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Bayesian Modeling of Distributions

A Bayesian model for an unknown distribution
needs a prior distribution over distributions.

Some possibilities:

e Assume some simple parametric form for
the distribution, and give a prior to the
parameters.

e Use a general prior expressing a belief in
smoothness, but with no underlying latent
structure. Eg, a Gaussian process for the
log of the (unnormalized) density.

e Use a latent variable model, such as a
mixture of simple distributions.

Mixture-based priors are appropriate when we
think that latent classes do underlie the data,
especially if this latent structure is of interest,
or if we just think this produces a good prior.



The Need for Hierarchical Structure

Finite mixtures can model only a limited class
of distributions. Dirichlet process mixtures are
more flexible, having a countably infinite
number of components, but do not capture
the hierarchical structure of the world:

e Organisms are grouped into families,
genera, species, sub-species, etc.

e Human artifacts are often manufactured
according to make, model, and customized
versions of models.

Also, when non-Gaussian classes are modeled

with Gaussian mixture components, each class
will be modeled using many components with

similar locations — a two-level hierarchy.

My objective: Generalize Dirichlet process
mixtures to capture this hierarchical structure,
and hence provide a richer class of priors.



Defining Priors Over Distributions Via
Exchangeable Priors on Data Sets

Defining a prior distribution over distributions
looks hard — how can we visualize a prior for
an infinite-dimensional quantity?

Fortunately, de Finetti's Representation
Theorem provides a way:

A distribution over data sets of arbitrary

size that is exchangeable (invariant under
change in order) implicitly defines a prior
distribution over distributions.

Such an exchangeable distribution for data
sets can be seen as the marginal distribution
for a data set that is randomly sampled from a
distribution drawn randomly from this prior.



T he Idea of Dirichlet Diffusion Trees

A Dirichlet diffusion tree model defines a
procedure for generating data sets one point
at a time — in an exchangeable way.

To generate the first point:

Simulate Brownian motion from ¢t = 0 to
t = 1. The distribution of the end-point
will be Gaussian with some variance, o2.

The generate the next point:

Simulate Brownian motion again, but
follow the path to the first point initially,
diverging at some random time.

To generate later points:

Follow previous paths initially, choosing
randomly when they branch, but diverge at
some random time.

General principle: Paths followed many times
previously are more likely to be followed again.



Details of Dirichlet Diffusion Trees

The Brownian diffusion begins at ¢t = 0 at the
origin (more generally, at a prior guess for
location), and continues to t = 1, with the

variance over this time for variable i being o2

,l: .

A divergence function, a(t), controls the
probability of divergence from previous paths.

While moving over a path traversed m times
previously, the probability of diverging between
times t and t + dt is a(t)dt/m.

When a branch is encountered while following
previous paths, the probabilities of going each
way are proportional to the numbers of paths
going each way previously.

Once divergence occurs, subsequent motion is
independent of previous paths.



Generating a Data Set of Four Points
From a Dirichlet Diffusion Tree

The prior here uses o =1 and a(t) = 1/(1 —1t).
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Dirichlet Diffusion Tree Priors With
a(t) = c¢/(1—t)

Consider a divergence function of the form
a(t) =c¢/(1—1t), with ¢ > 0. The corresponding
cumulative divergence function is

A(t) = /Ota(u)du = _clog(l —¢t)

The probability that the second path will not
diverge from the first path before time t is
exp(—A(t)). Ast— 1, a(t) and A(t) go to
infinity, and the probability of divergence goes
to one.

When ¢ is small, the fairly slow divergence of
A(t) results in tight clusters of points, since
the paths sometimes don’'t diverge until close
tot=1.

LLarger values of ¢ give more smooth-looking
distributions.



A Two-Dimensional Example
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More Two-Dimensional Examples
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Dirichlet Diffusion Tree Priors With
a(t) =b4+d/(1—1t)?

The divergence function a(t) = b+ d/(1 — t)?
can produce data sets with well-separated
clusters that have internal structure, but
which appear smooth at a small scale.

For example:
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Continuity and Absolute Continuity

A distribution drawn from a Dirichlet diffusion
tree with [J a(t)dt = oo will be continuous —
ie, two points drawn from the distribution will
have zero probability of being identical.

But when will these distributions be absolutely
continuous — ie, have density functions?

Here are my conjectures (empirically
supported) about p-dimensional distributions:

If the divergence function is a(t) =c¢/(1 —t):

1) If ¢ > p/2, a distribution drawn from the prior
will almost surely be absolutely continuous.

2) If ¢ < p/2, a distribution drawn from the prior
will almost surely not be absolutely continuous.

Gareth Roberts has recently proved (2) above.



