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Abstr act

This paper examinesthe use of the EM algorithm to perform motion seg-
mentation on image sequences that contain independent object motion. The
input dataarelinear constraintson 3-D trand ational motion and bilinear con-
straints on 3-D trandlation and rotation, derived from computed optical flow
using subspace methods. The problems of outlier detection, deciding how
many processes, and theinitial guessesfor the EM algorithm are considered.
Randomly sampling from the flow field is not a good method when a large
planar surface is present in the image, due to the nature of the linear con-
straints. A method for choosing flow samplesin this case is presented. Re-
sults from three image sequences are presented.

1 Introduction

A key function of many biological vision systems is the ability to interpret time-
varying images. Images are time varying for a variety of reasons, including the
casewhereimage motionisinduced by an observer moving inastationary environ-
ment, and al so by the presence of other objectsmoving relative to the environment.
For the purposes of navigation in a general environment it is of great importance
to be able to interpret image motion arising from one of these causes.

Image motion induced by an observer’s movement in astationary environment
isoften referred to as egomotion [10]. For the purposes of this paper, other objects
moving inthe sameenvironment are termed independently moving objects (IMOs).



Through the recovery of egomotion one can recover a relative depth map? of the
environment. This assumes that either there are no IMOs present, or if there are,
their image locations are known, and not included in the depth recovery process.

Ideally, one would like to be able to perform a segmentation of the image in
which regions containing IMOs are identified, even if the motion parameters of
the IMO cannot berecovered. A considerable amount of work has been done pre-
viously on this problem. Most of it has involved 2-D segmentation, which in-
volves finding discontinuities in optic flow images. Darell & Pentland [3] pro-
pose a method for segmenting flow into layers based on the 3-D tranglation un-
derlying the flow. Their work involves clustering 2-D constraints using an iter-
ative and competitive algorithm. Jepson & Black [13] propose using a mixture
model method for clustering component velocities in order to improve flow esti-
matesin regions containing discontinuitiesin theflow field. Wang & Adelson[28]
segmented image regions into patches, where each patch is modelled by an affine
flow field. They used K-means clustering. All of these approaches are attemptsto
improve the integration of constraints during the estimation of optical flow.

There have al so been attempts at segmentation based on 3-D motion. Adiv [1]
identified regionsin theimage whose motion was consistent with the movement of
aplanar surface, and grouped these according to their mutual consistency for var-
ious 3-D motions. Sinclair [25] segments images by recovering the 3-D angular
velocity field for the image, and using a ssmple clustering algorithm for identify-
ing planesin angular velocity space. This method also requiresidentifying planar
surfacesin theimage. Both of these methods require the existence (and identifica-
tion) of planar surfacesin theimage. Nelson [24] describes a method which could
properly be thought of asa 3-D method. Given the observer motion, he compares
the expected motion field against measured component velocities, and where sig-
nificant deviation is found assumes independent object motion. This method has
the drawback of requiring a priori knowledge of the observer motion, and does not
attempt to distinguish between different independent moving objects. The use of
the EM algorithm for 3D motion segmentation was introduced by MacL ean et. al.
[22]. Feng and Perona[6] have suggested the use of the EM algorithm to segment
3D motion using the essential matrix approach, but they do not seem to indicate a
method for determining the number of underlying motions.

In this paper the authors propose a methodology for 3-D image segmentation

In arelative depth map, the ratio of the depths of two objects may be recovered, but not their
absolute depths.



based on optical flow as an estimate of the motion field. This method attempts to
recover egomotion parameters, as well as identify regions containing IMOs. The
method isbased on linear and bilinear constraintson 3-D motion which are simply
derived from flow field values. These constraintsare not sensitive to depth discon-
tinuities in the image sequence, except to the extent that the linear constraints ac-
tually require asignificant level of depth variation. Multiple motion processes are
described by a finite mixture model, and the constraints arefit to the model using
the EM algorithm.

Anoverview of the paper is as follows. Section 2 describes the theory which
defineswhat ismeant by the“motion field” and the methods for deriving linear and
bilinear subspace constraints from it. Calculation of motion parameters from the
constraints and known problems in using the constraints are examined. Finally,
the form of the mixture model is described, and details of the application of the
EM algorithm to the simultaneous problems of segmentation and parameter esti-
mation are detailed. Section 3 presentsthe results of applying the method to three
image sequences. Thefirst sequence involves synthetic flow derived from adepth
map (Z-buffer) of acomputer animated scene. Noise is added to the flow to make
it more realistic. This case allows examination of clustering linear constraintsin
the case where the motion field is known. The second sequence involves a robot
observer moving in an industrial environment, in the presence of an IMO. Flow
estimates are based on fitting affine and rational displacement modelsto the track-
ing of localised image texture. Clustering of both linear and bilinear constraints
is used to demonstrate the potential of the method. The third sequenceis the Otte
sequence, for which ground-truth estimates of the motion are known. Again, clus-
tering of both linear and bilinear constraintsis used to estimate egomotion and at-
tempt to identify the IMO. This sequence contains adominant planar region which
required special care in sampling the flow vectors for constraint generation. Sec-
tion 4 discusses these results, and attempts to identify issues which need to be ad-
dressed in order to further improve the method. Section 5 summarizes the results
in this paper, and suggests directions for future research.

