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Abstract

We describe a class of causal, discrete latent
variable models called Multiple Multiplica-
tive Factor models (MMFs). A data vector is
represented in the latent space as a vector of
factors that have discrete, non-negative ex-
pression levels. Each factor proposes a dis-
tribution over the data vector. The distin-
guishing feature of MMFs is that they com-
bine the factors’ proposed distributions mul-
tiplicatively, taking into account factor ex-
pression levels. The product formulation of
MMFs allow factors to specialize to a subset
of the items, while the causal generative se-
mantics mean MMFs can readily accommo-
date missing data. This makes MMFs dis-
tinct from both directed models with mix-
ture semantics and undirected product mod-
els. In this paper we present empirical results
from the collaborative filtering domain show-
ing that a binary/multinomial MMF model
matches the performance of the best existing
models while learning an interesting latent
space description of the users.

1. Introduction

In this paper we introduce a class of directed latent
variable models, Multiple Multiplicative Factor models
(MMFs), which are applicable to data sets where mul-
tiple hidden factors may influence each data element.
Figure 1 shows the graphical model for an MMF. The
generative process for an MMF is as follows:

1. A discrete, non-negative expression level znk is
selected independently for each of K factors Zk.
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2. Each element xnm of data vector xn is selected
from a distribution proportional to the product
of each factor’s predicted distribution for element
m, each raised to the power znk.

We obtain instances of the model relevant to particular
types of data by making different assumptions about
the domains and distributions of the latent factors and
observed variables. If we assume the observed vari-
ables are continuous, and let the factor predictions rep-
resent parameters of Gaussian distributions, then the
MMF model could be used to model gene expression
data, for example. The MMF model can be applied to
term-document data by assuming that each observed
variable Xm represents the word in document position
m, and that each factor encodes a different distribu-
tion over words. Similar assumptions allow the MMF
model to be applied to the task of link prediction.

In the current work we present an application of the
MMF model to the task of prediction in rating-based
collaborative filtering. In the particular MMF model
we apply,Xm is categorical and corresponds to a rating
for item m. Each factor encodes a different multino-
mial distribution over rating values for each item. We
assume the factors are binary valued and marginally
independent.
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Figure 1. MMF graphical model. Znk - latent factors, Xnm

- observed variables, η and ρ - model parameters.



The MMF model for collaborative filtering is quite
different from other discrete models that have been
applied to rating prediction problems. In the mix-
ture of multinomials model, the aspect model (Hof-
mann, 2001), and the user rating profile model (Mar-
lin, 2003), the generative distribution for each item is
determined by the state of a single categorical latent
variable. In MMF, the complete vector of latent vari-
ables influences the rating of each item. In addition, a
latent factor in MMF can have no ‘opinion’ about the
value of certain input components, a fact that allows
factors to specialize to a subset of the input dimen-
sions. As we discuss in the next section, this is not
possible in mixture models.

In this paper we describe the binary/multinomial mul-
tiple multiplicative factor model, present a variational
learning procedure for MMF, give a brief overview of
rating-based collaborative filtering, explain how the
model is applied to the rating prediction task, present
empirical results showing that MMF achieves state-of-
the-art performance on two rating prediction data sets,
and explore qualitative and quantitative properties of
the learned representation.

2. The Binary/Multinomial MMF
Model

In the binary/multinomial MMF model we assume the
factor variables Zk are binary valued and marginally
independent. Each factor is Bernoulli distributed with
mean ηk. The latent space description of each data
vector xn is a vector of factor expression levels zn =
(zn1 , ..., z

n
k ). Note that this vector does not represent a

distribution so the factors Zk can independently take
on different expression levels zk. The probability of a
latent factor vector is:

P (Z = z|η) =

K
∏

k=1

P (Zk = zk|ηk) (1)

