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■ Abstract In the vertebrate nervous system, sensory stimuli are typically encoded
through the concerted activity of large populations of neurons. Classically, these pat-
terns of activity have been treated as encoding the value of the stimulus (e.g., the
orientation of a contour), and computation has been formalized in terms of function
approximation. More recently, there have been several suggestions that neural com-
putation is akin to a Bayesian inference process, with population activity patterns
representing uncertainty about stimuli in the form of probability distributions (e.g., the
probability density function over the orientation of a contour). This paper reviews both
approaches, with a particular emphasis on the latter, which we see as a very promising
framework for future modeling and experimental work.

INTRODUCTION

The way that neural activity represents sensory and motor information has been
the subject of intense investigation. A salient finding is that single aspects of the
world (i.e., single variables) induce activity in multiple neurons. For instance, the
direction of an air current caused by movement of a nearby predator of a cricket
is encoded in the concerted activity of several neurons called cercal interneurons
(Theunissen & Miller 1991). Further, each neuron is activated to a greater or lesser
degree by different wind directions. Evidence exists for this form of coding at the
sensory input areas of the brain (e.g., retinotopic and tonotopic maps), as well as
at the motor output level and in many other intermediate neural processing areas,
including superior colliculus neurons encoding saccade direction (Lee et al. 1988),
middle temporal (MT) cells responding to local velocity (Maunsell & Van Essen
1983), middle superior temporal (MST) cells sensitive to global motion parameters
(Graziano et al. 1994), inferotemporal (IT) neurons responding to human faces
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(Perrett et al. 1985), hippocampal place cells responding to the location of a rat in an
environment (O’Keefe & Dostrovsky 1971), and cells in primary motor cortex of a
monkey responding to the direction it is to move its arm (Georgopoulos et al. 1982).

A major focus of theoretical neuroscience has been to understand how popula-
tions of neurons encode information about single variables; how this information
can be decoded from the population activity; how population codes support nonlin-
ear computations over the information they represent; how populations may offer
a rich representation of such things as uncertainty in the aspects of the stimuli they
represent; how multiple aspects of the world are represented in single populations;
and what computational advantages (or disadvantages) such schemes have.

The first section below considers the standard model of population coding that
is now part of the accepted canon of systems neuroscience. The second section
considers more recent proposals that extend the scope of the standard model.

THE STANDARD MODEL

Coding and Decoding

Figure 1Ashows the normalized mean firing rates of the four low-velocity interneu-
rons of the cricket cercal system as a function of a stimulus variables, which is
the direction of an air current that could have been induced by the movement of a
nearby predator (Theunissen & Miller 1991). This firing is induced by the activity
of the primary sensory neurons for the system, the hair cells on the cerci.

Such curves are called tuning curves and indicate how the mean activityfa(s)
of cell a depends ons. To a fair approximation, these tuning curves are rectified
cosines,

fa(s) = r max
a [cos(s− sa)]+ , where [x]+ =

{
x if x > 0
0 otherwise

}
, 1.

r max
a is the maximum firing rate, andsa is the preferred direction of cella, namely

the wind direction leading to the maximum activity of the cell. From the figure,
sa≈ {45◦, 135◦, 225◦, 315◦}. Given the relationship between the cosine function
and projection, Figure 1B shows the natural way of describing these tuning curves.
The wind is represented by a unit length two-dimensional vectorv pointing in
its direction and cella by a similar unit vectorca pointing in its preferred wind
direction. Thenfa(s) = r max

a [v · ca]+ is proportional to the thresholded projection
of v ontoca (Figure 1B). This amounts to a Cartesian coordinate system for the
wind direction (see Salinas & Abbot 1994).

The Cartesian population code uses just four preferred values; an alternative,
homogeneous form of coding allocates the neurons more evenly over the range of
variable values. One example of this is the representation of orientation in striate
cortex (Hubel & Wiesel 1962). Figure 2A shows an (invented) example of the
tuning curves of a population of orientation-tuned cells in V1 in response to small
bars of light of different orientations, presented at the best position on the retina.
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Figure 1 Cercal system. (A) Normalized tuning curves for four low-velocity interneurons.
These are well approximated as rectified cosines, with preferred values approximately 90◦

apart.rmax is about 40 Hz for these cells. (B) Alternative representation of the cells in a 2D
coordinate plane, with the firing rates specified by the projection of the wind directionv
onto vectors representing the interneurons. (C) Root mean square error in decoding the wind
direction as a function ofs∈ [90◦, 270◦] (these functions are periodic) using the population
vector method. (D, E) The difference in root mean square errors between the population
vector and maximum likelihood (D) and Bayesian (E) decoders (positive values imply that
the population vector method is worse). Note that the population vector method has lower
error for some stimulus values, but, on average, the Bayesian decoder is best. The error is 0
for all methods ats= 135◦ ands= 225◦, since only one neuron has a nonzero firing rate for
those values, and the Poisson distribution has zero variance for zero mean. (A) was adapted
from Theunissen & Miller 1991, and (B) was adapted from Dayan & Abbott 2001.

These can be roughly characterized as Gaussians (or, more generally, bell-shaped
curves), with a standard deviation ofσ = 15◦. The highlighted cell has preferred
orientations = 180◦, and preferred values are spread evenly across the circle. As
we shall see, homogeneous population codes are important because they provide
the substrate for a wide range of nonlinear computations.

For either population code, the actual activity on any particular occasion, for
instance the firing ratera = na/1t computed as the number of spikesna fired in
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Figure 2 Homogeneous population code. (A) Bell-shaped tuning functionsfa(s) as
a function of angles for a collection of model V1 neurons (and at a given stimulus
contrast). The thick line shows the cells with preferred values= 180◦ and is a Gaussian
with a standard deviation ofσ = 15◦ plus a baseline activity of 5 Hz. (B) Weights for
each neuron as a function of the preferred value of that neuron for an optimal linear
test to discriminates∗ − δs from s∗ + δs for s∗ = 180◦. Note that under the Poisson
noise model, the weights would be monotonic if the baseline activity in (A) was 0 Hz.
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a short time window1t, is not exactlyfa(s) because neural activity is almost in-
variably noisy. Rather, it is a random quantity with mean〈ra〉 = fa(s) (using〈〉 to
indicate averaging over the randomness). We mostly consider the simplest reason-
able model of this for which the number of spikesna has a Poisson distribution.
For this distribution, the variance is equal to the mean, and the noise corrupting
the activity of each member of the population of neurons contains no correlations
(this is indeed a fair approximation to the noise found in the nervous system; see,
for instance, Gershon et al. 1998, Shadlen et al. 1996, Tolhurst et al. 1982). In
this review, we also restrict our discussion to rate-based descriptions, ignoring the
details of precise spike timing.

Equation 1, coupled with the Poisson assumption, is called an encoding model
for the wind directions. One natural question that we cannot yet answer is how
the activities of the myriad hair cells actually give rise to such simple tuning. A
more immediately tractable question is how the wind directions can be read out
of, i.e., decoded, from the noisy ratesr . Decoding can be used as a computational
tool, for instance, to assess the fidelity with which the population manages to code
for the stimulus or (at least a lower bound to) the information contained in the
activities (Borst & Theunissen 1999, Rieke et al. 1999). However, decoding is
not an essential neurobiological operation because there is almost never a reason
to decode the stimulus explicitly. Rather, the population code is used to support
computations involvings, whose outputs are represented in the form of yet more
population codes over the same or different collections of neurons. Some examples
of this are presented below; for the moment we consider the narrower, but still
important, computational question of extracting approximationsŝ(r ) to s.