2 Theory

Throughout this paper aright-hand coordinate systemis used, and a pin-hole cam-
eramodel with aplanar receptor isadopted. Theoriginiscoincident with the cam-
era’s nodal point, meaning that all rays pass through the origin. The z-axis inter-



sects the image plane at right angles at a distance f from the origin, and defines
the optic axis of the system. The receptor is placed in front of the origin in or-
der to avoid the need to reflect coordinates. A point X in the 3-D world isimaged
to apoint X which lies in the image plane. Under perspective projection we write
X= XLX Where)? = [ X1 X0 X3 ]T.

e are interested in the case where pointsin the 3-D world are in motion. A
point X has a motion described by

V(t) = ‘fj—f =T(t)+Q(t) x X.
Here T represents the translational component of the point’s motion with respect
to the observer, and Q is the rotational component. For the rest of the paper we
will drop thereferencetot for velocities.
The motion of x in theimage planeis given by
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Equation 1 isthe “motion-field” equation. It represents an idealized form of optic
flow. Inreality we cannot measure the motion field directly, and use a variety of
optic flow techniquesto estimateit.

2.1 Constraintson 3-D Motion Using the Motion Field

Having estimated the motion field, attempts at recovery of 3-D motion are com-
plicated by the appearance of X3 (the depth of point X along the optical axis) in
Eq. 1. In this paper we utilize a technique called “ subspace methods’ devel oped
by Jepson and Heeger [14]. This technique allows constraints on 3-D motion to
be calculated from the motion field estimates. These constraints come in two va-
rieties: bilinear and linear.

2.1.1 Bilinear Constraints

A simplealgebraicnlani pulationof Eq. 1 allowsusto derivethefollowing bilinear
constrainton T and Q:

-

TT(XxUX)+ (T xX)T(XxQ)=0. )
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Thisis an exact constraint on 3-D motion given the motion field. It has the spe-
cial formthat if T is held constant then the equation islinear in Q and vice versa
Hence the name *bilinear’. Only a single flow vector and its associated image lo-
cation is required for each constraint. Since Eq. 2 is homogenous in T, we can
only recover T up to a scale factor; i.e. we can only recover translation direc-
tion, and not magnitude. The bilinear constraint may be written more compactly
as TT(&(T,%) + B(X)Q) = Owheredisa3 x 1 vector valued function of image lo-
cation and motion field, and Bisa 3 x 3 matrix valued function of image location
alone. It should be noted that B is quadratic in X. Soatto et. al. [26] also appear?
to derive and use the bilinear constraint for motion and structure estimation while
using a spherical receptor surface. In areview of egomotion computation tech-
niques, Tian et. al. [27] point out that this constraint was first derived by Bruss &
Horn [2] in 1983.

2.1.2 Linear Constraints

Whilethe bilinear constraints are easily derived, their solution requires non-linear
techniques. It ispossibleto devise anew constraint which factorsout theinfluence
of Q andislinearin T.

Given motion field estimates at K > 7 distinct points in the image, {X’k}{f:l,
construct a constraint vector T according to

K
WE= 3 (%) x % - 3
k=1

HereT is a unit vector and w is the norm of the right-hand side of the equation.
If the ¢ are chosen to be orthogonal to all quadratic forms involving X, over the
sample points, then T is guaranteed to be orthogonal to T. For K sampled points,
it is possible to create K — 6 linearly independent constraints.® These constraints
form a basis for a subspace of ® X, hence the name subspace methods. Note that
Eq. 3 repesents a weighted sum of the bilinear constraints at each of the sampled
image locations, where the contributions from B(X) is 0.

2Intheir paper they refer to a“ measurement vector” §; which needs to be equal to X x @ in order
to match the bilinear constraint described in this paper.

3Werequire 7 sampled pointsto create one constraint, and 8 to create 2 constraints. Sincewere-
quireat least 2 constraintsto solvefor T, thisis equivalent to the 8 point-correspondences required
using the essential matrix method.



As aresult of the ¢, ’s being orthogonal to all quadratic forms involving X,'s,
it should be noted that T will be identically zero if all the X's are sampled from a
single planar surface imaged onto the receptor.

2.1.3 Solvingfor T and Q

Given a set of linear constraints T;, how can we solve for T? Recall that we can
only solve for the direction of T, so we can arbitrarily set its magnitude to unity.
Thisallowsustointerpret theT; aslying on agreat circle on the surface of the unit
sphere, orthogonal to thedirection of T. Given aweighted set of linear constraints,
{WiT; }iN:l, the trandational direction is given by the eigenvector corresponding to
the smallest eigenvalue of

D=y et @

Thisisthe equivalent of minimizing the expression

N
E(T)=T'DT = § wi(T'%)?.
i=1
Thisisasimple linear |east-squares calculation.

Solution of thebilinear constraintsismore difficult. Sincethese constraintsare
non-linear, closed-form analytic solutionsare generally not available, and we must
resort to iterative optimization algorithms. Thesetypically require an initial guess
for the parameters, and may converge slowly.

2.1.4 Known Problems

Given the difficulty of solving for 3-D motion using the bilinear constraints, why
not just use the linear constraints exclusively? The answer liesin the fact that the
linear constraints suffer from two main problems,

The linear constraints are exact in the absence of noise When isotropic noise
is added to the motion field, a non-isotropic noise distribution arises in the linear
constraints. Thisresultsin abias towards the optic axis when translational direc-
tionisestimated. Several methodsfor rescaling constraints have been proposed to
solve this problem [20, 21, 18, 19].

A second problem arises from an assumption implicit in the formation of the
linear constraints, namely that all of the flow samplesused to create each constraint
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come from one or more objects moving withasinglerigid motion. Thisissatisfied
when theimage only involvesthe observer’smotion in an otherwise static environ-
ment. Thisis an unrealistic assumption in the general case, since we must allow
for the possibility of object’swhose motion is different from the environment. We
term these independently moving objects (IMOs). It can be shown that when alin-
ear constraint isformed from flow samplestaken from the background andan IMO,
the resulting constraint lies somewherein the plane defined by the constraints that
would have resulted from either motion alone. While the bilinear constraints are
more difficult to solve, they do not suffer from the two defects described above.