We assume each element xnm of each vector is cate-
gorical, taking one of V values. Each factor k con-
tributes a multinomial distribution P (Xm = v|k) over
the values ofXm. We combine these distributions mul-
tiplicatively, taking into account the factor expression
levels. Given a factor expression vector zn, we define
the probability of observing value v for data element
m as follows:

P (Xm = v|zn) =

∏K

k=1 P (Xm = v|k)zk

∑V

v′=1

∏K

k=1 P (Xm = v′|k)zk

(2)

While it is possible to parameterize the distributions
P (Xm = v|k) using basic multinomial parameters
βvmk, we avoid the use of constrained optimization

in learning by instead using the natural parameters
ρvmk. The natural parameters can take arbitrary
real values and are related to the basic parameters
through the softmax function: βvmk = σ(ρvmk) =
exp(ρvmk)/

∑

v′ exp(ρv′mk). We can now re-express
P (Xm = v|zn) in terms of the natural parameters:

P (Xm = v|zn, ρ) =
exp(

∑K

k=1 z
n
k ρvmk)

∑V

v′=1 exp(
∑K

k=1 z
n
k ρv′mk)

(3)

In the collaborative filtering domain where we apply
the model in this paper, we must make allowances for
missing values in the data vectors. Here we treat miss-
ing values as missing at random. We define the func-
tion δ(xnm, v) to be 1 when xnm = v and 0 otherwise.
In particular it is 0 if xnm is unobserved. We define the

variables snm =
∑V

v=1 δ(x
n
m, v) to indicate if any value

is observed for xnm. The probability of a data vector
xn given factor vector zn is as follows:

P (xn|zn, ρ) =

M
∏

m=1

∏V

v=1 exp(
∑K

k=1 z
n
k ρvmk)

δ(xn

m
,v)

∑V

v′=1 exp(
∑K

k=1 z
n
k ρv′mk)s

n
m

(4)

The multiplicative formulation of MMFs allows the
predicted distribution for a particular data dimension
to be determined by a subset of the active factors.
In particular, an active factor k can have no opinion
about a certain data element m by learning a set of
ρvmk that are approximately uniform over the range
of v. When combining factor distributions multiplica-
tively, the true predicted distribution is equivalent to
the product of the active, non-uniform factor distribu-
tions. Under a mixture model, the predicted distribu-
tion is a convex combination of the factor distributions
and every active factor (factor with non-zero weight)
will affect the final distribution. In addition, the multi-
plicative combination can produce a sharper predicted
distribution than any of the factor distributions, which
is impossible under a mixture model because the dis-
tributions are averaged.

2.1. Variational Approximation

Exact inference in the binary/multinomial MMF
model is impractical for large K due to a sum over all
binary vectors of length K. However, exact inference
can always be performed with binary valued factors in
a finite amount of time. In order to develop a learning
procedure, we employ a variational approximation to
the true posterior P (Z|X = xn). We assume a facto-
rial Q-distribution for the hidden factor variables:

Q(Z = z|X = xn, µ) =

K
∏

k=1

Q(Zk = zk|µ
n
k ) (5)

The objective function of the binary/multinomial
MMF model with respect to a single data case is given



by the negative Kullback-Liebler divergence from
the approximate to true posterior distribution over
the latent variables: F n[µn, η, ρ] = −KL(Q||P ) =
EQ[logP (x

n, zn|η, ρ)] + H[Q(zn|xn, µn)]. Expanding
this expression in terms of the specified distributions
and parameters, and applying Jensen’s inequality we
obtain a tractable lower bound F̃n[µn, η, ρ] on the
per-vector objective function. Maximizing F̃n[µn, η, ρ]
corresponds to an approximate expectation maximiza-
tion procedure (Neal & Hinton, 1998). We introduce
the auxiliary variables γnvmk = µnk exp(ρvmk) + 1− µnk
and αnvm =

∏K
k=1 γ

n
vmk to simplify the objective:

F̃
n[µn

, η, ρ] =

M
∑

m=1

V
∑

v=1

δ(xnm, v)

