondition/effect elements are logically linked via “and.” In our example, the following precondition axiom is generated for the primitive starting action of ask evaluation from the incoming sequence link:

<DIS>Poss(ask_evaluation_pre(Agt, T), s) ≡
executed(suggest_business_idea_delegated_post(Agt, T1), s).</DIS>
Effects are correspondingly mapped to successor-state axioms. Softgoals are also mapped to fluents, and thus the corresponding contributions are collected in suitable successor-state axioms as effects of the finishing primitive action of the connected task/goal elements. In our example, the contributions to the softgoal report quality for exactly one instance of each venture capitalist role (vc) and faculty member role (fm) are summarized in the following successor-state axiom:

<DIS>report_quality(do(α, s)) = r ≡
 (α = do_evaluation_post(vc, T) (r = report_quality(s) + 100)
((α = do_evaluation_post(fm, T) (r = report_quality(s) + 800)
((α (do_evaluation_post(vc, T) (α (do_evaluation_post(fm, T)

 (r = report_quality(s)).</DIS>
Resources are mapped to fluents where the value indicates the current owner of the resource. Additional fluents and successor-state axioms are created to remember and affect experience and trust values subjectively for each agent. We omit these here since these are mainly technical issues.

<H1>4.4 SNet:A Modeling and Simulation Environment</H1>
In its final version, the SNet modeling and simulation environment will support the whole TCD approach. In its current state, the tool covers the strategic rationale and ConGolog perspectives explicitly, but covers only the speech-act and strategic dependency perspectives implicitly. Therefore, within simulations, we currently support only a fixed delegation protocol (see section 4.4.1) instead of individualized speech-act-based delegations, and strategic dependencies are considered only insofar as they are implicitly contained in strategic rationale diagrams. In this section, we describe the SNet simulation environment and its overall architecture.

<H2>4.4.1 The Simulation Environment</H2>
As already described, the transformation of the model information concerns only the model-specific part of the resulting ConGolog code. This is mapped into a framework that provides additional, general agent facilities (of which we will elaborate only the first two):

<BL>
· Communication mechanisms between agents and a suitable delegation protocol
· The decision-theoretic planning component
· A first-plan execution monitoring component that detects cancellations of cooperation and reinitiates planning
· A mechanism for activating agents’ proactivities through exogenous actions, and thus controlling the simulation run and “developing scenarios” to be investigated
· Numerical models for trust, confidence, and distrust that are affected by successful cooperations and cancellations of cooperations.</BL>
Future extensions to the current implementation of the TCD framework will include mechanisms to deal with distrust-based monitoring and with network rules, including their effects on trust, distrust, and confidence, and thus ultimately agent behavior (in particular the planning component).

<H3>4.4.1.1 Delegation Communication</H3>
Each agent has a mailbox and can thus receive requests from other agents. We use the following simple delegation protocol
 consisting of three steps (see Gans et al. [2005] for details). In the first step, the agent who wants to delegate a task (the delegator) sends a request to the agent whom she wants to perform the task (delegatee). This request includes the delegator’s preferences by mentioning relevant criteria (softgoals) with suitable weightings and the earliest possible time that the delegatee can start this task (depending on the planning so far). The delegatee then answers with an offer specifying to what extent the softgoals will be fulfilled and when the task will be finished. Finally, the delegator must inform the delegatee whether in fact she has been given the task or not, by sending a confirmation or cancellation message, respectively.

<H3>4.4.1.2 Decision-Theoretic Planning Component</H3>
Since the description of how to perform a task may contain several options, resulting from modeled goals and delegations, the agent must be able to make a choice between them. For that purpose, in Gans et al. (2005), we have proposed a planner that completely evaluates all agent-local possibilities leading to a (subjectively) optimum decision for the given utility functions. Furthermore, at a higher level, an agent has to decide in which order to fulfill requests of its partners (and whether to fulfill them at all). This task is solved by a scheduling component whose description we have to omit here due to space limitations. Both components also respect the TCD model and thus incorporate trust, distrust, and confidence, as well as any gain, in their utility computation.

For each possible course of actions specified by a nondeterministic program, the planner generates the corresponding deterministic program. Given that we need to deal only with ConGolog programs that are the result of a mapping from an i* model, the planning component can be restricted to deal with a small set of ConGolog elements: primitive actions, nonrecursive procedures, [...] (sequence), conc, ndet, and delegate. For example, one of the deterministic alternatives for the top-level goal earn_money is the following:

<DIS>[earn_money_pre(vc, T0), choose_promising_entrepreneur_pre(vc, T1),
suggest_business_idea_delegated_pre(vc, T2),
delegate(suggest_business_idea(entrepreneur1, T3),
suggest_business_idea_delegated_post(vc, T4),
 ask_evaluation_pre(vc, T5),
 do_evaluation_pre(vc, T6), do_evaluation_post(vc, T7),
 ask_evaluation_post(vc, T8),
 choose_promising_entrepreneur_post(vc, T9), earn_money_post(vc, T10)].</DIS>
To compute the utility and the duration of this alternative, the resulting deterministic program is processed. The only complication is the handling of delegations. If the planning process encounters a delegated element and confidence is not sufficiently high, the planning is interrupted to follow the delegation protocol (see above), thus triggering plan evaluations and bidding by other agents such as subcontractors. The agent’s response (i.e., alleged criteria contributions and proposed finishing time) can be modified according to the trust the agent has in her partner. The planning process then continues with this (possibly) modified information taken into account. If the confidence is high enough, stored experience values can be used instead of following the delegation protocol. After fully processing an alternative, the utility value can be computed by applying the user-defined utility functions to the corresponding fluents representing the relevant criteria. The result is then combined with trust and gain considerations that we have to omit here. Once all alternatives have been processed, the best one is chosen. Since the nondeterminisms are eliminated in advance, the processed alternative itself can be used as the policy. The instantiation of the time parameter resulting from the processing is used in the plan-monitoring component.

