
Knowledge Granularity Spectrum, Action Pyramid, and the

Scaling Problem

Yiming Ye

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA a

John K. Tsotsos

Department of Computer Science, University of Toronto, Toronto, Canada

In this paper we introduce the concept of knowledge granularity and study the

relationship between di�erent knowledge representation schemes and the scaling

problem. By scale to a task, we mean that an agent's planning system and knowl-

edge representation scheme are able to generate the range of behaviors required by

the task in a timely fashion. Action selection is critical to an agent performing a

task in a dynamic, unpredictable environment. Knowledge representation is cen-

tral to the agent's action selection process. It is important to study how an agent

should adapt its methods of representation such that its performance can scale

to di�erent task requirements. Here we address the following issue: to scale to a

given task, when should an agent represent its knowledge using a single granular-

ity and when should an agent represent its knowledge using a set of hierarchical

granularities?

1 Introduction

This paper studies the scaling problem with respect to an agent - a computa-
tional system that inhabits dynamic, unpredictable environments. An agent
has sensors to gather data about the environment and can interpret this data
to re
ect events in the environment. Furthermore, it can execute motor com-
mands that produce e�ects in the environment. Usually, it has more or less
knowledge about itself and the world. This knowledge can be used to guide its
action selection process when exhibiting goal-directed behaviors. It is impor-
tant for an agent to choose a reasonable representation scheme in order to scale
to the task at hand. There are two extremes regarding granularity of knowl-
edge representation. At one end of the spectrum is the pure reactive scheme 2

which requires little or even no knowledge representation. At the other end of
the spectrum is the pure planning scheme which requires the agent to maintain
and use as much detailed knowledge as possible. Experience suggests that nei-
ther purely reactive nor purely planning systems are capable of producing the
range of behaviors required by intelligent agents in a dynamic, unpredictable
environment. For example, Tyrrell 13 has noted the di�culty of applying ,
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without modi�cation, the model of Brooks2 to the problem of modeling action
selection in animates whose behavior is supposed to mirror that of real animals.
On the other hand, although it is theoretically possible to compute the optimal
action selection policy for an agent that has a �xed set of goals and that lives
in a deterministic or probabilistic environment 13, it is impossible to do so in
most practical situations for the following reasons: (A) resource limitations
(time limit, computation complexity15, memory limit); (B) incomplete and in-
correct information (knowledge di�erence 16, sensor noise, etc); (C) dynamic,
non-deterministic environment. Thus, many researchers argue to use hybrid
architectures 14 5 10 7, a combination of classical and alternative approaches,
to build agent systems. One example is the layered architecture 5 10. In such
an architecture, an agent's control subsystems are arranged into a hierarchy,
with higher layers dealing with information at increasing levels of abstraction.
Thus, the very lowest layer might map raw sensor data directly onto e�ector
outputs, while the uppermost layer deals with long-term goals. Or, the upper
abstract space might be used to solve a problem and then the solution might
be re�ned at successive levels of detail by inserting operators to achieve the
conditions that were ignored in the more abstract spaces 8 9.

In this paper, we consider knowledge abstraction over a spectrum based
on the granularity of knowledge representation. Our approach is di�erent
from previous approaches 5 10 in that there is no logical relationship between
elements of any two adjacent layers. We study the scaling problem related to
di�erent representation schemes, be it a single granularity scheme or a hybrid
granularity scheme. Much of the previous work on scaling emphasizes the
absolute complexities (e�ciency) of planning systems. We, however, o�ers an
alternative point of view: we believe that the problem of scaling is a relative
term and is closely related to the task requirements of an agent in uncertain,
dynamic or real-time environments. We will say that an agent scales to a given
task, if the agent's planning system and knowledge representation scheme are
able to generate the range of behaviors required by the task. Many factors, such
as the planning engine, the way knowledge is represented, and the dynamic
environment can in
uence whether an agent scales to a given task. In this
paper, we concentrate on the in
uences of knowledge granularity. It is obvious
that knowledge granularity can in
uence the e�ciency of a given inference
engine, since granularity in
uences the amount of data to be processed by
the engine. It has been suggested that one may increase the computational
e�ciency by limiting the form of the statements in the knowledge base 11 4.
Here, we study the relationship between di�erent representation schemes and
the performance of an agent's planning system. The goal is to �nd the proper
scheme for representing an agent's knowledge such that the representation
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allows the agent to scale to a given task. In 17, we studied the problem of
how to de�ne the granularity of an agent's representation of a certain kind
of knowledge. In 18, we studied how this granularity in
uences the agent's
action selection performance. In this paper, we relate the scaling problem
of an agent with its knowledge granularity and study how the hierarchical
granularity representation in
uences the agent's action selection performance.
The results of this paper can help an agent in �nding a reasonable granularity
or scheme of representation such that its behavior can scale to a given task.