K
∑

k=1

µ
u
kρvmk

−
M
∑

m=1

s
n
m log

V
∑

v=1

α
n
vm

+
K
∑

k=1

(µn
kηk + (1− µ

n
k )(1− ηk))

−

K
∑

k=1

(µn
k log(µ

n
k ) + (1− µk) log(1− µ

n
k ))

2.2. Learning

In this sub-section we describe a model fitting proce-
dure for the binary/multinomial MMF model based

on maximizing the objective function F̃ [µ, η, ρ]. Not

surprisingly the gradient of F̃ [µ, η, ρ] with respect to
the µnk parameters has the parameters coupled for each

user, and the gradient of F̃ [µ, η, ρ] with respect to ρvmk

has all parameters coupled. Thus, we give formulas
for computing these gradients, and describe nonlinear
optimization procedures for variational inference and
model fitting.

∂F̃ [µ, η, ρ]

∂µn
k

=
M
∑

m=1

V
∑

v=1

δ(rnm, v)ρvmk

−
M
∑

m=1

s
n
m

V
∑

v′=1

λ
n
m

exp(ρvmk)− 1)

µn
k (exp(ρvmk)− 1) + 1

+ log(ηk)− log(1− ηk)

− log(µn
k ) + log(1− µ

n
k ) (6)

∂F̃ [µ, η, ρ]

∂ρvmk

= −

N
∑

u=1

s
n
kλ

n
m

µn
k exp(ρvmk)

µn
k (exp(ρvmk)− 1) + 1

+

N
∑

n=1

δ(rnm, v)µn
k (7)

∂F̃ [µ, η, ρ]

∂ηk
= ηk −

1

N

N
∑

n=1

µ
n
k (8)

λ
n
m =

αn
vm

∑V

v=1 α
n
vm

Algorithm 1 BinMMF-VarInf

Input: x, η, ρ, I
Output: µ

Initialize µk, ξ ← 1
for t = 1 to I do

for k = 1 to K do

dk ←
∂F̃ [µ,η,ρ]

∂µn

k

while (F̃n[P(µn− ξd), η, ρ] > F̃n[µn, η, ρ]) do

ξ ← κξ
µ← P(µ− ξd)

Algorithm 2 BinMMF-Learn

Input: {ru}, K
Output: η, ρ

Initialize η, ρ. ξ0 ← 1
while Not Converged do

for n = 1 to N do

µn ← BinMMF-VarInf(η, ρ,xn, H(n))
for v = 1 to V , m = 1 to M , k = 1 to K do

dvmk ←
∂F̃ [µ,η,ρ]
∂ρvmk

while (F̃ [µ, η, ρ− ξd] > F̃ [µt, η, ρ]) do

ξ ← κξ
ρ← ρ− ξd
for k = 1 to K do

ηk ←
1
N

∑N
n=1 µ

n
k

Analytical updates for ρvyk and µuk can not be
found due to coupling of parameters in their respec-
tive gradient equations, hence we use iterative, non-
linear optimization techniques for learning. In the
binary/multinomial MMF model the ρvmk param-
eters are unconstrained, but µnk parameters repre-
sent Bernoulli probabilities and are constrained to lie
within the interval [0, 1].

A number of optimization methods exist for iteratively
solving box constrained optimization problems. How-
ever, since the number of users in a collaborative fil-
tering data set ranges from tens of thousands to hun-
dreds of thousands and the number of factor vari-
ables may be on the order of hundreds, clearly any
method relying on second derivatives will be compu-
tationally intractable. Two methods that rely only
on first order derivatives are the log-barrier method,
and the projected gradient method (Bertsekas, 1982,
p. 76). The log-barrier method is well known to ex-
hibit extremely slow convergence in most cases. The
projected gradient method is a modification of regu-
lar gradient descent. The method has a simple form
for problems where each variable xi is constrained to



lie in the interval [lbi, ubi]. In this case the projected
gradient method replaces the standard gradient de-
scent step xt+1 = xt − ξt∇f(xt) with the projected
gradient step xt+1 = P(xt − ξ∇f(xt)) where P(x) is
the projection function. For box constrained problems
P(x)i = median(lbi, xi, ubi) (Bertsekas, 1982, p. 92).
To ensure convergence the step size αt must be cho-
sen by an inexact line search procedure which satisfies
sufficient increase and curvature conditions. A back-
tracking line search is particularly easy to implement.