<H2>4.4.2 The Architecture of the SNet Tool</H2>
The different perspectives are integrated with the help of ConceptBase (Jarke, Gallersdörfer, Jeusfeld, Staudt, & Ehrer, 1995),
 a deductive metadata repository that is based on Telos (Mylopoulos et al., 1990). Figure 4.4 shows the overall approach in more detail.

[Figure 4.4 Here]
First, the user builds the static i* models using OME3 (Organization Modeling Environment), a graphical model editor developed at the University of Toronto (Liu & Yu, 2000). As described above, the semantics of i* are defined in the knowledge representation language Telos, which is also the formalism underlying ConceptBase. Thus, the ConceptBase query language can be used for complex static analyses and for the transformation into ConGolog. In contrast to earlier versions of SNet, the user now models only the role level in OME3. The scenario details—which agent plays which roles, and how—are dealt with in a separate instantiation dialogue.
 Consequently, to simplify the exchange of simulation scenarios, we also treat the transformation of the general role- level model separately from that of the instantiated agents. The transformation thus results in two ConGolog files, one containing the general model transformation (including the described procedures for task and goal elements, etc.), and the other one extending this general model transformation with the specific agent-dependent data (currently mainly durations and contributions) from the instantiation. These files can then be loaded into the ConGolog interpreter implementing the simulation environment. Although the current simulation front-end presents an SR diagram view to the user and shows a step-by-step view of the execution of the ConGolog program, in future we will make use of the higher-level strategic dependency diagram to allow for a more aggregated information presentation. In either case, the user can control the run of a simulation by choosing appropriate settings of experience and trust values before the run, as well as by activating agents’ proactivities within a simulation run. We also support a batch mode, in which the user can prespecify when, and with what parameters, to activate an agent’s proactivities. This allows for the study of more complex scenarios and, in particular, for simulation runs under similar but slightly modified conditions. Conclusions derived from such simulations can lead to modifications of the model or scenario conditions, which then provide the basis for new simulation runs.

<H1>4.5 Application Examples</H1>
We now present two application examples focusing on different aspects of the TCD approach. The previously mentioned Southern Health case study is best suited to illustrate the static modeling aspects, whereas we use a simplification of the example from the entrepreneurship domain (see figure 4.3) to illustrate the current dynamic simulation facilities.

<H2>4.5.1 Southern Health Case Study</H2>
In a case study commissioned by Southern Health, a large metropolitan health service in southeastern Melbourne, Australia, we investigated trust relationships between wards along a clinical pathway with the aid of the TCD framework. This study is described in more detail in Kethers et al. (2005). In particular, we examined stroke patients’ transfers between an acute ward (AW) and a rehabilitation ward (RW) located on different sites. Because our focus was on the trust, confidence, and distrust relationships between wards AW and RW, we wanted to capture the stakeholders’ perceptions of the handover process. We therefore used Co-MAP, as described in Kethers (2000), to capture two informal process diagrams, one for each ward. These diagrams focus on the interactions and information flows within and between the two wards. Information flows between agents are captured as arrows between ovals representing sender and receiver of the information. Graphical symbols are used to represent the media for information flows (for example, phone, formal document, or meeting) and the recipient’s perception of the quality of the information flow (e.g., a tortoise for “too slow,” or a stop sign for “does not occur at all”). A more detailed description of the method and its different graphical symbols is given by Kethers (2000).

Based on the informal process diagrams, meeting notes, an interview with the rehabilitation liaison officer (RLO) who acts as an interface between the two wards, and other additional information collected, we developed two strategic dependency (SD) diagrams, one for each ward (see figure 4.5). Next, we developed the corresponding extended strategic rationale (SR) diagrams as described in subsection 4.3.2 (see figure 4.6
). Finally, we analyzed all these diagrams by examining the different stakeholders’ (the two wards’ and the RLO’s) perceptions of the process; identifying conflicting views; tracking the effects on the trust, confidence, and distrust relationships between the wards; and evaluating the effects of these relationships on the process.

[Figure 4.5 Here]

[Figure 4.6 Here]
The SD diagrams show that each ward attributes different and sometimes very stereotyped goals and intentions to the other, even though the main goal for both wards is the welfare of the patient. As an example taken from figure 4.5, for the patient transfer process, RW sees AW as trying to move patients out as fast as possible (RW’s view: Transfer patients at short notice), whereas AW sees RW as expecting patients to be handed over at very short notice (AW’s view: Patient delivery at short notice); sometimes, we were told, in as little as three hours. Because the discharge documentation that has to accompany the patient has to be compiled by many different staff members, this extreme time pressure interferes with AW’s Smooth operation (see figure 4.6) and can lead to a lack of coordination in the collection of discharge documents. As a result, incomplete or outdated information can be transmitted from AW to RW (see RW’s view in figure 4.5: Complete/up-to-date/correct patient info). The need to recompile that information in turn interferes with RW’s high-level goal of Smooth operation (see figure 4.6).
The conflicts that were identified on the Strategic Dependency and Strategic Rationale diagram levels of course affect the trust relationships. First of all, the models reveal that there was little direct and positive interaction between AW and RW, and there were no trust-building or relationship-building activities planned into the process. In particular, although AW staff mentioned that they would like to hear about “their” patients’ progress in the rehabilitation ward (see the Feedback about patient resource dependency in figure 4.5), there is no communication of patient status information from RW to AW unless something untoward happens to the patient, in which case RW expects (and gets) a quick reaction from AW (see figure 4.5).