Consider, first, the case of the cricket. A simple heuristic method for decoding
is to say that cella “votes” for its preferred directionca with a strength determined
by its activity ra. Then, the population vector,vpop, is computed by pooling all
votes (Georgopoulos et al. 1982), and an estimateŝ(r ) can be derived from the
direction ofvpop:

Vpop= 1

4

4∑
a=1

ra

r max
a

ca

ŝ(r ) = direction (vpop).

The main problem with the population vector method is that it is not sensitive
to the noise process that generates the actual ratesra from the mean ratesfa(s).
Nevertheless, it performs quite well. The solid line in Figure 1C shows the average
square error in assessings from r , averaging over the Poisson randomness. This
error has two components: the bias,〈ŝ(r )〉 − s, which quantifies any systematic
misestimation, and the variance〈(ŝ(r )− 〈ŝ(r )〉)2〉, which quantifies to what extent
ŝ(r ) can differ from trial to trial because of the random activities. In this case, the
bias is small, but the variance is appreciable. Nevertheless, with just four noisy
neurons, estimation of wind direction to within a few degrees is possible.

To evaluate the quality of the population vector method, we need to know the
fidelity with which better decoding methods can extracts from r . A particularly
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important result from classical statistics is the Cram´er-Rao lower bound
(Papoulis 1991), which provides a minimum value for the variance of any es-
timator ŝ(r ) as a function of two quantities: the bias of the estimator and an
estimator-independent quantity called the Fisher information IF for the popula-
tion code, which is a measure of how different the recorded activities are likely to
be when two slightly different stimuli are presented. The greater is the Fisher infor-
mation, the smaller is the minimum variance, and the better is the potential quality
of any estimator (Paradiso 1988, Seung & Sompolinsky 1993). The Fisher infor-
mation is related to the Shannon information I(s;r ), which quantifies the deviation
from independence of the stimulussand the noisy activitiesr (see Brunel & Nadal
1998).

A particularly important estimator that in some limiting circumstances achieves
the Cramér-Rao lower bound is the maximum likelihood estimator (Papoulis 1991).
This estimator starts from the full probabilistic encoding model, which, by taking
into account the noise corrupting the activities of the neurons, specifies the proba-
bility P[r |s] of observing activitiesr if the stimulus iss. For the Poisson encoding
model, this probability, also called the likelihood, is:

P[r |s] =
4∏

a=1

e− fa(s)1t ( fa(s)1t)ra1t 1

(ra1t)!
. 2.

Values ofs for whichP[r |s] is high are directions that are likely to have produced
the observed activitiesr ; values ofs for which P[r |s] is low are unlikely. The
maximum likelihood estimatêsML (r ) is the value that maximizesP[r |s]. Figure
1D shows, as a function ofs, how much better or worse the maximum likelihood
estimator is than the population vector. By taking correct account of the noise, it
does a little better on average.

When its estimates are based on the activity of many neurons (as is the case
in a homogeneous code) (Figure 2A), the maximum likelihood estimator can
be shown to possess many properties, such as being unbiased (Paradiso 1988,
Seung & Sompolinsky 1993). Although the cercal system, and indeed most other
invertebrate population codes, involves only a few cells, most mammalian cortical
population codes are homogeneous and involve sufficient neurons for this theory to
apply.

The final class of estimators, called Bayesian estimators, combine the likelihood
P[r |s] (Equation 2) with any prior information about the stimuluss (for instance,
that some wind directions are intrinsically more likely than others for predators)
to produce a posterior distributionP[s|r ] (Foldiak 1993, Sanger 1996):

P[s|r ] = P[r |s] P[s]

P[r ]
. 3.

When the prior distributionP[s] is flat, that is when there is no specific prior
information abouts, this is a renormalized version of the likelihood, where the
renormalization ensures that it is a proper probability distribution (i.e., integrates
to 1). The posterior distribution summarizes everything that the neural activity and
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any prior information have to say abouts, and so is the most complete basis for
decoding. Bayesian inference proceeds using a loss function L(s′, s), which indi-
cates the cost of reportings′ when the true value iss; it is optimal to decode to
the valueŝ(r ), which minimizes the cost averaged over the posterior distribution
(DeGroot 1970). Figure 1E shows the comparative quality of the Bayesian estima-
tor, under a squared-error loss function. By including information from the whole
likelihood, and not just its peak, the Bayesian estimator does a little better than the
maximum likelihood and population vector methods. However, all methods work
well here.

Exactly the same set of methods applies to decoding homogeneous population
codes as Cartesian ones, with the Bayesian and maximum likelihood decoding
typically outperforming the population vector approach by a rather larger margin.
In fact, some calculations are easier because the mean sum activity across the whole
population is the same whatever the value of the stimuluss. Also, in general, the
greater the number of cells is, the greater the accuracy is with which the stimulus
can be decoded by any method, since more cells can provide more information
abouts. However, this conclusion does depend on the way, if at all, that the noise
corrupting the activity is correlated between the cells (Abbott & Dayan 1999,
Oram et al. 1998, Snippe & Koenderink 1992b, Sompolinsky et al. 2001, Wilke
& Eurich 2002, Yoon & Sompolinsky 1999) and the way that information about
these correlations is used by the decoders.

Computation with Population Codes

DISCRIMINATION One important computation based on population codes involves
using the spiking rates of the cellsr to discriminate between different stimuli, for
instance, telling between orientationss∗ + δsands∗ − δs, whereδsis a small angle.
It is formally possible to perform discrimination by first decoding, say finding the
Bayesian posteriorP[s|r ], and then reporting whether it is more likely thats< s∗

or s> s∗. However, assuming the prior distribution does not favor either outcome,
it is also possible to perform discrimination based directly on the activities by
computing a linear, feedforward, test:

t(r ) =
∑

a

rawa + γ,

whereγ is usually 0 for a homogeneous population code, andwa = f ′a(s)/ fa(s)
(Figure 2B). The appropriate report iss∗ + δs if t(r ) > 0 ands∗ − δs if t(r ) < 0
(Pouget & Thorpe 1991, Seung & Sompolinsky 1993, Snippe & Koenderink
1992a). Figure 2B shows the discrimination weights for the case thats∗ = 210◦.
The weightwa for cell a is proportional to the slope of the tuning curve,f ′a(s),
because the slope determines the amount by which the mean activity of neurona
varies when the stimulus changes froms∗ − δs to s∗ + δs: The larger the activity
change is, the more informative the neuron is about the change in the stimulus,
and the larger its weight is. Note an interesting consequence of this principle:
The neuron whose preferred value is actually the value about which the task is set
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(sa= s∗) has a weight of 0. This occurs because its slope is zero fors∗, i.e., its mean
activity is the same fors∗ + δs ands∗ − δs, and so it is unhelpful for performing
the discrimination. The weightwa is also inversely proportional to the variance
of the activity of cella, which is the same as the mean,fa(s). Psychophysical and
neurophysiological data indicate that this pattern of weights is indeed used in hu-
mans and animals alike when performing fine discrimination (Hol & Treue 2001,
Regan & Beverley 1985).

Signal detection theory (Green & Swets 1966) underpins the use of population
codes for discrimination. Signal detection’s standard measure of discriminability,
calledd′, is a function of the Fisher information—the same quantity that determines
the quality of the population code for decoding.

NOISE REMOVAL As discussed above, although the maximum likelihood estimator
is mathematically attractive, its neurobiological relevance is unclear. First, finding
a single scalar value seems unreasonable because population codes seem to be used
almost throughout the brain. Second, while finding the maximum likelihood value
is simple in some restrictive cases, in general it requires solving a nonquadratic
optimization problem (Bishop 1995).