We obtain a variational inference procedure by itera-
tively maximizing F̃n[µ, η, ρ] with respect to µn using
the projected gradient method. It is important to note
that while the µn parameters are coupled for each data
case, they are not coupled across data cases. We sum-
marize the resulting variational inference procedure in
Algorithm 1. κ is a parameter that controls the speed
of backtracking in the line search. Its value must sat-
isfy 0 < κ < 1.

An iterative procedure for learning the parameters
ρvmk and ηk of the binary/multinomial MMF model
can now be defined. The ρvmk parameters are uncon-
strained, so standard gradient descent with backtrack-
ing can be used. The ηk parameters have an analytic
update. We give the model fitting procedure in Algo-
rithm 2.

3. Collaborative Filtering

In rating-based collaborative filtering, users express
their preferences by explicitly assigning ratings to
items that they have accessed, viewed, or purchased.
This form of data is becoming increasingly prevalent
as many web sites offer the user the option of rating
items such as movies, research papers, or even profes-
sors.

The principal information filtering task in collabora-
tive filtering is commonly referred to as recommenda-
tion. In rating-based collaborative filtering this task
has a natural decomposition into the task of rating pre-
diction, and the task of computing recommendations
from a set of predictions. Given a particular item and
user profile, the goal of rating prediction is to pre-
dict the user’s true rating for the item as accurately
as possible. Recommendation can be accomplished by
recommending the items with the highest predicted
ratings.

A variety of rating prediction methods have been pro-
posed for rating-based collaborative filtering. The
original methods for this task, such as the GroupLens
algorithm, were based on nearest neighbor regression
using Pearson’s correlation as a similarity measure

(Resnick et al., 1994). Other techniques that have
been applied to rating prediction construct explicit
models. As we have already mentioned, probabilis-
tic techniques include probabilistic principal compo-
nents analysis (Canny, 2002), the aspect model (Hof-
mann, 2001), and the user rating profile model (Mar-
lin, 2003). For a summary of these and other collabo-
rative filtering models and methods see (Marlin, 2004).

4. Applying MMF to Collaborative
Filtering

The binary/multinomial MMF model has an intuitive
application to collaborative filtering. In the rating-
based case, the data vectors xn correspond to user
rating profiles ru where rum is user u’s rating for item
m. The rating values are assumed to be ordinal, and
on a scale from 1 to V . The latent factors Zk have
an interpretation as user attitudes. The latent space
description of a user is thus a binary vector indicating
which attitudes are expressed for that user. The multi-
nomial distributions associated with each factor give
that factor’s distribution over rating values for each
item.

The ability of the factors in the MMF model to have no
opinion about certain items is especially appealing in
the collaborative filtering case. Suppose the factors to
represent different attitudes toward genres of films. In
MMF it is possible for a factor that expresses strong
preferences for a certain genre to have no influence
over the ratings for unrelated genres. Again, this is
not possible in models that have mixture semantics.