2 Knowledge Granularity

We de�ne knowledge granularity with respect to a certain kind of knowledge as
the total memory used by the agent to represent the knowledge divided by the
memory used by the agent to represent a basic element of the corresponding
knowledge. For example, suppose the task of an agent is to search for an ob-
ject within a two dimensional square of size 100 (unit) � 100 unit. The agent
encodes its knowledge about the possible position of the target as probability
distributions within the square and selects actions based on this distribution.
If the agent tessellates the square into 100 � 100 small squares with size 1
(unit) � 1 (unit) and encodes probabilities, then the corresponding knowledge

granularity g is 100�100�m[p(c)]
m[p(c)] = 10; 000. Where p(c) is the probability asso-

ciated with any small square c and m[p(c)] is the memory used by the agent to
represent p(c). It is obvious that knowledge granularity in
uences the perfor-
mance of the agent. For a �xed action selection algorithm, a higher granularity
usually results in a better selected action because the encoded knowledge are
usually more accurate. However, the action selection time is usually longer
because the algorithm has more items to manipulate.

It is very interesting to study how the performance of an agent is in
uenced
by granularity, and how an agent should choose a reasonable granularity from
the spectrum of knowledge abstraction for di�erent time constraint T, the total
time available for the agent to perform its task. Suppose for a granularity g,
the average time needed to select an action is ts(g), the average contributions
of a selected action to the task is Q(g). Assuming that the total contributions
U made by an agent within the time constraint T can be represented by the
sum of the average contributions of all the actions that is executed within T .
Then, U can be represented as follows:

U (g) = b
T

te + ts(g)
cQ(g):

Where te is the time needed by the agent to execute an action, and b T
te+ts(g)

c
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gives the total number of actions that can be selected and executed by the agent
within T . Obviously, the best granularity g is the one that maximizes U (g).
Di�erent agents use di�erent kinds of knowledge and di�erent kinds of action
selection procedures. Because of the complexity and diversity of the world of
agents, it is impossible to provide a general solution for g. What we can do is
to group agents into di�erent categories and study the behavior with respect
to each category. For example, let f1(g) = 5; f2(g) =ln(g); f3(g) = g + 1;
f4(g) = g3+ 1; f5(g) =exp(g) + 1. These functions represent a small subset of
di�erent degrees of the in
uence of g on the entities to be discussed. Please note
that function f1(g) means that the entity to be discussed is a constant, and thus
is not in
uenced by g. In real situations, the relationship between g and the
entities might be much more complex. In18, we studied how U (g) is in
uenced
by g by setting ts(g) and Q(g) equal to di�erent functions as listed above.
The message derived from our study shows that knowledge granularity has a
big impact on the performance of an agent. Thus, an appropriate knowledge
granularity should be selected by an agent in order to guarantee a satisfactory
result. We also suggested ways of selecting a reasonable granularity when a
single granularity is used.