Both of these problems can be addressed by utilizing recurrent connections
within the population to make it behave like an autoassociative memory (Hopfield
1982). Autoassociative memories use nonlinear recurrent interactions to find the
stored pattern that most closely matches a noisy input. One can roughly characterize
these devices in the physical terms of a mountainous landscape. The pattern of
neural activities at any time (characterized by the firing rates of the neurons) is
represented by a point on the surface. The recurrent interactions have the effect of
moving the point downhill (Cohen & Grossberg 1983), and the stored memories
induce dips or wells. In this case, a noisy version of one of the inputs lies at a point
displaced from the bottom of a well; the nonlinear recurrent interactions move the
state to the bottom of the closest well and thus perform retrieval. The bottoms of
the wells are stable points for the recurrent dynamics.

Ben-Yishai et al. (1995), Zhang (1996), and Seung (1996) constructed au-
toassociative devices (called continuous line or surface attractor networks) whose
landscapes have the structure of perfectly flat and one-dimensional (or perhaps
higher-dimensional) valleys. Points at the bottom of a valley represent perfectly
smooth bell-shaped activity profiles in the network. There is one point for each
possible locations of the peak (e.g., each possible orientation), with activities
ra = fa(s). In this case, starting from a noisy initial patternr , the recurrent dynam-
ics finds a point at the bottom of the valley and thus takesr into a perfectly smooth
bell-shaped activity patternfa(ŝ(r )) (Figure 3A). This is how the scheme answers
the first objection to decoding: It does not directly find a scalar value but instead
integrates all the information in the input and provides the answer in the form of
another, but more perfect, population code. Note that such recurrent networks are
themselves used to model activity-based short-term or working memory (Compte
et al. 2000).
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Pouget et al. (1998, Deneve et al. 1999) proved that a wide variety of recur-
rent networks with continuous attractors can implement a close approximation to
maximum likelihood decoding, i.e., turningr into activities fa(ŝML (r )), with the
smooth bump centered at the maximum likelihood value. This result holds regard-
less of the activation functions of the units (which determine how the input to a
unit determines its output firing rate) and includes networks that use biologically
inspired activation functions, such as divisive normalization (Heeger 1992, Nelson
1994). This approach therefore answers the second objection to maximum likeli-
hood decoding: If necessary, once the noise has been removed, a simple inference
method such as the population vector can be used to determine the location of the
peak of the activity pattern.

For this maximum likelihood noise removal method to work, it is critical that all
stimulus values should be (almost) equivalently represented. This is not true of the
Cartesian population code because the activity patterns fors = 45◦ ands = 90◦

have structurally different forms. It is true of the homogeneous population code,
with a dense distribution of preferred values and stereotypical response patterns.

BASIS FUNCTION COMPUTATIONS Many computations can ultimately be cast in
terms of function approximation, that is computing the output of functionst =
g(s) of variables, or, more generally,t = g(s), for the case of multiple stimulus
dimensions. A particularly influential example has been relating (the horizontal
coordinate of) the head-centered direction to a targetsh, with the eye-centered (i.e.,
retinal) directionsr and the position of the eyes in the headse. The relationship
between these variables has the simple formsh = sr+ se (Mazzoni & Andersen
1995). Computations associated with this coordinate transformation are believed
to take place in the parietal cortex of monkeys (Andersen et al. 1985), and there is
substantial electrophysiological evidence as to the nature of the population codes
involved (Andersen et al. 1985).

Because the stimulus variables and the outputs of these computations are rep-
resented in the form of population codes, the task is to understand how population
codes support computations such as these. Fortuitously, there is a whole mathe-
matical theory of basis functions devoted to this topic (e.g., Poggio 1990). We first
consider the implementation of a simple functiont = g(s) as a mapping from one
population code to another. Ignoring noise for the moment, consider generating
the mean activityfa(t) of theath neuron in a population code representation oft
from the activitiesfb(s) in a population code fors. It turns out that, under some
fairly general conditions, representations such as homogeneous population codes
are basis functions in that they support linear solutions:

fa(t) =
∑

b

wab fb(s), 4.

wherewabis a matrix of weights that implements the transformation. Some intuition
for how a set of simple linear, feedforward combinations of the population activities
fb(s) could lead to a population code fort = g(s) comes from the case that the
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tuning functions are very narrow (nearly Dirac, or delta functions):

fb(s) =
{

1 if s≈ sb

0 otherwise

}
.

The question is what should be the weights to generate a population code fort with
the narrow tuning curves:

fa(t) =
{

1 if t ≈ ta
0 otherwise

}
.

Consider what happens if the input variable takes the valuesb. In the input layer,
the only active unit is thebth unit, i.e., the one with tuning curve peaking atsb. If
the input value issb, the value of the output variable is given byt∗ = g(sb). Let us
denotea∗ as the index of the unit peaking att∗. All we need now is to make sure
that the only active unit in the output layer is the unit with indexa∗. This is done
by setting the weightwa∗b to one, and all the other weights sent by thebth input
unit to zero. The general wiring rule can be written as

wab =
{

1 if g(sa) ≈ tb
0 otherwise

}
.

Basis function mappings are the extension of this simple structure to true population
representations for which multiple cells are simultaneously active for both input
and output populations. Homogeneous population codes can readily carry out these
computations; however, because of their greater parsimony (effectively using only
two neurons to represent each dimension), the Cartesian population codes of the
cercal system cannot support computations such as this.

In the more general case of combining two population codes to obtain a third,
such as mapping eye-centered location and eye position to head-centered location,
the same method applies but with two-dimensional basis functions. This amounts
to a population code tuned in the two different dimensions of eye-centered location
and eye position, with joint tuning functionsfb(sr, se), such that

fa(sh) =
∑

b

wab fb(sr , se). 5.

Pouget & Sejnowski (1997, 1995) modeled gain fields in parietal cortex-neural
responses tuned to location of images on the retina and multiplicatively (gain)
modulated by the eye (and head) position in exactly this manner, using tuning
functions that are the products of Gaussians for eye-centered positionsr and mono-
tonic sigmoids for eye positionse (for which preferred values are really points of
inflection). In theory, one would need a huge number of basis functions, one for
each combination of preferred value of eye-centered location and eye position;
but in practice, the actual number depends on the required fidelity. Salinas &
Abbott (1995) proposed a similar scheme and subsequently showed that these
gain fields could arise from a standard network model (Salinas & Abbott 1996). In
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this model, simple additive synaptic inputs to a recurrently connected population,
with excitatory synapses between similarly tuned neurons and inhibitory synapses
between differently tuned neurons, approximate a product operation, which al-
lows additive inputs from retinal position and eye position signals to be combined
multiplicatively.

Two aspects of these proposals make them incomplete as neural models. First is
noise: Equations such as Equation 4 are true for the tuning functions themselves,
but the recorded activities are only noisy versions of these tuning functions. Second
is the unidirectional nature of the computation: In cases such as the parietal cortex,
there is nothing privileged about computing head-centered location from eye-
centered location, as the inverse computationsr = sh − se is just as relevant (for
instance, this computation is required to predict the visual location of a sound
source).

It is possible to solve the problem of noise using the recurrent network of the
previous section to eliminate the noise, effectively producingfa(ŝML (r )), and then
using this in computations such as Equation 4. However, Deneve et al. (2001)
suggested a variant of this recurrent network that solves the second problem too,
thus combining noise removal, basis function computation, and also cue integration
in a population-coding framework.