The variational inference and learning procedures for
the binary/multinomial MMF model can be applied in
the collaborative filtering case without modification.
To use the model for predicting missing rating values,
all that remains is to derive prediction equations. We
begin by applying the variational inference method to
compute the variational parameters µak given the active
user’s rating profile ra. Computing the distribution
P (Rm|R = ra) is impractical even when the varia-
tional approximation is used because it involves a sum
over all binary vectors of length K. To overcome this
problem, we compute an approximation to the true
predictive distribution by sampling factor vectors ac-
cording to their probability under the Q-distribution.
The factors are marginally independent so sampling a
complete factor vector reduces to independently sam-
pling each factor. As we will show later, the factors
tend to be sparse so that a relatively small number of
samples leads to very good results. We give the rat-
ing prediction equations below, and a complete rating
prediction method in Algorithm 3. In practice a small



Algorithm 3 BinMMF-Predict

Input: ra, ρ
Output: r̂a

µ← BinMMF-VarInf(η, ρ, ra, H(a))
for s = 1 to S do

Sample zs ˜ Bernoulli(µ)
for m = 1 to M do

for v = 1 to V do

Compute P s(Rm = v|ra)
r̂am ← medianP

s(Rm|r
a)

number of samples gives very good prediction results
due to the fact that most users appear to express rel-
atively few factors.

P (Rm = v|ra) ≈
P s(Rm = v|ra)

∑V

v′=1 P
s(Rm = v′|ra)

P
s(Rm = v|ra) =

S
∑

s=1

(

exp(
∑K

k=1 z
s
kρvmk)

∑V

v′=1 exp(
∑K

k=1 z
s
kρvmk)

K
∏

k=1

(zskµ
a
k + (1− z

s
k)(1− µ

a
k))

)

5. Empirical Evaluation

We perform an empirical evaluation of the bi-
nary/multinomial MMF model based on two collab-
orative filtering data sets. The EachMovie data set
was collected by the Compaq Systems Research Center
over an 18 month period beginning in 1997. The data
set contains 72916 users, 1628 movies and 2811983 rat-
ings. Ratings are on a scale from 1 to 6. The data
set is 97.6% sparse. The MovieLens data set was col-
lected through the ongoing MovieLens project, and is
distributed by GroupLens Research at the University
of Minnesota. MovieLens contains 6040 users, 3900
movies, and 1000209 ratings collected from users who
joined the MovieLens recommendation service in 2000.
Ratings are on a scale from 1 to 5. The base data set
is 95.7% sparse.

We begin by filtering each data set to contain users
that have rated at least 20 items. In the case of Each-
Movie, this leaves about 35000 users and 1600 items.
Filtering the MovieLens data set leaves just over 6000
users and 3500 movies. Next, we form three random
partitions of each data set into training and testing
users. We form three random partitions of EachMovie
into 30000 training users and 5000 test users, and

three random partitions of MovieLens into 5000 train-
ing users and 1000 test users. We hold out the ob-
served rating of one item for each user in the test set.
Note that MMF was trained using a random subset of
5000 training users in the case of EachMovie.

We apply a strong generalization experimental proto-
col (Marlin, 2004, p. 14). We begin by training each
method using a set of training users. We then evaluate
the ability of the trained method to predict the held
out ratings for each test set user. The strong general-
ization protocol measures the ability of the method to
predict ratings given novel user profiles. Note that this
protocol is different than the weak generalization pro-
tocol normally used for collaborative filtering where
methods are tested on held out training user ratings
(Breese et al., 1998). The strong generalization per-
formance of a collaborative filtering method is thus a
better estimate of its performance in an online recom-
mendation setting.

We evaluate generalization in terms of prediction per-
formance using a normalized mean absolute error
measure (NMAE). The standard mean absolute er-
ror measure used in collaborative filtering is MAE =
1
N

∑N
u=1 |r̂

u
yu − ruyu |, assuming one held out rating per

user profile. Since we will be experimenting with data
sets having different numbers of rating values we nor-
malize the mean absolute error, which enables com-
parison across data sets. We define our NMAE error
measure to be MAE/E[MAE] where E[MAE] de-
notes the expected value of the MAE assuming uni-
formly distributed observed and predicted rating val-
ues. For EachMovie E[MAE] ≈ 1.9444 and for Movie-
Lens E[MAE] = 1.6.