It should also be noted that in the event that the observer is undergoing pure
rotation, then the linear constraintswill be zero (i.e. w; = O for all i). Inthis case
it is easy to recover rotation.

2.2 MixtureModes

Attempting to recover 3-D motion in the (possible) presence of IMOs posesan in-
teresting problem. Each estimated motion field vector may arise dueto therelative
3-D motion between the observer and the stationary environment, or the relative
3-D motion between the observer and one or more IMOs. In the case where adata
set contains observations, each of which arisesfrom one of several underlying pro-
cesses, the concept of a mixture model may be useful [23, 11].

In this case, each process has its own distribution and parameters. We wish
to find i) which data points belong to which processes, and ii) the values of the
parameters for each process. The first task is referred to as clustering, while the
second is parameter estimation. It isusually assumed that the number of processes
isknowninadvance, asthe problem of testing for thisnumber isingeneral difficult
and unsolved. Mixture models may also be used for robust estimation. We have
two distributions: theonewewould liketo fit to the data, and a second distribution
to capture “outliers’ in the data.

In the recovery of 3-D motion in image sequences, the linear and bilinear con-
straintswill be our observed data. Therewill be one processto model egomotion,
one process for each IMO, and one process to model outliers. Since we will not
know in advance the number of IMOs, we will need to determine the number of
IMO processesfrom the data (see Section 2.3.1). It remainsto define distributions
for the processes.

In the case of the linear constraints, the likelihood function (LF) involves the
expected translational direction T for each process, as well as a measure of cer-
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tainty in the estimate. This certainty is modeled by o, a measure of the spread of
the likelihood function. The likelihood of a linear constraint T; with respect to a
LM
number of underlying trandlations {Tj } - isgiven by
— — M —
P(Ti[T1,01... Tm, Om) = ToPo+ H T4 P(Ti[T},07),
=1

M
%T[j =1
]:

O§T[j <1

©)

where M is the number of processes. The {0 }'Jv': , are dependent on the error in
the motion field estimates. Note that estimating flow for an IMO, especidly if itis
small, may have different uncertainty than estimating flow for the stationary back-
ground, so we allow each motion processits own value. The1i; are called mixture
proportions and are positive valued congtants. The parameters T, o and T; are
all unknowns, and will be estimated given the linear constraints.

The outlier distribution is modeled by the constant pg. Since The domain of
the ; is the unit sphere, we set py = (4/3m)~* (the reciprocal of the surface area
of the unit sphere). (cf. [13])

Theform of the L Fsfor the motion processesistaken to be a Gaussian modified
for the unit sphere:

-z 3 (TT)?
p(TI|TJ7OJ) - 4T[(2—|—exp{—1/20f}) exp{— 20_]2 (6)
The form of this distribution requires some explanation. In a noiseless case, we
expect all ¥'sassociated with agiven T to liealong agreat circle on the unit sphere,
wherethe plane defined by thisgreat circleisorthogonal to T. However, oncenoise
is added, we expect that the linear constraints will not lie exactly in the plane, but
will be closetoit. Thisdistribution describes a Gaussian ridge lying along agreat
circle(seeFig. 1).
Once the motion parameters are known or estimated, each linear constraint i
can be assigned an ownership probability with respect to each motion process j as
follows:

T p(Ti|Ti, O
S]: = ip( || ]_»]) . (7)
P(Ti[T1,01...Tm, Om)
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Figure 1: The likelihood function for constraint T; arising from translational mo-
tion Tj is shown in this plot. The function forms a Gaussian ridge along a great
circle on the unit sphere, where the spread of the ridge is controlled by gj.



Thecasefor thebilinear constraintsisvery similar. All that changesistheform
of theLF.

. = 1 (T (& () + Bi())?
p(ul|Tlvglvo-J):\/2—TO_Jexp{_ : 20_]2 } (8)
Here, since each hilinear constraint is synonymous with a single flow vector, we
have written the LF using U as the observed data, and with image location and mo-
tion parameters as the independent parameters. This LF can be interpreted as a
Gaussian whose parameter is the distance from a line defined in U space. Also,
since the domain of this LF is not compact we cannot use a constant value for the
outlier process LF: alarge-variance Gaussian is used instead.

The question which remainsis “how can we simultaneously estimate motion

parameters and ownership probabilities?’

2.3 TheEM Algorithm

As stated in the previous section, mixture models are useful representations for
the recovery of 3-D motion from image sequences. The linear and bilinear con-
straints, derived from motion field estimates, are the observed data. We wish to
robustly estimate motion parameters for each motion process, and also determine
which data (constraints) belong to each process. If we knew a priori which con-
straints belonged to which motion processes, the problem of parameter estimation
is straightforward. This would be the case if we had identified and segmented
IMOs in advance. One the other hand, if we knew the parameters of the differ-
ent motion processes, segmenting the constraints would be easy. This could cor-
respond to the case where information from another motion-sensing modality is
available. In general we cannot assume that we know either the segmentation or
the motion parameters, so we must estimate both.

One method for doing thisisto use the EM algorithm[4]. Thisisan iterative,
two-step method use for simultaneous estimation of segmentation and process pa-
rametersin mixture models. We assume that we start with an initial guess for the
motion parameters. The first step, named the “ expectation step”, involves assum-
ing that the motion parameters are indeed correct, and estimating ownership prob-
abilitiesfrom them. The second step, called the “maximization step”, involves as-
suming that the calculated ownership probabilities are correct and re-estimating
the motion parameters based on them. Each pair of “E” and “M” steps constitutes
oneiteration of the algorithm.
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Equation 5 can be viewed as a likelihood function, i.e. it indicates the like-
lihood that the observed data came from the mixture model parametrized by the
motion parameters and the mixing proportions. The EM algorithm is guaranteed
to increase, or at worst leave unchanged, this likelihood function. Therefore the
EM agorithmisaform of maximum likelihood estimation. In the case where the
likelihood is unchanged, a maximum has typically been encountered.