3 Knowledge Granularity Spectrum and Action Pyramid

Usually, with respect to the knowledge granularity spectrum, the higher the
value of the knowledge granularity, the better the quality of the selected ac-
tions. However, it is not always bene�cial to use high granularity, because the
cost usually increases as well. In order to bene�t from both the short action
selection time of low granularity and the high quality of the selected actions of
high granularity, a hierarchy of granularity layers can be used to select actions.
For example, we can choose several granularities for the purpose of action selec-
tion, as follows. First, the coarsest granularity is used to select a set of actions
from the pool of all the actions. Then the second coarsest granularity is used to
select a even smaller set of actions from the set of actions chosen before. This
procedure continues until the actual action to be applied is selected according
to the �nest granularity. The sets of actions selected by di�erent granularities
form an action pyramid. In this section, we compare the performances of a
single layer granularity scheme and the multi-layer granularity scheme. We
restrict our discussion to two layers because of limited space. Similar results
can be obtained for more than two layers.
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3.1 Adding a coarse new layer for �ltering out non-interesting actions

Suppose after some analysis we �nd that granularity go is a favorable choice
for a single granularity scheme. We might increase the performance by adding
a coarser layer. The idea is to use the coarser granularity to select a small set
of actions that are suitable, and then use go to select an action to execute from
this small set of actions. Suppose originally there are totally N actions to be
selected from. Now consider adding another layer of granularity gc. Suppose
that for gc, we need to collect the �rst ngc actions in order to guarantee that
enough good actions are within this set of actions. In other words, the quality
of the actions selected by go from the limited ngc actions is almost the same
as the quality of the actions selected by go from the N actions.

Suppose that for this planning system the action selection time is governed
by t(g; n), where g is the granularity and n is the number of actions to be
considered. Now we compare the time needed to select one action for the two
strategies. The time, T s

o , needed to select an action from the single layer is:
T s
o = t(go; N ). The time, T s

n, needed to select an action for the new strategy
is: T s

n = t(gc; N )+ t(go; ngc). Thus, the di�erence in selecting an action by the
two strategy is given by:

T s = T s
n � T s

o = t(gc; N ) + t(go; ngc)� t(go; N )

Figure 1 shows the results of experiments that are performed to test the
performance di�erence under di�erent strategies. It draws surfaces of T s =
T s
n � T s

o as a function of ngc and gc under various situations. In the test, we
set N = 100 and go = 100. The range for ngc is 1 � ngc � 100, the range for
gc is 15 � gc � 100. In order to make the comparison easier, we also draws
the surfaces of T s = 0. For any pair ngc and gc, if the corresponding point
on the surface is above T s = 0, then the two layer strategy is not a favorable
choice, because it needs more time to select an action; otherwise, the two layer
strategy should be used because it spends less time in selecting an action. In
our experiments, we assume that t(g; n) = t1(g)t2(n). Where the function t1
gives the sensitivity measurement of the granularity, g, with respect to the
action selection time, and t2 gives the sensitivity measurement of the number
of actions to be considered, n, with respect to the action selection time. The
index (i; j) in Figure 1 means that t1(x) = fi(x), t2(y) = fj(y), where function
fi is de�ned in the previous section. For example, Figure 1(2,3) means that
t1(x) = f2(x), t2(y) = f3(y). Figure 1(1,1) shows that when t(g; n) is not
in
uenced by g and n, the two layer strategy is always worse than the single
layer strategy by a constant. This constant is the time used to pre-select the set
of actions by the coarse layer. Figure 1(1,1)(1,2)(1,3) show the situation when
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the action selection time is not in
uence by granularity. In this case, adding
a new coarse layer does not save time. Because the coarse layer itself will
spend the same time as the old granularity go, and extra time must be spent
by go to select an action from the pre-selected action pools by gc. Figures
1(2,1)(2,2)(2,3)(2,4)(2,5) shows that the more sensitive the action selection
time is in
uenced by the number of actions in the action pool, the better the
two layer strategy. This is illustrated by the increase of the area of those gc
and ngc that are below the plane T s = 0. The reason is that a decrease in
granularity for a more sensitive situation tends to have a bigger saving in action
selection time. The same analysis can be applied to Figures 1(3,2)(3,3)(3,4)
and Figures 1(4,1)(4,2)(4,3)(4,4)(4,5). From Figure 1, we can also notice that
for a �xed granularity gc, the smaller the value of ngc , the better the two layer
strategy. The reason is that a smaller ngc tends to save time for go. We can
also notice that for a �xed ngc , the smaller the value of gc, the better the two
layer strategy.
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From above experiment, we know that in some situations adding a coarse
layer can increase the performance of an agent. Thus, when a single granularity
does not allow the agent to scale to the task at hand, we can consider adding a
coarse layer to increase the chances of scaling. To do this, we can �rst draw the
performance �gure as above, and then select the granularity that corresponds
to the lowest point on the surface as the granularity for the coarse layer.