In this final scheme, the inverse problemst = g(s) ands= g−1(t) (or, in the case
of the parietal cortex,sh = sr+ seandsr = sh− se) are treated symmetrically. This
implies the use of a joint population code in all three variables, with tuning functions
fa(sh, sr, se). From this representation, population codes for any of the individualsh,
sr, andse can be generated as in Equation 5. In the recurrent maximum likelihood
decoding scheme of the previous section, there is a point along the bottom of the
valley that represents any value of the stimulis = {sh, sr, se}. In Deneve et al.’s
suggestion, the recurrent weights are designed so that only values ofs that satisfy
the relationshipsh = sr+ se lie at the bottom of the valley (which, in this case, has
the structure of a two-dimensional plane). Thus, only these values ofs are stable
points of the recurrent dynamics. Now, starting from noisy activity pattern, the
recurrent dynamics will lead to a smooth population code, which represents nearly
the maximum likelihood values ofsh, sr, se that satisfysh = sr+ se and thus solves
any of the three equivalent addition/subtraction problems.

Figure 3 shows an implementation of this scheme, including bidirectional
weights between the individual population codes and the joint population code.
The recurrent dynamics work in such a fashion that if there is no initial activity in
one of the population codes, say if only eye-centered and eye-position information
is available, then the position on the valley found by the network is determined
only by the noisy activities representingsr andse. This implies that the network
implements noise removal and basis function computation. If noisy information
about all three variables is available, as in the case of cue integration (e.g., when
an object can be seen and heard at the same time), then the recurrent dynamics will
combine them. If one population has smaller activities than the others, then it will
exert less influence over the overall maximum likelihood solution. This outcome
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is statistically appropriate if less-certain input variables are represented by lower
population activity (as they exactly are for the Poisson noise model for spiking,
for which the standard deviation of the activity of a neuron is equal to the square
root of its mean). Deneve et al. (2001) showed that this network could perform
statistically near optimal cue integration, together with coordinate transformation.
Furthermore, the full, three-dimensional, tuning functions in this scheme have very
similar tuning properties to those of parietal cells (Pouget et al. 2002).

Discussion of Standard Model

We have reviewed the standard models of Cartesian and homogeneous popula-
tion codes, showing how they encode information about stimulus variables, how
information can be decoded and used for discrimination, and how homogeneous
population codes, because of their close relationship with basis function approx-
imation schemes, can support nonlinear computations, such as coordinate trans-
formations, and statistical computations, such as cue integration. Dayan & Abbott
(2001) reviews most of the methods in more detail.

Various issues about the standard model are actively debated. First, it might be
thought that population codes should have the characteristic of enabling the most
accurate decoding across a range of stimulus values. In fact, maximizing the Fisher
information is not always a good strategy, especially when short time windows
are being considered (Bethge et al. 2002). Moreover, nonhomogeneity in tuning
widths can improve coding accuracy in some cases (Eurich & Wilke 2000).

A second area of active debate is the existence and effect of noise correlations
(Abbott & Dayan 1999, Oram et al. 1998, Pouget et al. 1999, Snippe & Koenderink
1992b, Sompolinsky et al. 2001, Wilke & Eurich 2002, Wu et al. 2001, Yoon &
Sompolinsky 1999). The little available experimental data suggest that correlations
decrease information content (Lee et al. 1998, Zohary et al. 1994), but theoretical
studies have shown that correlations can, in principle, greatly increase Fisher infor-
mation (Abbott & Dayan 1999, Oram et al. 1998, Sompolinsky et al. 2001, Wilke &
Eurich 2002, Yoon & Sompolinsky 1999). Also, decoding a correlated population
code under the assumption that the noise is independent (a common practice in
experimental studies because correlations are hard to measure) can (though need
not necessarily) have deleterious consequences for decoding (Wu et al. 2001).

Another important issue for the recurrent network population coding methods is
that it is not reasonable to eliminate noise completely in the way we have discussed;
rather, population codes are continually noisy. It is thus important to assess the
effect of introducing noise into the recurrent dynamics by understanding how it
propagates through the computations.

A final issue is that of joint coding. In the discussion of basis functions, we have
assumed that there are neurons with tuning functions that depend on all possible
stimulus variables and with preferred values that are evenly distributed. This is
obviously implausible, and only some combinations can afford to be represented,
perhaps in a hierarchical scheme. In the case of V1, there are some ideas from
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natural scene statistics (e.g., Li & Atick 1994) and also from general symmetry
principles (e.g., Bressloff & Cowan 2002) as to which combinations should exist;
however, these have yet to be put together with the basis function approximation
schemes.

The standard model treats population codes as noisily representing certain in-
formation about only one particular value of the stimuluss. This is a substantial
simplification, and in the next section we consider recent extensions that require a
radical change in the conception of the population code.

ENCODING PROBABILITY DISTRIBUTIONS

Motivation

The treatment in the previous section has two main restrictions. First, we only
consider a single source of uncertainty coming from noisy neural activities, which
is often referred to as internal noise. In fact, as we see below, uncertainty is inher-
ent in the structure of most relevant computations, independent of the presence of
internal noise. The second restriction is that, although we consider how noise in the
activities leads to uncertainty in the Bayesian posterior distributionP[s|r ] over a
stimulus given neural responses, we do not consider anything other than estimating
the single value underlying such a distribution. Preserving and utilizing the full
information contained in the posterior, such as the uncertainty and possibly mul-
timodality, is computationally critical. We use the term distributional population
codes for population code representations of such probability distributions.

In the computer vision literature, the way that uncertainty is inherent in com-
putations has been studied for quite some time in terms of “ill-posed problems”
(Kersten 1999, Marr 1982, Poggio et al. 1985). Most questions of interest that one
may want to ask about an image are ill-posed, in the sense that the images do not
contain enough information to provide unambiguous answers. Perhaps the best-
known example of such an ill-posed problem is the aperture problem in motion
processing. When a bar moves behind an aperture, there is an infinite number of
2D motions consistent with the image (Figure 4A). In other words, the image by
itself does not specify unambiguously the motion of the object. This may appear to
be a highly artificial example because most images are not limited to bars moving
behind apertures. Yet, this is a real problem for the nervous system because all
visual cortical neurons see the world through the apertures of their visual receptive
fields. Moreover, similar problems arise in the computation of the 3D structure
of the world, the localization of auditory sources, and many other computations
(Knill & Richards 1996).

What can be done to deal with this uncertainty? The first part of the solution
is to adopt a probabilistic approach. Within this framework, we no longer seek a
single value of the variable of interest, since this does not exist; rather, perception
is conceived as statistical inference giving rise to probability distributions over the
values. For the aperture problem, the idea is to recover the probability distribution
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Figure 4 (A) The aperture problem. Two successive snapshots (at time t and t+ 1) of an
edge moving behind an aperture. An infinite number of motion vectors is consistent with
this image sequence, some of them shown with arrows. (B) Probability distribution over all
velocities given the image sequence shown in (A). All velocities have zero probability except
for the ones corresponding to the black line, which have an equal non-zero probability. (C)
Same as in (A) but for noisy images of a blurred moving contour. This time, possible motions
differ not only in direction but also in speed. (D) The corresponding probability distribution
takes the form of an approximately Gaussian ridge whose width is a function of the noise
and blurring level in the image sequence.

over all possible motionssgiven the sequence of imagesI . This posterior distribu-
tionP[s|I ] is analogous to the posterior distributionP[s|r ] over the stimuluss, given
the responses we discuss above, except that uncertainty here does not arise from the
fact that multiple stimuli can lead to the same neural responses owing to internal
noise; rather, it comes from the fact that many different underlying motions give rise
to the same observed image. In the case of no strong prior and a simple bar moving
behind an aperture, the posterior distribution takes the form indicated in Figure 4B.
Only the motions lying on a particular line in a 2D plane of velocities have non-zero
probabilities; all are equally likely in the absence of any further information.