The likelihood function is typically non-linear, and as such will have multiple
maxima. There is no guarantee that the EM algorithm will ever find the global
maximum. In fact, which maximum it finds is likely to be related to the initial
guessprovided, soitisof great importancethat agood initial guess be used. There
are also no general results for the rate of convergence of the algorithm.

2.3.1 ClusteringLinear Constraints

Thefirst step in recovering 3-D motion involves using the EM algorithm to cluster
linear constraintsrecovered from theimage sequence. Clustering linear constraints
issimpler than clustering bilinear constraints since we can use them to provide an
initial guessfor T. Once T is recovered, it is simple to recover an estimate of Q.
Clustering linear constraints a so provides ameans for determining the number of
motion processes involved in the mixture.

The method begins by considering the matrix D defined in Eqg. 4. As stated
before, the eigenvector corresponding to the minimum eigenvalue (hereafter re-
ferred to as the “minimum eigenvector”) provides an estimate for translational di-
rection. Thisispremised ontheideathat D will haveone eigenvaluewhichismuch
smaller than the rest. It is possible that D will have two eigenvalues which are
much smaller than the third. Thiscan be expected in the case wheretheT; lie close
to one another in acluster on agreat circle. In this case there may be two possible
directionsfor T. Let A1, A, and A3 be the eigenvalues of D in decreasing order. In
general there are three cases.

A1 > Ao > A3: Thisindicates the possibility of one trandational direction,
i.e. theT; liealong a great circle. More specifically, the constraints lie in
a cluster whose major axis is significantly larger than the minor axis. The
major axislies along the great circle (see Fig. 1).

A1 > Ay & A3 This case occurs when al the constraints lie close together
and aredistributed in arougly circular manner. This supportsthe possibility
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of two tranglation directions. Instead of a ridge along the unit sphere, we
observe a“bump”.

A & Ay &~ A3: Thisisadegenerate case. It meansthat the constraintsaredis-
tributed roughly equally in all directions. There may or may not be multiple
unique underlying transations, but we have no indication of any preferred
direction.

Assuming that D conforms to one of the first two cases, we can start the EM
algorithm with one or two guesses for T. In order to distinguish between the first
two cases, we compare A, to the geometric mean of the other eigenvalues, /A1As.
When A, isgreater than this mean, we use only the minumum eigenvector of D. If
A, isless than the mean, we also use the eigenvector associated with A,.

The EM algorithmisrunwith theinitial guessesfor theT'j . During each E-step
we calculated the ownership probabilities of each Tj with respect to each motion
processusing Eq. 7. Themixing proportionsfor each processare also computed at
thistime. During each M-step amatrix D j iscomputed for each processasfollows:

Ve

N
Dj=Y siwttl /Y sjwf (9)
i=1 i=1

The new value of Tj isthe minimum eigenvector of D;. This matrix is really just
D where each T; is weighted by its ownership probability with respect to the jth
process. The variance for the jth processis estimated by

N . N
of= 5 simT%/ Y s
=1 =1
The EM algorithmis continued until the parameters converge. Once the algorithm
has stopped, the eigenvalues of Dy (the outlier process) are examined. If there
is evidence for new translational directions based on the criteria described above,
then one or two new processes are added to the mixture, and the EM algorithm is
repeated. Thismethod is aform of “splitting” where new processes are split from
the outlier population until either 1) the mixture proportion of the outlier popula-
tion becomes too small (indicating that it “owns’ very few constraints), or 2) the
new processes cease to be unique as compared to previously existing processes.
The latter case may be determined by comparing the translational directions T, of
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the other processesto D j asfollows:
2 A 1 STR = 4 M ahs e
pGHDQ::E@m{—ﬂ Dﬂ@,kzéme Lpetz ety (10)

Once the number of processes and their parameters have been determined, we
can proceed to clustering of the bilinear constraints.

2.3.2 Clustering Bilinear Constraints

The previous section described the clustering of linear constraints. Thisclustering
estimated the number of underlying motion processes, as well as parameters for
each process. Asdiscussed in Section 2.1.4 linear constraints have several prob-
lems, not the least of which is that they become outliersif the flow samples used
to compute them are taken from more than one motion process.

To refine our estimates of 3-D translation, as well as estimating rotation, we
continue by clustering the bilinear constraints. For each motion process we need
to generate aninitial guessfor f),— . This can be donein aleast-squares sense using
the equation

m:_zﬁﬂﬂa _Z&ﬂﬂa. (12)
1= 1=

Note the lack of ownership weights. They are not included since the ownership
weight for any given linear constraint may not be atruereflection of the ownership
of the bilinear constraints used to form it (for example, when the linear constraint

isan outlier, the bilinear constraints associated with it need not also be outliers).
L o M
Starting with an initial guess for the motion parameters, {Tj ) Qj,Oj} o the
]:
EM agorithmisappliedtothebilinear constraints. During each E-step we estimate
ownership probabilitiesusing

§j = TG p(G[Tj, Q;),0)/p(Gi| T2, Q1,01 .. Tv, Qu, Om)

and from these estimate the mixing proportions. During each M-step a Newton-
Rhapson algorithm is used to minimize the cost function

K

f(T—jvéj) = _Z&j F'jT (& ‘|‘Bi§j>r

13



subject to the constraint HT’,— | = Land holding the s;’s fixed. LF spreads are esti-
mated as

TT g Bié' ’
szii%‘{ | <ZiK+151' ]” '

When estimating variances, upper and lower bounds are set on the values of o,
based on expected error rangesin theflow data. If no boundswere placed, then one
can conceive of of extreme casesin which the o valuesinflate until all constraints
are “matched” by asingle process, or they deflate until each each process matches
only asingle constraint. The latter case isless of a problem when the number of
processesis fixed.