We determine the strong generalization NMAE for
each of the three sets of test users from a given base
data set (EachMovie or MovieLens). We compute the
mean NMAE across these three test sets as well as the
standard error of the mean. For models with a size
parameter K we repeat the evaluation procedure for
several settings of this parameter.

6. Results

We present prediction performance results comparing
the binary/multinomial MMF model with a range of
other methods and models for rating prediction in-
cluding a simple multinomial model (Multi), a Pear-
son’s correlation best K neighbor method (PKNN), a
multinomial mixture model (MixMulti), and the URP
model (URP). The graphs in Figure 2 report the lowest
mean NMAE rate attained by each method for meth-
ods with a model size parameter K. We report the
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Figure 2. Prediction results for the multinomial model (Multi), Pearson’s correlation K-nearest neighbour (PKNN), the
multinomial mixture model (MixMulti), the user rating profile model (URP), and MMF on the EachMovie and MovieLens
data sets. The differences in performance between MixMulti, URP and MMF are not statistically significant in either
data set. The difference in performance between the best methods and both PKNN and Multi are statistically significant.

User Index

F
ac

to
rs

10 20 30 40 50 60 70 80 90 100

1
2
3
4
5
6
7
8
9

10

Figure 3. Factor activations are shown for a random set of 100 training users from the MovieLens data set. Black indicates
the factor is on with probability 0, white indicates that a factor is on with probability 1. The first row represents a bias
factor, which we clamp to 1 during learning for all users.

model size below the name of each method. These re-
sults show that the binary/multinomial MMF rating
prediction method attains strong generalization per-
formance that is statistically equivalent to the most
accurate currently known methods (URP and mixture
of multinomials) on both the MovieLens and Each-
Movie data sets.

In addition to rating prediction performance, we study
other qualitative and quantitative properties of the
learned MMF model. All the results that follow were
obtained using the binary/multinomial MMF model
of size 10 which achieved the best rating prediction
accuracy on the MovieLens data set.

In Figure 3 we show a representation of the variational
parameters µuk for a random subset of 100 training
users. µuk indicates the probability that factor k is ac-
tivated for user u. By looking at the columns of Figure
3, we see that the number of activated factors for each
user is quite low. By looking at the intensity of the
cells, we see that factors tend to either be completely
off, or completely on. Note that the first row of activa-

tions correspond to a bias factor, whose activation is
clamped to 1 during learning. The fact that the model
performs well while achieving sparse latent space de-
scriptions is an appealing property. This justifies the
use of a relatively low number of factor vector samples
when computing predictions.

Each factor is represented as a multinomial distribu-
tion over ratings for each item. To gain insight into
these distributions and how they combine to form the
predictive distribution over rating values for a given
user, we selected an item that represents a particularly
hard case. From all items rated by greater than 1000
users, we selected the item with the highest entropy
empirical distribution over rating values. Intuitively
this is a hard case because equally large numbers of
people have very different opinions about the item.
Ideally, we would like the model to learn a representa-
tion where different factors place probability mass on
different rating values. We show the set of multino-
mial distributions learned by the model in Figure 4a
where the intensity of each cell is proportional to its



Factors

R
at

in
g 

D
is

tr
ib

ut
io

n

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

Figure 4a

User Index

R
at

in
g 

D
is

tr
ib

ut
io

n

10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

Figure 4b

Figure 4. The matrix at the left shows each factor’s distribution over rating values for a single item. The matrix on the
right shows the posterior distribution over ratings for the set of 100 users in Figure 3. The posterior distribution was
computed using the variational approximation and sampling procedure given in Equation 9. A black cell represents a
probability of 0, while a white cell represents a probability of 0.5.

probability. A close inspection reveals that factor 5
has a clear maximum on value 2, factor 10 has a clear
maximum on value 3, factor 6 has a clear maximum on
value 4, and factor 8 has a clear maximum on value 5.
On the other hand, factors 1, 2, and 3 are more uni-
form with no obvious single peak. These results are
an indication of the type of cooperative learning and
specialization that are possible with MMFs.