This is actually an idealized case. In reality, the image itself is likely to be
corrupted by noise, and the moving object may not have very well-defined
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contours. For instance, Figure 4Cshows two snapshots of a blurred contour moving
through an aperture. This time the speed, as well as the direction of the stimulus,
is ambiguous. As a result, the posterior becomes a diffuse (e.g., Gaussian) ridge
instead, centered on the idealized line (Figure 4D).

These posterior probability distributions capture everything there is to know
about the variables of interest given the image. At least two critical questions then
arise: Does the brain work with probability distributions? And, if so, how are they
encoded in neural activities? The first part of this section reviews psychophysical
evidence suggesting that the answer to the first question is very likely to be yes.
These experiments attempt to refute the null hypothesis that only a single aspect
of such distributions (such as their means or the locations of their peaks) plays any
role in perception, as opposed to an alternative hypothesis that other information,
notably the width of the distributions, is also important. Having established the
importance of distributional encoding, we consider how populations of neurons
might encode, and compute, probability distributions. We then study some ex-
perimental neurobiological evidence supporting this view and finally discuss how
these probabilistic population codes can be used for computation.

Psychophysical Evidence

Many experiments support the notion that perception is the result of a statistical
inference process (Knill & Richards 1996). Perhaps one of the simplest demonstra-
tions of this phenomenon is the way that contrast influences speed perception. It
has been known for quite some time that the perceived speed of a grating increases
with contrast (Blakemore & Snowden 1999, Stone & Thompson 1992, Thompson
1982). This effect is easy to explain within a probabilistic framework. The idea is
that the nervous system seeks the posterior distribution of velocity given the image
sequence, obtained through Bayes rule:

P[s|I ] = P[I |s] P[s]

P[I ]
. 6.

In this example, the prior distributionP[s] represents any prior knowledge the
nervous system has about the velocity of objects in the real world, independently
of any particular image. For convenience, we consider velocity in only one dimen-
sion (say horizontal for a vertical grating, thus eliminating the aperture problem).
Experimental measurements suggest that the prior distribution of 1D velocity in
movies of natural scenes takes the form of a Gaussian distribution centered at zero
(R. Ruyter van Steveninck, personal communation) (dotted curve in Figure 5A). In
other words, in natural movies, most motions tend to be slow. Note that the obser-
vation that slow motions tend to be more common in real images is independent
of seeing any particular image, which is precisely what the prior is about.

To compute the likelihoodP[I |s] as a function ofs, one needs to know the
type of noise corrupting natural movies and its dependence on contrast (Weiss
et al. 2002). Fortunately, we do not need to venture into those technical details,
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Figure 5 Bayesian estimation of the speed of an object moving at 10 deg/s for low and
high contrast. For visual clarity, the amplitudes of all distributions have been normalized to
one (A). At low contrast, the likelihood function (light gray curve) is wide because the image
provides unreliable data about the motion. When this likelihood function is multiplied with
the prior (dotted curve) to obtain the posterior distribution (solid black curve), the peak of
the posterior distribution (arrow) ends up indicating a slower speed than the veridical speed
(10 deg/s). (B) For a high contrast, the likelihood function is narrower because the image
provides more reliable information. As a result, the posterior distribution is almost identical
to the likelihood function and peaks closer to the veridical speed. This could explain why
humans perceive faster speeds for higher contrasts.

as intuitive notions are sufficient. The likelihood always peaks near the veridical
velocity. However, the width of this peak (compared to its height) is a function of
the extent to which the presented image outweighs the noise. This is a function of
contrast; as the contrast increases, the image more strongly outweighs the noise,
and the peak gets narrower (compare the light gray curve in Figure 5A andB).

Given this knowledge of the prior and likelihood functions, we can examine the
posterior distribution over velocity, which is simply proportional to the product
of these two functions (Equation 6). At high contrast, the posterior distribution
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peaks at about the same velocity as the likelihood function because the likelihood
function is narrow and dominates the product. At low contrast, the likelihood
function widens, and the product is more strongly influenced by the prior. Because
the prior favors slow speeds, the result is a posterior peaking at slower velocity
than the likelihood function. If the perceived velocity corresponds to either the
peak (mode) or the mean of the posterior distribution, it will clearly decrease with
contrast. Experimental evidence concerning human perception of speed directly
follows this prediction (Blakemore & Snowden 1999, Hurlimann et al. 2002, Stone
& Thompson 1992, Thompson 1982). Note that to model this effect it is critical
to have a representation of the likelihood function or at least its width. If we knew
only its peak position, it would be impossible to reproduce the experimental data
because the peak remains at the same position across contrast. Such experiments
provide compelling evidence that the nervous system, by some means, represents
probability distributions.

This example alone is not an ironclad proof, but what is remarkable is that this
basic set of assumptions (i.e., with no additional parameters) can account for a
very large body of experimental data regarding velocity perception—a feat that no
other model can achieve (Weiss et al. 2002).

There are many other demonstrations as to how perception can be interpreted as
a statistical inference problem requiring the explicit manipulation of uncertainty
(Jacobs 2002, Knill 1998, Knill & Richards 1996). One compelling example con-
cerns how humans combine visual and haptic cues to assess the shape of objects
(Ernst & Banks 2002). In this experiment, subjects were asked to judge the height
of a bar, which they could see and touch. First, subjects viewed with both eyes a
visual stimulus consisting of many dots, displayed as if glued to the surface of the
bar. To make the task harder, each dot was moved in depth away from the actual
depth of the bar, according to a noise term drawn from a Gaussian distribution.
As the width of the noise distribution was increased, subjects found it harder and
harder to estimate the height of the bar accurately. Ernst & Banks (2002) suggested
that observers recover a posterior distribution over heights given the visual image
and that this distribution widens as the noise in the image increases. Next, haptic
information as to the height was also provided through a force-feedback robot,
allowing subjects the chance to integrate it with the variably uncertain visual in-
formation. Ernst & Banks reported that humans behave as predicted by Bayes law
in combining visual and haptic information. That is, in estimating the height of the
bar, subjects take into account the reliability of the two different cues. This again
suggests that the human brain somehow represents and manipulates the widths of
the likelihood functions for vision and touch.

Encoding and Decoding Probability Distributions

Several schemes have been proposed for encoding and decoding probability dis-
tributions in populations of neurons. As for the standard account covered in the
first section of this review, there is a difference between mechanistic and descrip-
tive models. Mechanistic models set out to explain the sensory processing path by



2 Jun 2003 17:48 AR AR187-NE26-14.tex AR187-NE26-14.sgm LaTeX2e(2002/01/18)P1: IKH

398 POUGET ¥ DAYAN ¥ ZEMEL

which neurons come to code for aspects of a probability distribution. The only ex-
ample of this that we consider is the log likelihood model of Weiss & Fleet (2002).
Descriptive models, which are our main focus, offer a more abstract account of
the activities of cells, ignoring the mechanistic details. There are also important
differences in the scope of the models. Some, such as the gain and log-likelihood
models, are more or less intimately tied to the idea that the only important aspect
of uncertainty is the width of a single peaked likelihood (which often translates
into the variance of the distribution). Others more ambitiously attempt to represent
probability distributions in rich and multimodal glory.