Running the EM algorithm on the bilinear constraints leads to improved es-
timates for the motion parameters. Since each constraint represents exactly one
image location, they also provide a 3-D motion-based segmentation of the image.

2.4 Using Subspace Constraints to Detect IMOs and Recover
Egomotion

In this section we propose a methodology for detecting IMOs and recovering the
observer’s motion (egomotion) using linear and bilinear constraints together with
the EM a gorithm.

TheEM algorithmisaniterative, 2-step algorithmfor estimating model param-
eters in the case where each observed data may come from one of several under-
lying processes. In the case at hand, the observed data are the linear and bilinear
constraints, and the processes are the observed motion dueto the observer and each
IMO. We would like to determine the parameters of motion and assign each con-
straint to a motion process (thisis termed ownership). The proposed method is as
follows:

First, assume all objects movewith asinglerigid motion, and estimate atrans-
lation direction using outlier rejection. This gives an estimate of the observer’s
translational direction, aswell asanindication of a popul ation of constraintswhich
do not fit this motion well. By examining the outlier population, it is possible to
determineif evidencefor another translational motion exists. If thereis evidence,
an estimate for this trandation is introduced as a new process, and the EM algo-
rithmisre-run on the datawith the new processesin place. This process continues
until either 1) thereisno further evidence for new trans ational processes, or 2) the
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new processes cease to have unique translational directions.

At this point we have an estimate for how many distinct motion processes exist
aswell astheir trandational directions. We now can apply the same methodol ogy
to clustering of the bilinear constraints.

2.5 When Subspace M ethods Fail

There are cases where subspace methods will be useless for detection of IMOs.
The most important of these occurs when an IMO’s flow field direction is locally
very similar to that generated by egomotion. In this case the linear and bilinear
constrai ntscannot di stingui sh between adepth discontinuity and anIMO. A simple
exampleof thisis seen when an observer riding on atrain observesacar travelling
on aroad parallel to thetrain’sdirection. In this case both the egomotion flow and
the car’s flow are purely horizontal. Constraints derived from the car’s flow will
be perfectly consistent with the egomotion process, and the IMO is undetectable
using linear and bilinear constraint segmentation. A method has been devised to
use evolution of depth structure to detect the IMO in this case [20, 21].

3 Reaults

In this section results from three image sequences are shown.

3.1 Cube Sequence

Thefirst sequence presented involves synthetic flow generated fromapair of depth-
map images, 128 x 128 pixelsin size. Each imagelocation X inthe depth map con-
tainsa depth value X3(X), and can therefore be used to generate aflow motion field
vector using Eq. 1, given avalue for T and Q. In order to generate amotion field
containing an IMO, two depth maps are used (see Figure 2).

Thetranslation of the officerelativeto the observeris[ 1 0 1]T. Thetrans-
lation of the cube relative to the observeris[ 0 1 0]7. A rotation has been
added to simulatethe observer “fixating” apoint near the centre of theimage. This
was done to improve the SNR of the linear constraints[20]. The angular extent is
taken to be 45°. In order to make the flow more redlistic, 10% random noise is
added as O(X) = U(X) + A. The noise component i is chosen from a 2-D isotropic
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Figure 2: Two depth-map (Z-buffer) images are shown. On the left is the back-
ground image, representing an office scene. On the right is a small cube whose
depth values are less (closer) than the elements of the office scene.
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Figure 3: Resultant flow created from the cube and office depth map images (Fig-
ure 2). The cube, in the lower-right corner of the flow field, isfalling.

normal distribution having a standard deviation equal to 0.1||t(X)||. Theresulting
flow field is shown in Figure 3.

For thisflow field we only generate and cluster linear constraints. A dense set
of T are generated according to the convolution method of Jepson & Heeger [15].
A 15 x 15 convolution mask is created by modifying a difference-of-Gaussians
(DOG) function in order to satisfy FC = 0 where F is a matrix constructed from
theimage samplinglocationsof the convolution mask. Thismethod hasthe advan-
tage that the coefficients can be made independent of the absolute image position,
since the null space of F isinvariant under affine transformations of the image co-
ordinates. The constraint vector € can therefore be reused. The DOG has a centre
standard deviation of 1.5 pixels, and a surround standard deviation of 3 pixels.

AseachT isgenerated its SNR is checked, and constraints with SNR less than
5 are discarded. Thefollowing definition isused for SNR:

where



Figure 4: This figure shows the image location and relative magnitudes of the re-
covered linear constraints. Note that constraints are only recovered in locations
of significant depth variation and constraint magnitude reaches a maximum at the
point of fixation.

isaweighted average of the magnitudes of the flow vectors used to construct the
constraint. The value of p is set to 0.1, the same as the noise magnitude coeffi-
cient. Figure 4 shows the relative magnitude and image location of the recovered
constraints. Note that the constraint magnitude hits a maximum at the point of fix-
ation. Approximately 3,000 constraints were recovered.

3.2 Resultsof Clustering Constraints

Theresults of clustering linear constraints according to the “great-circle” distribu-
tion of EQ. 6 are shownin Figure 5. There are 4 processes recovered including the
outlier population. Two of these processes are merged at the end on account of be-
ing deemed too similar. The recovered processes form a segmentation of the flow
into a background process and the IMO.