Confidence is a less important issue here because the metropolitan health service is a stable organization with less choice for the agents involved, and more rules and constraints than a “normal” social network.

A main source of distrust in the patient transfer process results from the accompanying patient information documents. There are conflicting ideas about who is actually responsible for ensuring that the patient information is complete (see figure 4.5). RW staff members consider it their right to receive complete, correct, and up-to-date information; chasing down what is missing takes a large amount of time. AW, on the other hand, holds the opinion that RW should be able to cope with the information they get, and that it is RW’s responsibility to request additional information if it is required. This difference in expectations creates resentment and increases distrust on both sides. For RW, this distrust means that the information coming from AW is often not trusted, even when it looks correct. Instead, RW duplicates AW’s work by compiling the information again, and RW’s distrust in AW increases.

In this study, we found that the TCD modeling method was very useful to understand the trust and distrust relationships between the stakeholders in this case study. The perceived low quality of information flows that became apparent in the information flow diagrams, as well as conflicting goals, unmet needs, and actions by one ward that are detrimental to the other ward’s goals, have led to manifestations of distrust, which in turn lead to re-work, such as recompilation of information by RW. When we communicated these results to the wards, they agreed with the findings, and the nurse unit managers of the two wards initiated a conversation on how to improve the situation based on our findings. Thus, the modeling method was successful in this particular case study.
Concerning the applicability of the TCD modeling approach, we have to remark that we applied the framework in a more organizational setting than described in Gans et al. (2003).
 This means that there are more rules, constraints, and procedures than in a typical social network. This in turn leads to less freedom for the agents (individuals or wards) to change their work processes, for example, by changing their delegation behavior according to their level of trust, confidence, or distrust in the other agents. In addition, the delegation processes were largely predetermined due to lack of alternatives as well, so they did not provide many insights, either. Therefore, we did not need to apply the more dynamic perspectives from the TCD framework, namely, plans and speech acts. In this case study, SD and extended SR diagrams proved sufficient to extract information on the trust relationships between the wards.

<H2>4.5.2 An Example from the Entrepreneurship Domain</H2>
In contrast to the previous example, the second application scenario (see Gans [2007] for a detailed version) is based on a relatively simple model). We have extracted the relationship between the Venture Capitalist and the Faculty Member concerning doing evaluations from the model given in figure 4.3. During the instantiation, we have chosen to let six agents—vcA, vcB, vcC, vcD, vcE, and vcF—play the role of a venture capitalist, and three agents—fmA, fmB, and fmC—the role of a faculty member (see figure 4.7). Thus, for each execution of ask evaluation, the corresponding venture capitalist has to cooperate with and to choose exactly one of the three faculty members. The agents within a group (venture capitalists or faculty members, respectively) are interchangeable with regard to their capabilities (contribution and duration). The venture capitalist agents differ only in the gain they promise to the faculty members: vcA promises a gain of 100, vcB of 200, vcC of 300, vcD of 400, vcE of 500, and vcF of 600. The faculty members differ only in their trust weight, a parameter between 0 and 1 that is assigned to each agent, with a higher value indicating a more long-term interest as opposed to maximizing immediate gain (see section 4.3.2). fmA, fmB, and fmC have trust weights of 0, 0.5, and 1, respectively. Consequently, fmA, focusing on a large immediate reward, should have the tendency to prefer vcF when scheduling new tasks.

[Figure 4.7 Here]
This simple structure has allowed us to run simulations comprising one hundred time steps and about ninety exogenous actions as input, using the batch-execution mode described in section 4.4.2. Table 4.2 shows the results of one of these sequences. We performed three simulations (S1, S2, S3) that differ in their initial trust values. In the first case, each venture capitalist trusts each of the faculty members with the value of 0.5. In the remaining two simulations, these values are chosen randomly between 0.1 and 0.9. For analysis purposes, the six venture capitalists are classified into one of three categories: offering low gain (vcA, vcB), average gain (vcC, vcD), and high gain (vcE, vcF), respectively. We chose one venture capitalist from each category for a more detailed investigation. Table 4.2 depicts successful (+) and failed (() cooperations during all three simulation runs from the point of view of the three delegators vcA, vcC, and vcE. The fourth column shows the different initial trust values, and the last column shows the resulting trust values at the end of the simulation run.

[Table 4.2 here]

As we expected, vcA mainly cooperates with fmB or fmC, even when fmA starts with a huge trust head start (second simulation). Furthermore, the agent fmA is responsible for most of the cancellations (seven out of ten in table 4.2). However, sometimes even fmC (in the first simulation) makes bad offers to vcA (and thus fmB takes over) in order to maintain other trust relationships. As is evident in the second simulation, vcC cooperates mainlywith fmC (second and third simulations), since fmC starts with a trust advantage. In contrast to this, the first simulation (extensive cooperation with fmA) is very atypical and due to lucky circumstances (fmA cannot attract more valuable delegations, and the ones she gets do not overlap with vcC’s requests). Finally, vcE cooperates mainly with fmA—also as we expected. But within the first simulation, fmB also takes her chances and does not default. Interestingly, the very minor variation of the initial trust situation for the third simulation run leads to a very different result. Consequently, we argue that one has to be very careful when deriving conclusions, and generally recommend performing a set of simulation runs including those with small variations on the initial situation.