LOG-LIKELIHOOD METHOD A major question for distributional population codes
is where the distributions come from. Sensory organs sense physical features of
the external world, such as light or sound waves, not probability distributions. How
are the probability distributions inferred from photons or sound waves? Weiss &
Fleet (2002) have suggested a very promising answer to this question. They con-
sidered the motion-energy filter model, which is one of the most popular accounts
of motion processing in the visual system (Adelson & Bergen 1985). Under their
interpretation, the activity of a neuron tuned to prefer velocityv (ignoring its other
preferences for retinal location, spatial frequency, etc.) is viewed as reporting the
logarithm of the likelihood function of the image given the motion log(P[I |v]).
This suggestion is intrinsically elegant, neatly providing a statistical interpretation
for conventional filter theory. Further, in the case that there is only a single motion
in the image, decoding only involves the simple operation of (summing and) expo-
nentiating to find the full likelihood. A variety of schemes for computing based on
the likelihood are made readily possible by this scheme, although some of these
require that the likelihood only have one peak for them to work.

GAIN ENCODING FOR GAUSSIAN DISTRIBUTIONS We have already met the sim-
plest distributional population code. When a Bayesian approach is used to decode
a population pattern of activity (Equation 3), the result is a posterior distribution
P[s|r ] over the stimulus. If the noise in the response of neurons in a large popu-
lation is assumed to be independent, the law of large numbers dictates that this
posterior distribution converges to a Gaussian (Papoulis 1991). Like any Gaussian
distribution, it is fully characterized by its mean and standard deviation. The mean
of this posterior distribution is controlled by the position of the noisy hill of ac-
tivity. If the noisy hill is centered around a different stimulus value, so will be the
posterior distribution. By contrast, when the noise follows a Poisson distribution,
the standard deviation of the posterior distribution is controlled by the amplitude
of the hill. These effects are illustrated in Figure 6.

This observation implies that the gain of the population activity controls the
standard deviation of the posterior distribution, which is the main quantity re-
quired to account for the simple psychophysical examples above. For instance,
that lower contrast leads to lower population activities is exactly a mechanistic
implementation of increased uncertainty in the quantity encoded.
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This method is subject to some strong limitations. In particular, although one
can imagine a mechanism that substitutes carefully chosen activities for the random
Poisson noise so that the posterior distribution takes on a different form, the central
limit theorem argument above implies that it is not a viable way of encoding
distributions other than simple Gaussians.

CONVOLUTION ENCODING For non-Gaussian distributionsP[s|I ] (strictly densi-
ties) that cannot be characterized by a few parameters such as their means and
variances, more complicated solutions must be devised. One possibility inspired
by the encoding of nonlinear functions is to represent the distribution using a
convolution code, obtained by convolving the distribution with a particular set of
kernel functions.

The canonical kernel is the sine, as used in Fourier transforms. Most nonlinear
functions of interest can be recovered from their Fourier transforms, which implies
that they can be characterized by their Fourier coefficients. To specify a function
with infinite accuracy one needs an infinite number of coefficients, but for most
practical applications a few coefficients suffice (say, 50 or so). One could therefore
use a large neuronal population of neurons to encode any function by devoting each
neuron to the encoding of one particular coefficient. WithNneurons, ignoring noise
and negative firing rates, one can encodeN coefficients. The activity of neurona
is computed by taking the dot product between a sine function assigned to that
neuron and the function being encoded (as is done in a Fourier transform):

fa(P[s|I ]) =
∫

dssin(was+ φa)P[s|I ],

where neurona is characterized by its parameterswa andφa.
Many other kernel functions may be used for convolution codes. For instance,

one could use Gaussian kernels, in which case the activity of the neurons is obtained
through

fa(P[s|I ]) =
∫

dsexp

(
− (s− sa)2

2σ 2
a

)
P[s|I ]. 7.

Gaussian kernels are usually better than sine kernels for learning and computation
when the distributions are concentrated around one or a small number of values.

If a large population of neurons is used, and their Gaussian kernels are trans-
lated copies of one another, Equation 7 becomes a discrete convolution. In other
words, the pattern of activity across the neuronal population is simply the original
distribution, filtered by a Gaussian kernel.

Note that when there is no uncertainty associated with the encoded variable,
i.e., the encoded probability distribution is a Dirac function,P[s|I ] = δ(s, s∗),
Equation 7 reduces to

fa(P[s|I ]) = exp

(
− (s∗ − sa)2

2σ 2
a

)
.
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This is simply the equation for the response to orientations∗ of a neuron with a
Gaussian tuning curve centered onsa. In other words, the classical framework we
review in the first half of this paper is a subcase of this more general approach.

With the convolution code, one solution to decoding is to use deconvolution,
a linear filtering operation that reverses the application of the kernel functions.
There is no exact solution to this problem; however, a close approximation to the
original function can be obtained by applying a band pass filter, which typically
takes the form of a Mexican hat kernel. The problem with this approach is that it
fails miserably when the original distribution is sharply peaked, such as a Dirac
function. Indeed, a band pass filter cannot recover the high frequencies, which are
critical for sharply peaked functions.

Anderson (1994) took this approach a step further, making the seminal sugges-
tion of convolutional decoding rather than convolutional encoding. In one version
of this scheme (which bears an interesting relationship to the population vector),
activity ra of neurona is considered to be a vote for a particular (usually proba-
bilistic) decoding basis functionPa[s]. Then, the overall distribution decoded from
r is

P̂[s|I ] =
∑

a ra Pa[s]∑
b rb

.

The advantage of this scheme is the straightforward decoding model; one disad-
vantage is the concomitant difficulty of encoding. A second disadvantage of this
scheme is shared with the linear deconvolution approach: It cannot readily recover
the high frequencies that are important for sharply peaked distributionsP[s|I ],
which arise in the case of ample information inI .

An alternative to these linear decoding schemes for convolution codes, which
is consistent with the theme of this review, is to adopt a probabilistic approach.
For instance, given the noisy activity of a population of neurons, one should not
try to recover the most likely value ofsbut rather the most likely distribution over
s, P[s|I ] (Zemel et al. 1998). This can be achieved using a nonlinear regression
method such as the Expectation-Maximization algorithm (Dempster et al. 1977).

In the decoding schemes of both Anderson and Zemel et al., the key concept is to
treat a population pattern of activity as a representation of a probability distribution,
as opposed to a single value (as is done in the standard approach reviewed in the
first section). To see the difference, consider a situation in which the neurons are
noise free. If the population code is encoding a single value, we can now recover
the value ofs with absolute certainty. In the case of Anderson and Zemel et al,
we can now recover the distribution,P[s|I ], with absolute certainty. As discussed
earlier, in many real-world situationsP[s|I ] is not a Dirac function; so optimal
decoding recovers the distributionP[s|I ] with absolute certainty, but the inherent
uncertainty abouts remains.

One problem with the convolutional encoding (and indeed the other encodings
that we have described) is that there is no systematic way of representing multiple
values as well as uncertainty. For instance, a wealth of experiments on population
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coding is based on random dot kinematograms, for which some fraction of the
dots move in randomly selected directions and the rest (the correlated dots) move
in one particular direction, which is treated as the stimuluss∗. It is not obviously
reasonable to treat this stimulus as a probability distributionP[s|I ] over a sin-
gle directions (with a peak ats∗), since, in fact, there is actual motion in many
directions. Rather, the population should be thought of encoding a weighting or
multiplicity functionρ(s), which indicates the strength of directions in the stim-
ulus. We consider below a particularly interesting case of this (Treue et al. 2000),
in which multiplicity functions were used to probe motion metamers.