Table 1 shows numerical results for the clustering. The outlier process has a
mixing proportion of 0.225157 corresponding to ownership of about 22.5% of the
constraints. Process 2 is seen to represent the background, and claims about 71.5%
of theconstraints. Itsrecoveredtranslational directionis[ 0.5654 0.0013 0.8248 |T,
which differsfrom[ 1 0 1] by about 10.5° error. This deviation is due to the
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Process 1 Process 2

Figure 5: This figure shows the segmentation of the T's based on trandlational
direction. Process 2 clearly belongs to the background motion, whereas Pro-
cess 1 has garnered support from some of the constraints generated at the cube-
background boundary. The outlier population also has considerable support from
these constraints, aswell as some from the background.
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Process 0 Process 1 Process 2 Process 3
(outliers)
Mixtures || 0.225157 0.009908 0.715241 0.049695
—0.3510 0.5654 —0.2146
T —0.0033 0.0013 —0.0222
—0.9364 0.8248 —0.9764
o 0.0041 0.0632 0.0084

Table 1. This table shows the estimated parameters recovered by clustering the
linear constraints. Process 2 represents the background constraints. Process 1 and
3 were merged, and represent the cube- background outliers.

bias discussed in Section 2.1.4, and may be reduced by rescaling the estimates ac-
cording to the expected noise distribution of the constraints[20] 4.

The trandational estimate for the cube is based solely on outlier constraints
formed acrossthe cube-background boundary. For thisreason we do not expect the
estimate to be close to the correct value. In[20] amethod of breaking great circles
into smaller, localized clusters of constraintsis presented. When this method is
used, together with the bias correction agorithm discussed above, the estimate of
the cube’'stransl ational motion isfound to bewithin 1.9° of therelative trandation
between the cube and background, as seen by the observer. Still, merely being
ableto identify an IMO either through its presence in the outlier population or as
a separate motion process is the most important result to be found here.

3.3 Forklift Sequence

The forklift sequence consists of 10 frames captured in an industrial environment.
Each imageis 640 x 480 pixelsin size. The sequence was captured from avideo
cameramounted on arobot translating roughly along the optical axisof the camera.

4In[20, 21] it is shown that this error is reduced to about 1.5° or less.
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Figure 6: Thisis aframe from a sequence (of 10 frames) collected by a robot-
observer transdating roughly along the optical axisin an industrial environment.
Theforklift and itsdriver aretranslating to the right. The boxesindicateimagere-
gionsfor which affineor rational modelsfor optic flow have beenfitted. Thefocus-
of-expansion (FOE) of the background motion for each frame in the sequence has
beenindicated by a’ x’.

Therobot’s speed was not measured, but wasthe equivalent of afast walk. Thereis
one IMO in the scene: aforklift moves from left-to-right across the robot’s path,
at speeds of up to 50 pixels/frame. The industrial environment is quite irregular
but provides good texture for optic flow recovery, and good depth structure for the
generation of T constraints. Figure 6 shows aframe from the sequence.

Optic flow for this sequence was generated by clustering constraints that are
consistent with either affine or rational models of flow [12]. The affine model for
flow is
_ | Go+ 02Xy + 0gXp

U(X) - 071 + 03X + OsXo

(12)
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assumingthat X =[ x; X 1 ]T. Thismodel allows the flow to vary in alinear
fashion over the patch. Therational model providesthe position X' of the displaced
point as afunction of the original position, X.

. 1 O+ OoX1 + 0gXo
OgX1 + 07X+ 1 | 01+ Q3Xy+ As5Xp

(13)

Therational model adds two parametersto the affine model, and is an exact repre-
sentation of the displacement of image points from a planar surface undergoing
rigid motion [5]. Since the time period between frame samples is small in this
sequence,” displacement can be used to provide agood model for estimating flow:

U(X) ~ X (X) - X. (14)

Therational model is particularly useful for tracking surfacesthat are known to be
planar, such as thefloor [12].

The constraintsused in clustering were component vel ocities recovered by track-
ing of contours of constant phase[7, 8, 9]. Theintegration of these constraintswas
accomplished by the application of the EM-algorithm to solve for ownership and
the parameters for each image region (patch) [12, 13].

Figure 6 shows a number of regions fit to one of the models. Each region is
referred to asa ‘patch’. All of the patches in thisimage have been fit to the affine
model, except for the floor which isfitted to the rational model. Whileit may seem
that the patchesin Figure 6 have already segmented theimage, it isover-segmented
with respect to independent object motion.

Each patch is sample at 6 points to provide flow estimatesfor generating con-
straints. Flow estimates are shown in Figure 7. Flow samples from two different
patches are required to generate alinear constraint, since flow from asingle affine
patchwould resultinT = 0. Each patchis paired with the floor patch for the gener-
ation of linear constraints. Thereforewe obtain 30 linear constraintsfor clustering.
The recovered constraints are shown in Figure 8.

The linear constraints are clustered according to the method in Section 2.3.1.
Two tranglational motion are identified, one roughly along the optic axis, and the
other in the horizontal direction. Table 2 shows the results of the linear cluster-
ing. The recovery of a good estimate for the motion of the forklift may at first

SThe frame rate was about 15 frames per second, which is small relative to the velocity of the
observer.
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Figure7: Thisfigure showsthe optic flow recovered from the frame shown in Fig-
ure 6. Each dashed box indicates a patch described by an affine or rationa flow
model. For each box six samples of the flow have been plotted, according to the
model used to recover that patch. The green flow vectors are from the floor patch.
The red flow vectors are from the moving forklift.
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Process 1;
Process 2:

-0.0002 -0.0925 0.9957] fQ =[ 0.337.98 4.69] G = 3.48084

T=][
T =[-0.9948 0.0216 0.0996] fQ = [ -2.94 -99.55-6.55] & = 0.64782

Table 2: Clustering of the linear constraints from the forklift sequences resultsin
the identification of two motion processes.