Models Using Dirichlet Diffusion Trees

Dirichlet Diffusion tree priors can directly
model the distribution of real-valued data, or
they can instead model the distribution of
latent values that underlie the data:

e If the observed data is noisy, the latent
values would be the noise-free values.

e If the observed data is categorical, the
latent values would define the category
probabilities — eg, using a logit model.

Gaussian noise is easily handled by absorbing it
into the Gaussian diffusion process.

If the noise is non-Gaussian (eg, t distributed),
the noise-free latent values need to be
explicitly represented. The same is true for
latent values in a logit model for binary data.



[ earning Structure by Inferring
Values of Hyperparameters

Most models will have various unknown
hyperparameters, such as:

e Parameters of the divergence function —
for example, c in a(t) = ¢/(1-1).

e Diffusion standard deviations for each
variable.

e Noise standard deviations for each variable.

We can give priors to these hyperparameters,
and allow their values to be learned from the
data.

One benefit: We may learn that some of the
variables are mostly “noise” (ie, variation
unrelated to other variables). These will then
not disturb the clustering based on the other
variables.



Models With More Than One Tree

We can build models with more than one tree:
e to model clusters that have similar shapes

e to handle data that clusters in more than
one way (eg, by disease and by ethnicity).

The terminal nodes are added together to
produce the final observed or latent values.

An example for a data set with five cases,

Non-terminal nodes

Latent vectors

Observed data vectors

Some computations are more difficult when
there is more than one tree.



Using MCMC for Computations

Computation for these models seems to
require Monte Carlo methods, and only
Markov chain Monte Carlo seems feasible.

We simulate a Markov chain that converges to
the posterior distribution over underlying
trees, hyperparameters, etc. After discarding a
burn-in period, we use later states to:

e Interpret the posterior distribution — eq,
look at the likely ways that items may be
clustered.

e Make predictions for new data.

Given a sample of trees underlying the data,
predictions can be made by simulating the
data generation process described earlier.



T he State of the Markov Chain

The state of the Markov chain we simulate
will need to contain at least the following:

e T he structure of the tree — ie, the
hierarchical organization of points.

e T he divergence times for nonterminal
nodes.

Depending on the model, and on the Markov
chain updates used, the state may also need
to contain

e [ he locations associated with nonterminal
nodes.

e [ he latent vectors associated with data
items.

e [ he values of various hyperparameters.



Updating the Tree Using Parent Moves

The tree structure, divergence times, and
node locations can all be updated by means
of parent moves, illustrated below:
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Types of Parent Move Updates

Several ways of deciding where to move the
parent are possible.

In a Metropolis-Hastings move we:

e pick a new segment of the tree and a new
divergence time within this segment, using
some proposal distribution,

e decide whether or not to accept this move,
based on the prior and likelihood for the
new and old position, and on the proposal
probabilities.

We can pick a segment and time uniformly, or
by simulating the data generation process,
which makes the prior cancel out.

Slice sampling can also be used. We pick a
path from the root to a terminal node and
some node along this path, then update this
node’s position on the path by slice sampling.



Node Locations in Parent Moves

Because the diffusion process is Gaussian,
node locations can be analytically integrated
away if desired. But this might be slower per
iteration than keeping node locations explicitly.

Three possible ways of doing parent moves:

1) Keep all node locations around.
Accept/reject based on the likelihood with
these locations fixed. (Sample new
locations in other updates.)

2) Keep all node locations around, except the
location of the parent node. Accept/reject
based on the likelihood integrating over
this location. Sample a new location for
the parent at the end of each update.

3) Don’'t keep any node locations around.
Accept/reject based on the likelihood
integrating over all node locations.



[ ikelihood Without Node Locations

The tree structure allows the likelihood with
node |locations integrated away to be
computed in linear time. If diffusions are
independent for different variables, we can
handle each variable separately.

The likelihood function for a node’'s location is
Gaussian in shape, characterized by mean,
variance, and maximum height.

We recursively compute the likelihood function
each node from the likelihood functions for its
children.

Once we have likelihoods functions for all
nodes, we can update them in a parent move
in less than linear time — we just update the
likelihood functions for the ancestors of the
parent being moved (in both its old and its
new position).



Sampling for Locations &
Updating Hyperparameters

By exploiting the tree structure, we can also
sample values for all node locations in linear
time (independently of previous values, if any).

We can sample new values for the diffusion
variances once we have node locations, if we
use a conjugate inverse gamma prior.

Each node provides an independent data point
regarding the diffusion variance.

The noise variances (if the model includes
noise) can be sampled similarly.

We can update parameters of the divergence
function by Metropolis or slice sampling
methods, given only the tree structure and
divergence times.