Next, we computed the posterior over rating values for
the item in question using the factor activations of the
users depicted in Figure 3. The posterior distribution
was computed using the variational approximation and
sampling procedure given in Equation 9. We show the
results in Figure 4b. Several users exhibit sharper dis-
tributions over rating values than occur in the factors
themselves. In particular, user 88 has a higher proba-
bility on rating value 3 than occurs in any of the factor
distributions. This is a unique ability of a model based
on combining distributions using products, instead of
sums. A mixture model necessarily averages distribu-
tions creating a posterior distribution over ratings that
is no sharper than any of the component distributions.

Another pertinent question about the bi-
nary/multinomial MMF model is the quality of
the variational inference procedure. With 10 factors
there are 1024 joint configurations of the factor
vectors, and it is still possible to compute the exact
distribution over all joint configurations of their
settings given sufficient resources. We took advantage
of this fact to compute the exact distribution over
joint configurations of the latent variables for a
random sample of 1000 users based on the 10 factor
MMF model learned on the MovieLens data set.
We then computed the variational approximation
to the distribution over all joint configurations of
the latent variables for these same users. Lastly, we
computed the Kullback-Liebler divergence from the
exact distribution to the variational approximation.
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Figure 5. KL divergence from exact distribution over joint
settings of the latent factors to the variational approxi-
mation for a trained 10 factor binary/multinomial MMF
model.

We show a histogram of KL divergence values in
Figure 5. It is clear from the histogram that for the
majority of users in our random sample, the number
of excess bits is less than one. This is quite good
considering the granularity of the factorial variational
distribution we have assumed.

7. Conclusions and Future Work

The key trait that distinguish of MMFs from previous
directed latent variable models is the multiplicative
combination of factor distributions. As we pointed out
in Section 2 and observed experimentally, the product
form has the advantage that it can create sharper dis-
tributions than the individual factors’ distributions,
and allows factors to specialize to a subset of the data
vector components. By contrast models with mixture
semantics must average distributions, and every fac-
tor with non-zero weight contributes to the predictive
distribution for every data dimension.

MMFs can be considered as a directed analog to the



undirected models defined by the product of experts
(PoEs) (Hinton, 2002). PoEs have the advantage that
inference is easy because the latent variables are con-
ditionally independent given the data, but MMF mod-
els have the advantage that they naturally handle any
amount of missing data due to their directed structure.

The empirical results on the collaborative filtering task
show that the binary/multinomial model matches the
performance of the best known methods, while learn-
ing an interesting, sparse latent space description of
the users. This apparent sparsity justifies the use of a
relatively small number of factor vector samples dur-
ing prediction. The results presented here were based
on only 100 out of a possible 1024 samples.

The major drawback of MMFs is the complexity of
learning and inference. Our variational approxima-
tion has proved to be effective on the tasks we have
investigated so far, and the amount of computation
required can be carefully controlled by imposing lim-
its on the number of gradient ascent steps. While any
scheduling of the updates improves the objective func-
tion, further testing is required to establish the tradeoff
between limiting computation and the quality of the
learned representation.

We are currently examining other instances of
MMF models. First, we are exploring an Inte-
ger/Multinomial version, which will provide finer con-
trol when combining the factor predictions (see Equa-
tion 3). Here the flexibility in the factor expression
levels trades off against more complicated constraints
during inference. We plan to explore versions of the
MMF model for other tasks such as text analysis, and
gene expression analysis. In these offline domains, the
computational complexity of learning and inference in
the MMF model is less of an issue.

We are considering adding a level in the graphical
model to encode interdependencies between the fac-
tors. For example, incorporating some topographic
order in the latent space could improve representa-
tions and visualization in applications such as latent
semantic analysis. Finally, an input-output version of
the MMF would make it appropriate for classification
problems, and has some interesting relationships to
methods such as logarithmic opinion pools (Bordley,
1982; Heskes, 1998).
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