Mixtures: 0.1866 0.7075 0.1059
Process 1: T =[ 0.0102 -0.0925 0.9957] fQ =[ 2.09 2.27 -0.10] & = 0.07033
Process 2: T =[-0.9948 0.0295 0.0972] fQ = [ -4.13 -99.26 -5.18] & = 0.05602
Process 1: FOE = (13.20, -119.24)

Process 2: FOE = (-13137.98, 390.18)

Table 3: Clustering of the bilinear constraints from the forklift sequences allows
for refined estimates of the recovered motion parameters.

seem puzzling, since all the linear constraints associated with it are formed across
IMO boundaries, and are therefore expected to be outliers. As discussed in Sec-
tion 2.1.4, the resultant constraints are expected to be an average of constraints
which might be expected from either the floor or forklift alone. The forklift has
considerably larger motion field values than the floor, so we find that the forklift
flow samples bias the constraint towards the actual motion of the forklift.

The results from the linear clustering stage are used as initial guesses for the
bilinear clustering. There are 36 bilinear constraints in total, one for each recov-
ered flow sample. The segmented bilinear constraints are shown in Figure 9, and
the numerical values for the recovered parameters are listed in Table 3.

Process #1 has recovered the egomotion parameters. The intersection of the
constraints corresponds to the focus of expansion (FOE) of the egomotion. It is
seento be dightly above the centre of theimage, suggesting the camerawas aimed
dlighly downward. The second motion process has recovered the forklift motion,
resulting in parallel constraints as seen in the planexz = f. If they were projected
onto the plane x; = constant they would intersect at a FOE in a manner similar to
the constraints for the first motion process.

The ownership values for each of the constraints are shown in Figure 10. Pro-
cess #2 clearly owns the constraints generated from the forklift. The first bilinear
constraint, from the floor patch, also shows strong ownership by the forklift mo-
tion, sinceitsflow vector is compatible with the motion of theforklift. Thisserves
to highlight the fact that constraints may be owned by more than one process.
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-320 0 320

Figure8: Thelinear trandlation constraints plotted in theimage spacefor the frame
shown in Figure 6. Each constraint defines a plane through the origin, which is
shown intersecting the image plane X3 = f. Units are shown in pixels. The * x’
shownisthe FOE for the background motion after clustering the linear constraints.
The FOE for the moving forklift is to the extreme |eft and does not appear in this

figure.
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Figure 9: The top plot shows the trandation constraints derived from the bilinear
constraints as seen by the first motion. On the bottom is the plot of constraints
as seen by the second motion. As seen in Figure 10, the second motion primarily
owns constraints generated from the moving forklift. Grey-level indicates owner-
ship probability for each motion.
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Figure 10: The ownership probabilities for the bilinear constraints as fitted by the
EM algorithm. Thisplot has been segmented into six columns, each of whichisla-
belled with theimage patch from whichitsconstraintsare measured. Thesolidline
indicates ownership by the first motion, the dashed line the second motion, and the
dotted linethe outlier process. Constraintsfrom thefloor, back-wall, forklift, pillar
and mockup patches all show high ownership by the first motion (environment).
The moving forklift patch shows high ownership by the second motion process,
andisthuslabelled asan IMO. Bilinear constraint #1 (from the floor patch) proba-
bly shows a strong ownership by the second motion process because its horizontal
motion is consistent with that of the moving forklift.
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3.4 Otte Sequence

Thisexampleshowstheanaysisof asequenceby Michael Otteinwhichtheground
truth for the observer’smotion is known. The complete sequence has 30 framesin
it: we analyze the 3-D motion for dense flow obtained from frames 25 and 26 (see
Fig. 11). The flow was obtained using the methods outlined in [17, 16].

Because of the large planar surface present in the images, this sequence re-
quires extra care when choosing flow samplesfor constructing linear constraints.
Prior to sampling the flow, a quadratic model was robustly fit to the flow field in
order to determinewhich flow samples are from the floor region and which are not.
Figure 12 shows the probability that each image pixel belongs to the floor.

The following model was chosen for performing the fit:

v:{ao aﬂ Y| =MmX. (15)

As aninitia estimate for M the mean of the flow field was use (i.e. ag = v; and
bg = W, and all other g and b are zero). The model isthen robustly fit using the
EM algorithm. The probability that a given flow vector isagood fit to the model
isgiven by

- o 1 } T ~—1
p(VIX,M) = det(C)1/2(2T[)m/2 exp—zé c e (16)
where @ = V— MX, and m= 2. The covariance matrix C is
g? 0
C= [ 0 o?

Each iteration of the EM algorithm generates probability density estimates to be
used as weights, and also generates new estimates of M.

The sampling of the flow field to create linear constraints is done according to
thefollowing scheme. First, we create 200 “patches’ of 6 flow vectors each. Even
numbered patches contain flow vectors randomly sampled from the quadratic sur-
face (p > 0.6pmax), and the odd numbered patches contain flow vectors randomly
sampled from areas not belonging to the quadratic surface (p < 0.4pmax). All flow
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Figure 11: Thehorizontal (top) and vertical (bottom) components of the optic flow
used as input to subsequent computations.
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Figure 12: The bottom image shows the probability of each pixel in the denseflow
image coming from a region of quadratic flow representing the floor region. The
top image is the frame of the original sequence corresponding to the probability

map.

