[net, options, errlog] = gtmem(net, t, options)
[net, options, errlog] = gtmem(net, t, options)
uses the Expectation
Maximization algorithm to estimate the parameters of
a GTM defined by a data structure net
.
The matrix t
represents the data whose expectation
is maximized, with each row corresponding to a vector. It is assumed
that the latent data net.X
has been set following a call to
gtminit
, for example.
The optional parameters have the following interpretations.
options(1)
is set to 1 to display error values; also logs error
values in the return argument errlog
.
If options(1)
is set to 0,
then only warning messages are displayed. If options(1)
is -1,
then nothing is displayed.
options(3)
is a measure of the absolute precision required of the error
function at the solution. If the change in log likelihood between two steps of
the EM algorithm is less than this value, then the function terminates.
options(14)
is the maximum number of iterations; default 100.
The optional return value options
contains the final error value
(i.e. data log likelihood) in
options(8)
.
% Create and initialise GTM model net = gtm(latentdim, nlatent, datadim, numrbfcentres, ... 'gaussian', 0.1);options = foptions; options(1) = -1; options(7) = 1; % Set width factor of RBF net = gtminit(net, options, data, 'regular', latentshape, [4 4]);
options = foptions; options(14) = 30; options(1) = 1; [net, options] = gtmem(net, data, options);
gtm
, gtminit
Copyright (c) Ian T Nabney (1996-9)