Testing the Methods on the Iris Data

I looked at autocorrelation times for different
methods on the famous Iris data (the 100
observations on the two easily-confused species).

mean mean divt I1,2
divt depth 2,3 :100

WITH NO NODE LOCATIONS 6 x slice 5.2 3.1 6.5 4.8
6 x met-t 13.8 6.5 4.6 3.4
6 x met—-nt 12.0 5.3 8.1 6.6
3 x (met-t+met-nt) 8.8 3.3 3.0 3.3
3 x (slice+met-nt) 6.3 2.9 4.6 3.9
3 x (slice+met-t) 5.0 2.9 3.2 3.0
2 x (slice+met-t+met-nt) 6.2 3.3 3.1 3.2
WITH NODE LOCATIONS 6 x slice 3.5 2.4 3.7 2.7
6 x met-t 9.3 4.6 2.1 1.8
slice 4 times 6 x met-nt 11.5 5.6 9.7 8.5
met-t 8 times 3 x (met-t+met-nt) 3.9 2.4 1.5 1.6
met-nt 4 times 3 x (slice+met-nt) 4.5 2.7 4.1 3.2
3 x (slice+met-t) 2.3 2.2 1.5 1.6
2 x (slice+met-t+met-nt) 2.9 2.3 1.5 1.6
WITH NODE LOCATIONS, 6 x slice 3.2 2.2 3.2 2.8
SAMPLED EACH ITERATION 6 x met-t 8.4 4.2 2.1 1.4
6 x met-nt 12.7 5.0 9.8 6.9
slice 4 times 3 x (met-t+met-nt) 4.1 2.4 1.7 1.4
met-t 8 times 3 x (slice+met-nt) 4.1 2.5 4.2 3.2
met-nt 4 times 3 x (slice+met-t) 2.3 2.1 1.5 1.5
2 x (slice+met-t+met-nt) 2.9 2.2 1.6 1.5



Clustering Gene Expression Data

I have applied Dirichlet diffusion tree models
to data on gene expression in leukemia cells
from Golub, et al (Science, 15 October 1999).

The data has 72 cases (leukemia cells from
different patients). After some selection, there
is data on the level of expression in these cells
of 3571 genes. Each case was classified as one
of three types — AML, ALL-B, or ALL-T —
pbased on data other than the gene expression.

By clustering the gene expression data, can we
rediscover these three known types?



Tests Using Only 200 Genes

I first did some tests using a random subset of
only 200 genes.

The expression levels were log transformed,
standardized to unit variance within each case
(row), then standardized within each column.

The model included Gaussian noise. The noise
levels, the diffusion standard deviations, and
the parameters of the divergence function
were given fairly broad priors.

I used parent moves with Metropolis-Hastings,
for both terminal and nonterminal nodes, and
also slice sampling. I tried runs with and
without nonterminal node locations present.

These MCMC runs took about an hour on an
866 MHz Pentium III, which superficially
seemed to be long enough for good sampling.
To check this, I did two runs with different
random number seeds.



Data set with 200 genes
Last tree from run #1
(with no node locations)
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Data set with 200 genes
Last tree from run #2
(with no node locations)
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Conclusions from the Tests
Using Only 200 Genes

The results obtained were plausible in
terms of pre-existing knowledge.

The posterior distributions of the
hyperparameters for noise and diffusion
standard deviations varied between genes,
indicating that the model has inferred
which are more relevant to the clustering.

The two runs were consistent, showing no
signs that the Markov chains had not
reached equilibrium — though it's hard to
be sure!

Contrary to the results on the Iris data,
there was no clear benefit from having
node locations present.



Results Using All 3571 Genes

I also applied the same model to the full data
set with all 3571 genes.

I let this MCMC run go for about ten hours,
which by some indications seemed plenty of
time.

However, the results were no better, and
perhaps a bit worse, than with only 200 genes.

Could this be because the MCMC runs were
trapped in local optima? Or with more genes,
is the AML, ALL-B, ALL-T distinction
somewhat obscured by smaller effects?

From looking at runs with different random
seeds, it seems that Markov chain convergence
was indeed a problem, since some details
differed between runs.



Data set using all genes
Last tree from run #1
(with no node locations)
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Data set using all genes
Last tree from run #2
(with no node locations)
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Future Work
Theory:

e Confirm or refute the conjectures about
absolute continuity.

Computation:

e Try out MCMC methods that have been
used for phylogenetic trees.

e See if annealing/tempering can remedy the
converge problems with large data sets.

e See if circular coupling or coupling from
the past can be made to work.

Modeling:.

e Figure out how to visualize a posterior
distribution over hierarchical structures.

e Consider models in which the Brownian
motion is replaced by a continuous-time
Markov process with a categorical state.