30



,.ig ww,,w:. ;mm&é@“
by .;w...., »......». v ::@&..é.w m@ 44

Y
S $

Figure 13: Thisfigure shows the sampled flow vectors.
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Figure 14: Thisfigure plotsthe linear constraints obtained from the Otte sequence
flow.

vectors are chosen to be unique. This means that no flow vector will be used in
more than one patch. The sampled flow vectors are shown in Figure 13.

For generation of the linear constraints, each even numbered patch is paired
with the subsequent odd numbered patch to create a sample of 12 flow vectors
which are expected not to all comefrom asingle planar surface. Theresulting con-
straints are plotted in Figure 14.

The IMO in the image was not detected during clustering of the linear con-
straints, most likely dueto the fact that it's motion lies strongly along the epipolar
lines of the observer’s motion.

For generation of the bilinear constraints, each flow vector from each patchwas
used as one constraint, giving atotal of 1200 bilinear constraintsfor this sequence.
Using thefinal valueof T asaninitial guess, the bilinear constraints were robustly
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fit. Thefinal estimated translational directionisT = —0.4879 —0.0864 0.8686 |'.

When compared totheground-truthvaluesof T = [ —0.4799 —0.1123 0.8701 |7
we find the two values to differ by about 1.68°. The same analysis, except using
uniform sampling of flow vectors, resultsinT = [ —0.4394 —0.0841 0.8944 .
Thisrepresents an error of 3.11°. The result using non-uniform (intelligent) sam-
pling is thus an improvement.

Theclustering of thebilinear constraints, shownin Figure 15, isseento bequite
good. Examination of the outliers from the bilinear constraint fitting shows two
regions of significant outliers. One region, towards the top-right of the image, is
an area of little texture which gave rise to poor flow estimates. The second region
involves flow estimates from the interior and boundary regions of the IMO. The
outliers still give an indication of the presence of the IMO. The flow vectors are
shown super-imposed over the image in Figure 16.

4 Discussion

In order to derive good estimatesfor 3-D motion, it is necessary to start with good
flow estimates. In the last ten years a considerable improvement has been seen in
the quality of flow estimates, making improved 3-D motion estimates correspond-
ingly improved.

In the first two sequences presented the IMO was detected during the linear
constraint clustering stage. While the motion parametersfor the cube were not re-
covered correctly, the values recovered can be explained in terms of the expected
behaviour of linear constraints which are formed across an IMO boundary. While
the same is true for the forklift, the motion parameters recovered are quite rea-
sonable, since the forklift's greater speed causes it's motion to dominate. In the
Otte sequence, the IMO was not segmented during clustering of linear constraints.
Thisagainisexpected, sincethe IMO’smotionisstrongly along the epi-polar lines
for the egomotion, meaning that constraints generated from it will not appear as
outliers, but rather as consistent with the egomotion. However, some outlier con-
straints are found along the IMO boundary, which allow usto at least be wary of
the activity in this image region.

Whileit is not always possible to recover the IMO’s motion, merely detecting
it isof considerable value. It's detection could be used to trigger another method
which would then recover the motion parameters.

Finally, also from the Otte sequence results, we see the necessity of sampling
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Figure 15: This figure shows the clustering of the bilinear constraints. A strong
intersection is seen to the left, indicating the trandlational direction.



Figure 16: This figure shows frame 25 from the Otte sequence with flow vectors
superimposed. Thered flow vectors are outlierswith respect to thefitting of the bi-
linear constraints. Thegreenlinesare epi-polesfound from the estimated direction
of translation of the observer.

flow vectorsin an intelligent manner. Had we randomly chosen flow vectors, most
would have ended coming from thefloor region. This, in turn, would have resulted
infewer linear constraints with agood signal to noiseratio. Since the main danger
isonewhere amajority of the flow vectors are sampled from a single, dominating
planar surface, it suffices to determine if such a surface exists. If it does, then we
must limit the number of flow samplestaken fromit, and correspondingly increase
the number of flow samples taken from other regions.

5 Conclusion

This paper has presented a method for performing 3-D motion segmentation on a
sequence of images. The method uses optic flow estimates as an input, and con-
structs constraints on the 3-D motion parameters. These constraints are simultane-
ously segmented and motion paramers estimated by applying the EM algorithmto
afinite mixture model in which onedistribution describes each motion process, and
an outlier distributionisused to capture constraintswhich arenot well-fitted by any
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of the motion processes. Clustering begins with the linear constraints, which are
only dependent on the 3-D tranglation. At this stage, a method of splitting motion
processes from the outlier population is used in an attempt to determine the num-
ber of motion processes present. This method is not guaranteed to find al motion
processes, but it provides a tractable starting point for the problem. The results
of the linear constraint clustering provides initial guesses for the number of mo-
tion processes and their parameters used to cluster the bilinear constraints. Dueto
the fact that bilinear constraints are less likely to be affected by IMO boundaries,
improved motion parameter estimates are obtained. Finally, since each bilinear
constraint corresponds to a single image location, the segmentation of these con-
straints will provide a 3-D motion-based segmentation of the image sequence.

The main place where this methodology can be improved isin the splitting of
processesfrom the outlier population. If we consider spatially local clustersof lin-
ear constraintsinstead of just constraintswhich support aparticular T, we may be
able to produce a better estimate of the number of motion processes. In asimilar
vein, one could imagine using a large number of motion processes, each with a
unique and fixed preferred valuefor T, being used to cluster the linear constraints.
Each of these motion processes could be thought of as a sensor on the surface of
the unit sphere which only becomes active if it senses enough compatible T con-
straints. Underlying motion processes could be hypothesized based on the number
and location of these active sensors.
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