To conclude, we often saw what we expected. However, some simulation runs continue in an interesting and unexpected way that becomes plausible when investigated in more detail. Furthermore, we saw that our trustfully acting fmC does not necessarily have a good relationship with delegators that offer low gain. Instead, she tries to classify potential delegators into two groups, preferred for cooperation and chosen for cooperation, only when there is no other option. Nevertheless, not surprisingly, we found that the number of canceled delegations decreases by the gain the corresponding delegator promises. The example shows that while the described scenario is, of course, very simple, the simulation runs nevertheless had outcomes that were not obvious or expected. Thus, for future, more complex and realistic examples, we can indeed expect helpful insights from our TCD approach.

<H1>4.6 Discussion and Outlook</H1>
In describing the motivation of our work (see section 4.2), we claimed a connection between this work and business process modeling and requirements engineering. Our TCD approach aims to provide support for social networks similar to the way that the other two approaches support organizations and information system design, respectively. Not surprisingly, these three aspects are interrelated. Current work on business process modeling has also recognized the need to support interorganizational processes (see, for example, van der Aalst [2003]) since the advent of the “virtual enterprise.” Likewise, requirements engineering needs to address cross-organizational support. But the focus in requirements engineering is mainly on the project management level, that is, operational aspects such as data integration (Bergamaschi, Gelati, Guerra, & Vincini, 2003) and knowledge management (Forzi , Peters, & Winkelmann, 2004). Even work related to the formation of a virtual enterprise often focuses only on the compatibility of the technical skills of the different partners (cf. Petersen, 2003), and not on their social dependencies, skills, or attitudes. Thus, our work fills a gap in this area. By formalizing and supporting the analysis of the central trust mechanisms, we take into account another very important dimension and pave the way toward the long-term success of such networks.

With regard to the sociological side of our work, there are well-known means for social network analysis that are mainly based on graph-theoretical ideas (Brandes & Erlebach, 2005). These are complementary to our approach. Our current work involves building a sophisticated agent-based simulation environment. Once this is achieved, simulation results can be evaluated and analyzed using social network analysis. We are, of course, not the first to apply agent technology to social simulation. For example, AgentSheets (Repenning, 2000) is a graphics- and animation-based simulation environment in which agents react to the behavior of their neighbors according to a simple but highly effective rule-based scheme. In SEAS, the Synthetic Environment for Analysis and Simulation (Chaturvedi & Mehta, 1999), a very large number of relatively simple reactive agents form the “game board” of a management game in which human users contribute the deliberative and strategic aspects. In contrast to these approaches, we put special emphasis on sophisticated agent models that include deliberation, and that also respect and adhere to agent trust relationships, while still letting the user influence how a simulation evolves.

The theory of social capital has recently gained attention. Lin (2001) defines social capital as the “resources embedded in social networks accessed and used by actors for actions” (p. 25). Current research is investigating the relationship of social capital and information technology (Huysman & Wulf, 2004). In Jarke et al. (2003), this theory was related to our approach. Lin (2001) emphasizes that “social capital, as a relational asset, must be distinguished from collective assets and goods such as culture, norms, trust, and so on … [It] should not be assumed that they are all alternative forms of social capital or are defined by one another” (p. 26). Thus, in future work, we would like to investigate whether our framework can be enhanced by the incorporation of elements of this theory.

Regarding the modeling and consideration of trust, our main contribution is the identification of the need to address three components of trust as success factors for interorganizational networks: trust, confidence, and distrust. Furthermore, their interplay between, and the interaction with, the four modeling perspectives are of importance, whereas the concrete, numerical models for each of the components are less important. Recent literature offers a wide range of models (e.g., Huynh, Jennings, & Shadbolt, 2004; Ziegler & Lausen, 2004), and also the concept of “recommendations” that our current implementation neglects completely. We see these models as options for future extensions that will be offered to the modeler, who can then choose the most appropriate representation according to the concrete modeling details.

In related work more closely affiliated with i*, there are two approaches to be discussed. As already mentioned several times in this chapter, Wang and Lespérance (2001) also propose a way to combine i* and ConGolog. But whereas they integrate all of ConGolog’s expressiveness with i*, we add only a minimal set of features to i*. However, we present an automatic transformation and equip the resulting agents with deliberative capabilities to cope with alternatives on their own, in contrast to Wang and Lespérance’s approach of manually preselecting alternatives before a simulation run. The other related formalism is Formal Tropos (FT) (Fuxman, Pistore, Mylopoulos, & Traverso, 2001). As elaborated in Schmitz, Lakemeyer, amd Jarke (2006), FT enhances i* by model-checking facilities based on a linear-time temporal logic (LTL). Although SNet lacks the ability to express the rich temporal constraints as provided by LTL, FT has no explicit notion of actions with pre- and post-conditions, and thus cannot support deliberation about different courses of action. Thus, these approaches would complement each other very well, and a combination promises to be advantageous.

Another major issue of our work oncerns continuous requirements engineering. Our tool implies an explorative usage, as a network model can be adapted and retransformed very easily. Furthermore, within the simulation environment, the user continuously interacts with the simulation and can thereby create scenarios. This provides a very detailed reflection of what is happening in the real world. As described in Gans et al. (2003),
 this feature will become even more important once SNet is integrated with a CSCW environment and utilized in an online context. We therefore agree with the ideas of “continuous experimentation” as proposed by Chaturvedi, Dolk, and Sebastian (2004), and other attempts at integrating real-time data into simulations. The goal is to provide an environment where the user can switch freely and easily between a virtual (planning) and a real (monitoring) perspective.