In some situations both multiple values and uncertainty apply. Consider viewing
a random grating kinematogram through an aperture: What should be encoded is
actually a distributionP[ρ(s)|I ] over possible functionsρ(s), given the image
sequenceI . M. Sahani and P. Dayan (submitted manuscript) noted this problem
and suggested a variant of the convolution code, called the doubly distributional
population code (DDPC), to cope with this. In their scheme, the mean activity
of neurona (to be compared with that of Equation 7) comes from averaging the
convolutional encoding of the multiplicity functionsρ(s) over the distribution
P[ρ(s)|I ]

fa(P[ρ(s)|I ]) =
∑
ρ(s)

P[ρ(s)|I ]ga

∫
s

dsexp

(
− (s− sa)2

2σ 2
a

)
ρ(s)

 . 8.

Here,ga() is an activation function that must be nonlinear in order for the scheme
to work correctly. Decoding is more complex still but demonstrably effective at
least in simple cases.

Examples in Neurophysiology

In this section we review some neurophysiological studies that pertain to the hy-
pothesis that neurons encode probability distributions. The case of the log like-
lihood encoding scheme is particularly straightforward because it amounts to a
probabilistic interpretation of motion-energy filters, and there is ample evidence
that such filters offer at least a close approximation to the responses of neurons in
area V1 and MT (Adelson & Bergen 1985, Emerson et al. 1992).

Because it is only fairly recently that neurophysiologists have started testing
whether neurons encode probability distributions, evidence relating to other coding
schemes is limited. In almost all cases, the tests have been limited to probability
distributions over a set of discrete possibilities such as two particular directions of
motion rather than a probability density function over a continuous variable like
motion velocity. We thus treat this case first.

UNCERTAINTY IN 2-AFC EXPERIMENTS Gold & Shadlen (2001) have trained mon-
keys to indicate whether a visual stimulus is moving in one of two possible direc-
tions, e.g., up or down. In this 2-alternative forced choice (2-AFC) experiment,
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the stimulus was composed of a set of moving dots, some moving randomly and
the rest moving either up or down, depending on the trial. The difficulty of the
task can be controlled by changing the percentage of the dots moving coherently
upward or downward.

The optimal strategy for the nervous system is to pick the motion with the
highest probability given the activityr of the motion-sensitive neurons in early
visual areas, that is, to decide that motion is upward ifP[up|r ]/P[down|r ] > 1.
Applying Bayes Rule, we can rewrite the test in terms of log-ratios:

log

(
P[r |up]

P[r |down]

)
> log

(
P[down]

P[up]

)
.

The term (above) on the right-hand side is a constant that depends on the conditions
of the experiment; in Shadlen’s experiment, the two motions were equally likely,
so this term was 0. This equation shows that a Bayesian decision process only
requires comparing the term on the left-hand side, the log likelihood ratio, against
a fixed threshold. The exact relationship between single-cell responses and the log
likelihood ratio remains to be precisely established, but Shadlen’s data suggest
that neurons in parietal and frontal “association cortex,” in particular in areas LIP
(lateral intra parietal) or FEF (frontal eye field), may represent the log likelihood
ratio (see Gold & Shadlen 2001 for an overview). This is some of the first ex-
perimental evidence suggesting that association areas are indeed representing and
manipulating probabilities.

A second set of experiments also pertains to this hypothesis. Anastasio et al.
(2000) recently proposed that superior colliculus neurons compute the probability
that a stimulus is present in their receptive field given the imageP[s present at
(xi , yi )|I ], wherexi andyi are the eye-centered coordinates of the cell’s receptive
field. Note that this probability distribution is defined over a binary variable, which
can take only the value “present” or “absent.” Therefore, a neuron only needs to en-
code one number, sayP[s present|I ] because the other probability,P[s absent|I ],
is constrained to follow the relationP[s present|I ] + P[s absent|I ] = 1. Anasta-
sio et al. suggested that this is indeed what collicular neurons do: Their activity
is proportional toP[s present|I ]. Evidence for their hypothesis derives from the
responses of multimodal collicular neurons, which appear to be using Bayes rule
when combining visual and auditory inputs. This is indeed the optimal strategy for
multimodal integration if the neurons are representing probability distributions.

Platt & Glimcher (1999) have made a related proposal in the case of LIP neu-
rons. They trained monkeys to saccade to one of two possible locations while
manipulating the prior probabilities of those locations. They found that responses
of sensory and motor LIP neurons are proportional to the prior probability of mak-
ing a saccade to the location of the particular cell’s receptive field. In addition, they
manipulated the probability of reward for each saccade and found that neuronal
responses are proportional to the reward probability.

None of these examples deals with continuous variables. However, they offer
preliminary evidence that neurons represent probability distributions or related
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quantities, such as log likelihood ratios. Is there any evidence that neurons go
the extra step and actually encode continuous distributions at the population level
using any of the schemes reviewed above? Is representing probability distributions
a general feature of all cortical areas? As far as we know, these questions have
not been directly addressed with experimental techniques. However, as we review
below, some data are already strongly supporting a probabilistic interpretation of
cortical activity in all areas.

EXPERIMENTS SUPPORTING GAIN ENCODING Does the brain use the gain of the
responses of population codes to represent certainty? In other words, as the relia-
bility of a stimulus is increased, is it the case that the gain of its population code
in the brain increases as well? The answer appears to be yes in some cases. For
instance, as the contrast of an image increases, visual features, such as orientation
and direction of motion or color, can be estimated with higher certainty. This higher
certainty is reflected in the cortex by the fact that the gain of neurons increases with
contrast. This is true in particular in the case of orientation, or direction of motion,
for which contrast is known to have a purely multiplicative effect (Dean 1981,
McAdams & Maunsell 1999, Sclar & Freeman 1982, Skottun et al. 1987). It is
important to keep in mind that an increase in gain implies an increase in reliability
only for certain noise distributions. For instance, it is true for independent noise
following a Poisson distribution (or the near-Poisson distribution typically found
in cortex). In the case of contrast, the noise does remain near-Poisson regardless of
the contrast in the image (McAdams & Maunsell 1999). Unfortunately, the noise is
certainly not independent (Lee et al. 1998, Zohary et al. 1994), and, worse, we do
not know how the correlations are affected by contrast. It is also not clear how the
neural mechanisms interpreting the population activity treat the increased gain. It
is therefore too early to tell for sure whether gain is used to encode reliability, but
given the improvement in performance on perceptual tasks as contrast is increased
(e.g., Regan & Beverley 1985), it seems a reasonable hypothesis.

EXPERIMENTS SUPPORTING CONVOLUTION CODES According to the convolution
code scheme, the profile of activity across the neuronal population should closely
mimic the profile of the encoded distribution, since it is simply a filtered version
of the distribution. Therefore, as a stimulus becomes more unreliable, that is, as
its probability distribution widens, the population pattern of activity should also
widen. We saw that this was not the case with contrast: As contrast decreases, the
gain of the population patterns of activity decreases but the width remains identical
(at least in the case in which it has been measured, like orientation).

However, in other cases, this scheme might be at work. For instance, it is known
that humans are much better at localizing visual targets than auditory ones, which
indicates that vision is more reliable than audition (at least in broad daylight).
Spatial receptive fields of visual neurons tend to be much smaller than the spatial
receptive field of auditory neurons. This tendency implies that population patterns
of activity for visual stimuli are sharper than those for sounds. If these patterns
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are low pass versions of the underlying distributions, the posterior distribution for
visual stimuli is narrower than the one for auditory stimuli (Equation 7), which
would account for the fact that visual stimuli are more reliably localized.

A number of physiological studies on transparent motion also provide support
for the convolution code hypothesis. Stimuli composed of two patterns sliding
across each other can create the impression of two separate surfaces moving in
different directions. The general neurophysiological finding is that an MT cell’s
response to these stimuli can be characterized as the average of its responses
to the individual components (Recanzone et al. 1997, van Wezel et al. 1996).
This is consistent with the convolution of the cell’s tuning function with a multi-
modal distribution, with peaks corresponding to the two underlying directions of
motion.