3.2 Adding a �ner layer to obtain better quality actions

Another way to use hierarchical representation to increase performance and
chances of scaling is to add a �ner layer. The idea is to use the current
granularity go to pre-select a small set of candidate actions, and then use a
�ner granularity gf to choose a better quality action to execute.

The total utility for the single layer strategy within time constraint T is:

U (go) = b
T

te + ts(go; N )
cQ(go)

For the two layer strategy, Suppose ngo is the number of actions that must
be selected by go in order to guarantee that the actions selected by gf will
reach a desired quality Q(gf ). The time to select an action for the two layer
strategy is: ts = t(go; N ) + t(gf ; ngo). The utility of the new strategy is:

U (gf ) = b
T

te + ts(go; N ) + ts(gf ; ngo)
cQ(gf )

Experiments have been performed to show the performance di�erence of
the new strategy and the old strategy, Udiff = U (gf ) � U (go). We assume:
T = 100, go = 100, N = 100. We also assume that the action execution time
is te = 6. In general te has a big in
uence on the analyzing result. Here we
take te = 6 as an example to study the in
uence of other factors on the agent
performance.

In Figure 2, we draw the surfaces of Udiff as a function of gf and ngo.
The range for gf and ngo are [100; 150] and [1; 100] respectively. We assume
ts(g; n) = t1(g)t2(n). Q(g) is another function, which gives the quality of the
action selected with granularity g. In Figure 2, the index (i; j; k) means that the
�gure is drawn by setting ts(g; n) = fi(g)fj(n=70) and Q(g) = fk(g). Figure
2(1,1,1) shows the situation when granularity and the number of actions to be
selected has no in
uence on the action selection time, and granularity has no
in
uence on the quality of the selected actions. In this situation, the two layer
strategy is always worse than the one layer strategy, because it is a waste of
e�ort to pre-select a set of actions for the �ner layer. Figures 2 (2,2,2) (2,2,3)
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(2,2,5), Figures 2 (2,3,2) (2,3,3) (2,3,5), Figures 2 (3,3,2) (3,3,3) (3,3,5), and
Figures 2 (3,5,2) (3,5,3) show that the more sensitive the quality of selected
actions with respect to granularity, the more bene�t the two layer strategy.
The in
uence of the sensitivity of ngo with respect to action selection time on
the performance can be complex, as shown in Figures 2 (2,2,2) (2,3,2) (3,3,2)
(3,5,2) (2,2,3) (2,3,3). In general, many factors can in
uence the performance
of the two strategies and a graph need to be drawn in order to determine which
strategy is better.

4 Conclusion

In this paper, we introduce the concept of knowledge granularity and study the
relationship between di�erent knowledge representation schemes and the scal-
ing problem. We promote the viewpoint that the problem of scaling is closely
related to an agent's task requirement. By scale to a task, we mean that an
agent's planning system and knowledge representation scheme are able to gen-
erate the range of behaviors required by the task in a timely fashion. Here,
we study the in
uence of knowledge granularity and related representation
schemes on an agent's scaling problem. We conduct experiments to compare
the performance between a single layer granularity scheme and multiple layer
granularity scheme. The reason to use several granularities from the granu-
larity spectrum and to choose actions from the corresponding action pyramid
is that the agent might bene�t from both the short action selection time of
low granularities and the high quality of the selected actions of high granular-
ities. Experimental results show that a hierarchical representation scheme can
produce a better performance in some situations, especially when the quality
of the selected actions are greatly in
uenced by the granularity or when the
action selection time is greatly in
uenced by the granularity.
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