The central point of our current work deals with completing the implementation of the TCD model within the simulations. This includes a distrust-based monitoring component (Gans et al., 2004) as well as the means to model and change network rules explicitly in order to simplify their evaluation and maintenance. Future work concerns the extension of the tool to support and integrate the high-level perspectives of strategic dependency and speech-act models. In particular, these will play an important role when it comes to representing the results of high-level analyses (e.g., comparing simulations, and evaluating different environment courses), since they are better suited to visualizing aggregated information. This will complete the implementation of the TCD approach and will be followed by an extensive evaluation regarding real-world networks. Further extensions will enable the integration of SNet with CSCW systems, and thus continuous integration of real-time data.

<H1>Acknowledgments</H1>
 This work was supported in part by the Deutsche Forschungsgemeinschaft’s Priority Program on Socionics (collaborative work with L. Ellrich, C. Funken, and M. Meister) and its Graduate School 643 “Software for Mobile Communication Systems”
 (also via the research student T. Arzdorf). Regarding the Southern Health case study, which was performed while Stefanie Kethers was with CSIRO Australia, we would like to thank David Sier from CSIRO Australia, who contributed to the case study, and the Southern Health staff for their cooperation and time.

<NOTES>

<REF>
References</REF>
Bergamaschi, S., Gelati, G., Guerra, F., & Vincini, M. (2003). WINK: A Web-based system for collaborative project management in virtual enterprises. In Proceedings of the 4th International Conference on Web Information Systems Engineering [WISE’03] (pp. 176–188). Los Alamitos, CA: IEEE Computer Society Press.

Brandes, U., & Erlebach, T. (eds.). (2005). Network Analysis—Methodological Foundations. Lecture Notes in Computer Science 3418. Berlin: Springer.

Chaturvedi, A., Dolk, D., & Sebastian, H.-J. (2004). Agent-based simulation and model integration. In Workshop on Virtual Environments for Advanced Modeling [VEAM], 37th Hawaii International Conference on System Sciences. Los Alamitos, CA: IEEE Society Press.
Chaturvedi, A., & Mehta, S.R. (1999). Simulations in economics and management. Communications of the ACM, 42(3), 60–61.

Coleman, J.S. (1994). Foundations of Social Theory. 2nd ed. Cambridge, MA: Harvard University Press.

De Giacomo, G., Lespérance, Y., & Levesque, H.J. (2000). ConGolog, a concurrent programming language based on the situation calculus: Language and implementation. Artificial Intelligence, 121(1–2), 109–169.

Ellrich, L., Funken, C., & Meister, M. (2002). Kultiviertes misstrauen. Bausteine zu einer soziologie strategischer netzwerke. Sociologia Internationalis, 40(2), 23–66.

Forzi, T., Peters, M., & Winkelmann, K. (2004). A framework for the analysis of knowledge management within distributed value-creating networks. In K. Tochtermann and H. Maurer (eds.), Proceedings of the 4th International Conference on Knowledge Management [I-KNOW’04] (pp. 432–439). Berlin: Springer. Also available at http://www.know-center.tugraz.at/previous/i-know04/papers/forzi.pdf.
Fuxman, A., Pistore, M., Mylopoulos, J., & Traverso, P. (2001). Model checking early requirements specifications in Tropos. In Proceedings of the 5th IEEE International Symposium on Requirements Engineering[RE’01] (pp. 174–181). Los Alamitos, CA: IEEE Computer Society Press.

Gambetta, D. (ed.). (1988). Trust: Making and Breaking Cooperative Relations. Oxford: Blackwell.

Gans, G. (2007). An agent-based modeling and simulation methodology for strategic interorganizational networks. Doctoral dissertation, RWTH Aachen University, Germany (in preparation).

Gans, G., Jarke, M., Kethers, S., & Lakemeyer, G. (2003). Continuous requirements management for organisation networks: A (dis)trust-based approach. Requirements Engineering, 8(1), 4–22.

Gans, G., Jarke, M., Kethers, S., Lakemeyer, G., Ellrich, L., Funken, C., & Meister, M. (2001). Requirements modeling for organization networks: A (dis-)trust-based approach. In Proceedings of the 5th IEEE International Symposium on Requirements Engineering [RE’01] (pp. 154–163). Los Alamitos, CA: IEEE Computer Society Press.

Gans, G., Jarke, M., Lakemeyer, G., & Schmitz, D. (2003). Deliberation in a modeling and simulation environment for inter-organizational networks. In J. Eder and M. Missikoff (eds.), Proceedings of the 15th International Conference on Advanced Information Systems Engineering [CAiSE’03] (pp. 242–257). Lecture Notes in Computer Science 2681. Berlin: Springer.

Gans, G., Jarke, M., Lakemeyer, G., & Schmitz, D. (2005). Deliberation in a metadata-based modeling and simulation environment for inter-organizational networks. Information Systems, 30(7), 587–607.

Gans, G., Lakemeyer, G., Jarke, M., & Vits, T. (2002). SNet: A modeling and simulation environment for agent networks based on i* and ConGolog. In A.B. Pidduck, J. Mylopoulos, C.C. Woo, and M.T. Özsu (eds.), Proceedings of the 14th International Conference on Advanced Information Systems Engineering [CAiSE’02] (pp. 328–343). Lecture Notes in Computer Science 2348. Berlin: Springer.