EXPERIMENTS SUPPORTING DDPC Transparent motion experiments not only pro-
vide support for convolution coding but also for doubly distributional population
codes (DDPC). In a recent experiment, Treue et al. (2000) monitored the response
of motion-sensitive neurons while manipulating the distribution of motion in ran-
dom kinematograms. For instance, they tested neurons with a display in which half
of the dots move coherently in one direction and the other half move coherently in
another direction. In this case, the motion multiplicity function is simply the sum
of two Dirac functions peaking at the two positions, respectively. They also em-
ployed more complicated multiplicities in other experiments, including up to five
separate motions. In each case, they found that the responses of MT neurons could
be roughly approximated as following a relationship of the form of Equation 8,
albeit with a hint that the activity across the whole population may be normalized
rather than involving individual nonlinearities. In other cases such as binocular
rivalry (Blake 2001), multiplicity in input stimuli leads to (alternating) perceptual
selection rather than transparency. However, there is neurophysiological evidence
(Blake & Logothetis 2002, Leopold & Logothetis 1996) that aspects of the multi-
ple interpretations survive layers of neural processing, and therefore transparency
remains an issue.

Computations Using Probabilistic Population Codes

The psychophysical evidence we have reviewed earlier, such as the effect of con-
trast on velocity perception, suggests that the brain not only represents probability
distributions but also manipulates and combines these distributions according to
Bayes rule (or a reasonably close approximation). A few models have examined
how neural networks could implement Bayes rule for the various encoding schemes
that have been proposed. As an example, we once again use the experiment per-
formed by Ernst & Banks (2002). Recall that this experiment required subjects to
judge the width of a bar. The optimal strategy in this case consists of recovering
the posterior distribution over the width,w, given the image (V) and haptic (H)
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information. As usual this is done using Bayes rule:

P[w|V, H ] ∝ P[V, H |w] P[w]

∝ P[V |w] P[H |w] P[w].

This simple example shows that we need two critical ingredients to perform
Bayesian inferences in cortical networks: a representation of the prior and likeli-
hood functions and a mechanism to multiply the distributions together.

If we use a convolution code for all distributions, we can simply multiply all
the population codes together term by term (Anderson 1994). This calculation
automatically leads to a pattern of activity corresponding to a convolved version
of the posterior (Figure 7). This solution requires neurons that can multiply their
inputs, a readily achievable neural operation (Chance et al. 2002, Salinas & Abbott
1996). If we consider neurons as representing the logarithm of the probability dis-
tributions, then Bayes rule only requires adding the distributions together (because
the logarithm of a product is simply the sum of the individual logarithms). Zemel
& Dayan (1997) showed that convolution codes can implement proper proba-
bilistic inference from one population-coded quantity to another using standard
neural operations, i.e., approximating multiplication through a linear combination
followed by a squashing nonlinearity. When the probability distributions are en-
coded using the position and gain of population codes, the only solution that has
been proposed so far is that of Deneve et al. (2001), which we reviewed in the
first half of this paper. This approach has three major limitations. First, it does
not currently incorporate prior probabilities; second, it works only with Gaussian
distributions; and third, the network only computes the peak of the posterior but
not the posterior itself. This last limitation comes from the fact that the stable
hills in this model are noise-free and have fixed amplitudes (Figure 3). As such
they can only encode the mean of the posterior distribution but not its variance.
This makes it hard to use the network to represent uncertainty in intermediate
computations.

On the other hand, this solution has several advantages. First, it performs a
Bayesian inference using noisy population codes, whereas in the previous schemes
it remains to be seen whether multiplication or addition of distributions can be
performed robustly in the presence of noise. In fact, the assumption of variability
in the Deneve et al. (2001) approach is key: It is used to encode the certainty
associated with each variable. In other words, in this network, noise is a feature
allowing the system to perform Bayesian inferences.

The other advantage of this network is that it can deal with more general in-
ferences than those investigated by Ernst & Banks (2002). In their experiment,
touch and vision are assumed to provide evidence for the same variable, namely,
the width of the bar. In the coordinate transform problem investigated by Deneve
et al. the evidence comes in different frames of reference: eye-centered for vision
and head-centered for audition. Therefore, the various sources of evidence must
be remapped into a common format before they can be combined. This is a very
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general problem in cue integration: Evidence rarely comes commonly encoded
and must be remapped first. A classical example is depth perception, which relies
on widely different cues such as shading, stereopsis, and shape from motion, each
involving its own representational scheme. In Deneve et al.’s network, remapping
is performed through the basis function layer. Whether, and how, such remappings
could be performed using convolution or log codes is presently unknown.

CONCLUSION

Population codes are coming of age as representational devices in that there is a
widely accepted standard encoding and decoding model together with a mature
understanding of its properties. However, there remain many areas of active in-
vestigation. One in particular that we have highlighed is the way that continuous
attractor networks are ideally suited to implement important computations with
population codes, including noise removal, basis function approximations, and
statistically sound cue integration. Another focus has been population codes for
more general aspects of stimulus representations, including computational uncer-
tainty and multiplicity. With the notable exception of the log likelihood model of
Weiss & Fleet (2002), which shows how motion-energy filters provide an appropri-
ate substrate for statistical computations, these proposals are more computational
than mechanistic. However, the inexorable inundation of psychophysical results
showing the sophisticated ways that observers extract, learn, and manipulate un-
certainty acts as a significant spur to the further refinement and development of
such models.
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Figure 3 (A) Noise removal with a recurrent network using population codes for a variable
s (the lateral connections are not shown for visual clarity). The network is initialized with
a noisy hill of activity (left panel, denotedr in main text) and stabilizes over time to a
smooth hill of activity (right panel). With proper values of the lateral weights, the smooth
hill of activity peaks near, or at the location of the maximum likelihood estimateŝML (r).
In essence, the network performs maximum likelihood decoding and represents the estimate
with a population code. (B) Recurrent basis function network for optimal computation in
the presence of noise. The three input layers (two below and one on top) encode the eye-
centered and head-centered location of an object and the current position of the eyes. These
variables satisfy the relationship:sh= sr + se. In the case of function approximation, two
noisy population codes are provided as initial inputs. Then, the network stabilizes over time
on three smooth hills peaking at locationsŝh, ŝr, and ŝe and a two-dimensional hill in the
basis function layer. Due to the processing in the basis function layer, these peak positions
verify ŝh= ŝr + ŝe. Moreover, with proper weights, these three positions lie near, or at, the
maximum likelihood estimateŝsh

ML , ŝr
ML , andŝe

ML . In the case of cue combination, the network
is initialized with three hills of activity, which it combines optimally over time to recover
once again the maximum likelihood estimates.
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Figure 6 Population patterns of activity corrupted by Poisson noise and associated
posterior probability distributions obtained with a Bayesian decoder. When the pattern
of activity is simply translated (blue arrow), the peak of the distribution translates by
the same amount and the width remains the same (green versus blue curve inlower
panel). When the gain of the population activity decreases (red arrow), the posterior
distribution widens (green versus red curves inbottompanel).
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Figure 7 Bayes rule implementation for Ernst & Banks’ experiment. (A) A function
proportional to the posterior distribution over the width of the bar,P(w|V,H), can be
obtained by taking the product of the two likelihood functions (in red) and the prior (in
green). (B) Same as in (A) but with population codes for all distributions. Each layer
of neurons encodes one distribution. Patterns of activity are obtained by filtering the
encoded distributions with Gaussian kernels. To compute the posterior distribution,
each unit in the output layer takes the products of three input units with the same
preferred width.