Gans, G., Schmitz, D., Jarke, M., Arzdorf, T., & Lakemeyer, G. (2004). SNet reloaded: Roles, monitoring, and agent evolution. In P. Bresciani, P. Giorgini, B. Henderson-Sellers, G. Low, & M. Winikoff (eds.), Proceedings of the 6th Bi-conference Workshop on Agent-Oriented Information Systems (pp. 68–84). Lecture Notes in Computer Science 3508. Berlin: Springer.

Ghezzi, C., & Nuseibeh, B. (1998). Guest editorial: Managing inconsistency in software development. IEEE Transactions on Software Engineering, 24(11), 906–907.

Ghezzi, C., & Nuseibeh, B. (1999). Guest editorial: Introduction to the special section Managing inconsistency in software development. IEEE Transactions on Software Engineering, 25(6), 782–783.

Giddens, A. (1990). The Consequences of Modernity. Palo Alto, CA: Stanford University Press.

Hirschmann, A.O. (1970). Exit, Voice and Loyalty. Cambridge, MA: Harvard University Press.

Huynh, T.D., Jennings, N.R., & Shadbolt, N.P. (2004). FIRE: An integrated trust and reputation model for open multi-agent systems. In R.L. de Mántaras and L. Saitta (eds.), Proceedings of the 16th European Conference on Artificial Intelligence (pp. 18–22). Amsterdam: IOS Press.

Huysman, M., & Wulf, V. (eds.). (2004). Social Capital and Information Technology. Cambridge, MA: MIT Press.

Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., & Ehrer, S. (1995). ConceptBase—a deductive object base for meta data management. Journal of Intelligent Information Systems, special issue on advances in deductive object-oriented databases, 4(2), 167–192.

Jarke, M., Klamma, R., & Marock, J. (2003). Gründerausbildung und gründernetze im umfeld technischer hochschulen: Ein wirtschaftsinformatischer versuch. In K. Nathusius (ed.), Wirkungen des Regionalen Kontexts auf Unternehmensgründungen (pp. 115–154). Lohmar, Germany: Josef Eul.

Jones, C., Hesterly, W.S., & Borgatti, S.P. (1997). A general theory of network governance: Exchange conditions and social mechanisms. The Academy of Management Review, 22(4), 911–945.

Kern, H. (1998). Lack of trust, surfeit of trust: Some causes of the innovation crises in German industry. In C. Lane and R. Bachmann (eds.), Trust Within and Between Organisations (pp. 203–213). Oxford: Oxford University Press.

Kethers, S. (2000). Multi-perspective modelling and analysis of cooperation processes. Doctoral dissertation, RWTH Aachen University, Aachen, Germany.

Kethers, S., Gans, G., Schmitz, D., & Sier, D. (2005). Modeling trust relationships in a healthcare network: Experiences with the TCD framework. In D. Bartmann, F. Rajola, J. Kallinikos, D. Avison, R. Winter, P. Ein-Dor, J. Becker, F. Bodendorf, and C. Weinhardt (eds.), Proceedings of the 13th European Conference on Information Systems [ECIS] (pp. 1321–1328). Regensburg, Germany: Institute of Management of Information Systems. Available at http://is2.lse.ac.uk/asp/aspecis/default5.asp.
Kramer, R.M., & Tyler, T.R. (eds.) (1996). Trust in Organizations: Frontiers of Theory and Research. Thousand Oaks, CA: Sage.

Lespérance, Y., Kelley, T.G., Mylopoulos, J., & Yu, E. (1999). Modeling dynamic domains with ConGolog. In M. Jarke and A. Oberweis (eds.), Proeedings of the 11th International Conference on Advanced Information Systems Engineering [CAiSE’99] (pp. 365–380). Lecture Notes in Computer Science 1626. Berlin: Springer.

Levesque, H., Pirri, F., & Reiter, R. (1998). Foundations for the situation calculus. Linköping Electronic Articles in Computer and Information Science, 3, article 018. http://www.ep.liu.se/ea/cis/1998/018/.
Levesque, H., Reiter, R., Lespérance, Y., Lin, F., & Scherl, R. (1997). Golog: A logic programming language for dynamic domains. Journal of Logic Programming, 31(1), 59–84.

Lewicki, R.J., McAllister, D.J., & Bies, R.J. (1998). Trust and distrust: New relationships and realities. The Academy of Management Review, 23(3),
 438–458.

Lin, N. (2001). Social Capital: A Theory of Social Structure and Action. Cambridge: Cambridge University Press.

Liu, L., & Yu, E. (2000, May 3). OME: Organization Modeling Environment. Retrieved August 22, 2006, from University of Toronto, Department of Computer Science Web site: http://www.cs.toronto.edu/km/ome.
Loose, A., & Sydow, J. (1994). Vertrauen und ökonomie in netzwerkbeziehungen. Strukturationstheoretische betrachtungen. In J. Sydow and A. Windeler (eds.), Management Interorganisationaler Beziehungen: Vertrauen, Kontrolle und Informationstechnik (pp. 160–193). Opladen, Germany: Westdeutscher Verlag.

Luhmann, N. (1988). Familiarity, confidence, trust: Problems and alternatives. In D. Gambetta (ed.), Trust: Making and Breaking Cooperative Relations (pp. 94–107). Oxford: Blackwell.

Mayer, R.C., Davis, J.H., & Schoorman, F.D. (1995). An integrative model of organisational trust. The Academy of Management Review, 20(3), 709–734.

McCarthy, J. (1963). Situations, actions and causal laws. Technical Report Memo 2. Palo Alto, CA: Artificial Intelligence Laboratory, Stanford University. Reprinted in J. McCarthy, Programs with common sense. In M. Minsky (ed.), Semantic Information Processing (pp. 410–418). Cambridge, MA: MIT Press.

Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). Telos: Representing knowledge about information systems. ACM Transactions on Information Systems, 8(4), 325–362.

Nissen, H.W., Jeusfeld, M.A., Jarke, M., Zemanek, G., & Huber, H. (1996). Managing multiple requirements perspectives with metamodels. IEEE Software, 13(2), 37–48.

Ortmann, G., & Schnelle, W. (2000). Medizinische qualitätsnetze: Steuerung und selbststeuerung. In J. Sydow and A. Windeler (eds.), Steuerung von Netzwerken (pp. 206–233). Opladen, Germany: Westdeutscher Verlag.

Petersen, S.A. (2003). An agent-based approach to support the formation of virtual enterprises. Doctoral dissertation, Norwegian University of Science and Technology, Trondheim.

Powell, W.W. (1990). Neither market nor hierarchy: Network forms of organization. In B. Staw and L. Cummings (eds.), Research in Organizsational Behavior, vol. 12 (pp. 295–336). Greenwich, CT: JAI Press.

Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression. In V. Lifschitz (ed.), Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy (pp. 359–380). San Diego, CA: Academic Press.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. Cambridge, MA: MIT Press.

Repenning, A. (2000). AgentSheets: An interactive simulation environment with end-user programmable agents. In Interaction 2000. Retrieved September 14, 2007, from http://www.cs.colorado.edu/~ralex/papers/PDF/Interaction2000.pdf
.
Schäl, T. (1996). Workflow Management Systems for Process Organizations. 2nd ed. Lecture Notes in Computer Science 1096. Berlin: Springer.

Scheidt, B. (1995). Die Einbindung Junger Technologieunternehmen in Unternehmens- und Politiknetzwerke. Volkswirtschaftliche Schriften 447. Berlin: Duncker & Humblot.

Schmitz, D., Lakemeyer, G., & Jarke, M. (2006). Comparing TCD/SNet with two other formal analysis approaches based on i*: Formal Tropos and Secure Tropos. In T. Latour and M. Petit (eds.), Proceedings of the 8th Workshop on Agent-Oriented Information Systems (pp. 29–40). Namur, Belgium: Presses Universitaires de Namur.

Schoop, M., & Quix, C. (2001). DOC.COM: A framework for effective negotiation support in electronic marketplaces. Computer Networks, 37(2), 153–170.

Staber, U. (2000). Steuerung von unternehmensnetzwerken: Organisationstheoretische perspektiven und soziale mechanismen. In J. Sydow and A. Windeler (eds.), Steuerung von Netzwerken: Konzepte und Praktiken (pp. 58–87). Opladen, Germany: Westdeutscher Verlag.

Van der Aalst, W.M.P. (2003). Inheritance of interorganizational workflows: How to agree to disagree without loosing control?
 Information Technology & Management 4(4), 345–389.

Wang, X., & Lespérance, Y. (2001). Agent-oriented requirements engineering using ConGolog and i*. In G. Wagner, K. Karlapalem, Y. Lespérance, and E. Yu (eds.), Agent-Oriented Information Systems 2001
 (pp. 59–78). Berlin: iCue.

Weyer, J. (ed.). (2000). Soziale Netzwerke. Munich: Oldenbourg Verlag.

Winograd, T., & Flores, C.F. (1986). Understanding Computers and Cognition: A New Foundation for Design. Norwood, NJ: Ablex.

Ziegler, C.-N., & Lausen, G. (2004). Spreading activation models for trust propagation. In S.-T. Yuan (ed.), Proceedings of the IEEE International Conference on e-Technology, e-Commerce, and e-Service [EEE’04] (pp. 83–97). Los Alamitos, CA: IEEE Computer Society Press.

Zucker, L.G. (1986). Production of trust: Institutional sources of economic structure. In B. Staw and L. Cummings (eds.), Research in Organizational Behavior, vol. 8 (pp. 53–111). Greenwich, CT: JAI Press.

<figure captions>

Figure 4.1 TCD model.

Figure 4.2 Interplay of TCD modeling perspectives.

Figure 4.3 Modeling in i*/SNet.

Figure 4.4 The architecture of the SNet tool.

Figure 4.5 Strategic Dependency diagrams for Southern Health wards.

Figure 4.6 Combined extended SR diagram: Patient transfer between wards.

Figure 4.7 Simplified venture capitalist and faculty member example.

Table 4.1 ConGolog constructs

	α
	primitive action

	φ?
	test action

	[σ1, σ2]
	sequence

	if φ then σ1 else σ2
	conditional

	while φ do σ
	loop

	ndet(σ1, σ2)
	nondeterministic choice of actions

	pi(x, σ)
	nondeterministic choice of arguments

	star(σ)
	nondeterministic iteration

	conc(σ1, σ2)
	concurrent execution

	pconc(σ1, σ2)
	concurrent execution with σ1 at higher priority

	iconc(σ)
	concurrent iteration

	interrupt(φ, σ)
	interrupts

	proc(β(x), σ)
	procedure definition

Table 4.2 Three simulation runs with different initial trust values
	Delegator
	
	Delegatee
	Initial trust value
	Successful and failed

cooperations occurring during simulation runs

	Final trust value

	vc A
	S1
	fmA
	0.5
	+
	(
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.3

	
	
	fmB
	0.5
	
	
	+
	
	
	
	
	
	
	
	
	
	
	+
	
	+
	
	
	
	0.8

	
	
	fmC
	0.5
	
	
	
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	
	+
	
	+
	
	
	0.9

	
	S2
	fmA
	0.9
	+
	(
	+
	
	+
	+
	+
	+
	(
	+
	+
	
	(
	
	
	
	
	
	
	0.5

	
	
	fmB
	0.5
	
	
	
	+
	
	
	
	
	
	
	
	+
	
	+
	+
	+
	+
	+
	+
	0.9

	
	
	fmC
	0.1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.1

	
	S3
	fmA
	0.6
	
	
	
	+
	
	+
	(
	
	
	
	
	
	
	
	
	
	
	
	
	0.5

	
	
	fmB
	0.8
	+
	+
	(
	
	
	
	
	+
	
	
	
	
	+
	
	+
	+
	+
	
	
	0.9

	
	
	fmC
	0.6
	
	
	
	
	+
	
	
	
	+
	+
	+
	+
	
	+
	
	
	
	+
	
	0.9

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	vc C
	S1
	fmA
	0.5
	
	+
	+
	+
	+
	+
	+
	+
	+
	(
	+
	+
	+
	+
	+
	+
	+
	
	
	0.9

	
	
	fmB
	0.5
	(
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.2

	
	
	fmC
	0.5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	+
	
	0.6

	
	S2
	fmA
	0.4
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	+
	
	
	0.5

	
	
	fmB
	0.2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.2

	
	
	fmC
	0.6
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	(
	+
	+
	+
	+
	
	
	
	0.9

	
	S3
	fmA
	0.1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.1

	
	
	fmB
	0.3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.3

	
	
	fmC
	0.6
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	
	
	
	0.9

	vc E
	S1
	fmA
	0.5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.5

	
	
	fmB
	0.5
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	
	
	
	0.9

	
	
	fmC
	0.5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.5

	
	S2
	fmA
	0.8
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	
	
	
	0.9

	
	
	fmB
	0.2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.2

	
	
	fmC
	0.1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.1

	
	S3
	fmA
	0.5
	
	+
	+
	
	+
	+
	+
	+
	+
	+
	+
	+
	+
	+
	(
	+
	+
	
	
	0.8

	
	
	fmB
	0.4
	+
	
	
	+
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.6

	
	
	fmC
	0.5
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	0.5

�Author: Is the addition of Arzdorf correct?

�Author: Is it ok to use “truster” except in quotations? Or is there a special contextual meaning for “trustor”? This occurs through the section.

�Should p be P?

�Author: Should the year be 2001?

�Author: Should the year be 2001?

�Author: Is the addition of Zemanek correct?

�Author: Is it correct to italicize the primitives?

�Author: Please add enough authors’ names to make it clear which 2003 work this is.

�Author: Is “meta-metamodel” correct? See also below.

�Author: Please add enough author names to make it clear which 2003 work is cited.

�Author: Please add enough author names to make clear which 2003 work is cited.

�Author: Is it correct to capitalize “faculty member” and put it in a different font? See also “venture capitalist,” below.

�Author: This work appeared as early as 1959. Do you wish to use that year instead?

�Author: Is the change in the order of authors correct?

�Author: Is “dialogue” correct? Or do you mean the very specific computer term “dialog”?

�Author: Please add enough authors’ names to make it clear which 2003 work is cited.

�Author: Please add enough authors’ names to make clear which 2003 item is cited.

�Author: Is “Graduate School 643 ‘Software for Mobile Communication Systems’ the title of a course in (which?) graduate school? Please clarify.

�Author: should the year be 2001, and the volume of the journal 39?

�Author: Please update this entry.

�Author: This and the following entry by the same authors seem to be virtually identical. Is this ok?

�Is the change of author’s initials from O.E. to A.O. correct?

�Author: Should the issue number be (2)?

�Author: We find the paper was published as early as 1959, and the reprint in 1969. Are those years correct?

�Author: Is the added author, Zemanek, correct? And should the journal issue be (3)?

�Author: Should Web address be www.cs.colorado.edu/~ralex/papers/inter-action2000.html?

�Author: Should the article title be “Netzwerksteuerung und organisationstheoretische perspektiven”?

�Author: Is “loosing,” rather than “losing,” correct?

�Author: Should it be IT&M Journal, 2(3), 195-231?

� Author: Should the book title be Proceedings of the 3rd International Bi-conference Workshop on Agent-Oriented Information Systems?

�. ureport quality(x) = � EMBED Equation.3 ���, x ([0…1000].

�. Strictly speaking, a small amount of second-order logic is required as well, an issue that does not concern us here.

�. Strictly speaking, a small amount of second-order logic is required as well, an issue which does not concern us here.

�. The notation for some of the ConGolog constructs used in this chapter differs from that used in chapter 5. However, all of the constructs in this chapter are also in chapter 5, though that chapter has a construct guard that is not in this chapter or in De Giacomo et al. (2000).—Ed.

�. The notation for some of the ConGolog constructs used in this chapter differs from that used in Chapter 5. However, all of the constructs in this chapter are also in Chapter 5, though that chapter has a construct, guard, that is not in this chapter or in (de Giacomo et al., 2000).—Ed.

�. A parameter PID is used to distinguish instances of these actions during a simulation run, omitted here for readability.

�. For more sophisticated scenarios, other protocols involving several rounds of negotiations may be more suitable (see, e.g., [Schoop & Quix, 2001]).

6. Due to space limitations, the conditional decomposition (also or-decomposition) is omitted; for details see (Gans et al. (., 2002).

[image: image1.wmf])

1

/(

1

99

ln

1000

99

ln

99

1

ln

+

-

-

+

x

e

_1191413198.unknown

